侯风波版《高等数学》练习答案

合集下载

《高等数学》 详细上册答案(一--七)

《高等数学》 详细上册答案(一--七)

2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。

第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。

(完整版)侯风波版《高等数学》练习答案

(完整版)侯风波版《高等数学》练习答案

(完整版)侯风波版《⾼等数学》练习答案第⼀章函数习题函数⼀、填空题:略.⼆、略.三、图略.四、图略;0,2,6-.五、1.函数)(x f 与)(x g 不相同; 2.函数)(x f 与)(x g 是同⼀个函数.六、3)2(log t y a +=.七、1. 1,2,sin ,log +====x w v v u u y w a ; 2. 1,lg ,,arcsin -====x w w v v u u y ; 3. 1e ,,cos 2-===x v v u u y ;4. 12,ln ,cos ,22+-====x x w w v v u u y .第⼆章极限与连续习题⼀极限的概念⼀、判断题:略.⼆、图略;)(lim 0x f x →=0. 三、(1))(x f ⽆定义,2)1(=g ,3)1(=h ;(2)2)(lim 1=→x f x ;2)(lim 1=→x g x ;2)(lim 1=→x h x . 四、左极限0)(lim 0=-→x f x ;右极限1)(lim 0=+→x f x ;函数在0=x 处的极限不存在. 五、(1)2)(lim 1=-→x f x ;1)(lim 1=+→x f x ;)(lim 1 x f x →不存在;(2)=-→)(lim 23x f x 49)(lim 23=+→x f x ;49)(lim 23=→x f x ;(3)4)(lim 2=-→x f x ;8)(lim 2=+→x f x ;)(lim 2x f x →不存在.习题⼆极限的四则运算⼀、求下列极限1. 30;2. 17;3. 40;4.41.⼆、x x ++210;1.三、求下列极限1. 12-;2. 0;3. 4;4.61.四、求下列极限 1.32; 2. 32.五、1.六、1-.习题三两个重要极限⼀、求下列极限1. 1;2. 16;3.241;4. 1;5. 1;6. 8.⼆、求下列极限1. 3e ;2. 2e -;3. 9e ;4.2e1.习题四⽆穷⼩与⽆穷⼤⼀、1. ∞→x ; 2. -→0x .⼆、1. +-→1x 及+∞→x ; 2. ∞→x .三、1. 1-→x ; 2. 1→x .四、求下列极限1. 0;2. 0.五、234sin x x 是⽐⾼阶的⽆穷⼩.六、提⽰:由极限运算及等价⽆穷⼩定义.习题五函数的连续与间断⼀、选择题:略.⼆、2=a .三、1. 可去间断点是1=x ;2. 7-=x 为函数的第⼆类间断点;1=x 为函数的跳跃间断点.四、求下列极限1. 0;2. 21;3. 21; 4. 4. 五、(]4,1为函数的定义区间,即为函数的连续区间.第三章导数与微分习题⼀导数的定义⼀、1. 2)1(='f ;2. 43)2(-='f . ⼆、a y ='.三、0)0(='f .四、左导数 1)0(='+f ,右导数为 0)0(_='f ,函数在0=x 处的导数不存在.五、在(1,1)点处切线平⾏于直线.习题⼆导数的四则运算⼀、填空题:略.⼆、求下列函数的导数 1. 2ln 354x x y +='; 2. )cos (sin e x x y x +='; 3. 3223351--+-='x xy ; 4. ]sin ln )1(cos )1ln 2[(cos 122x x x x x x x x xy ++++='; 5. 2211sec 3x x y --=';6. 221arctan 2x x x x y ++='.三、①定义域R 即为函数的连续区间;② x x x x x y cos sin 52d d 5253+=-;③由定义,0)0(='f ;④ x x x x x f cos sin 52)(5253+='-.习题三复合函数求导⼀、填空题:略.⼆、求下列函数的导数1. 222cos sin 2sin 2sin x x x x x y +?=';2. ]1tan 2cos 2)1(1[sec e 222sin xx x x y x ?+-='; 3. 10199)1()1(200x x y -+='; 4. ]1sin 11[cos e1cos x x x y x x +='; 5. x x x y 3cos 3sin 31-+='; 6. )ln(ln ln 21x x x y ='.三、)(2sin )(?+=wt w t v ;)(2cos 2)(2?+=wt w t a .四、)]()e (e )e ([e)(x f f f y x x x x f '+'='.习题四隐函数对数函数求导⾼阶导数⼀、是⾮题:略.⼆、求下列⽅程所确定的隐函数)(x f y =的导数1. ()x x y y x x -+-='e sin e 1;2. xy y y x yx --='++e e .三、⽤对数求导法求下列函数的导数 1.41='y 4)3)(2()423()1)(1(3---+-x x x x x )312142341311(------++-x x x x x 2. )2ln 2(d d 2+=x x x y x .四、切线⽅程为0=y .五、求下列函数的⼆阶导数1. )49(1053+=''x x y ;2. x x y x cos 2e 1222--=''; 3. 8)21(360x y -='';4. =''y x 2sin 4006-.习题五微分⼀、填空题:略.⼆、求下列函数的微分1. ()x x x x y d sin 1)cos 1(2d +-+=;2. x x x y x d )3cos 33sin 2(e d 2+=;3. x xx y d ln 21d 3-=; 4. x y x x d e1e 3d 2613+++=. 三、求⽅程所确定的隐函数)(x f y =的微分y d 1. x y x xy y x d cos 2e d 2--=; 2. x ya xb y d d 22-=. 四、利⽤微分计算下列各数的近似值 1. 0033.101.13≈; 2. 21.1e 21.0≈.五、球的体积扩⼤约为3πcm 1800.第四章微分学的应⽤习题⼀洛必达法则⼀、是⾮题:略.⼆、求下列各式的极限1. 0;2. 1;3. 1;4. 0.三、求下列各式的极限1. 0;2. 0.四、求下列极限1. 0;2. 1;3. 1;4.21e -;5. 3;6. 0.习题⼆函数的单调性⼀、单项选择题:略.⼆、求下列函数的单调区间1. 单增区间),2()0,(+∞-∞Y ,单减区间)2,0(;2. 单增区间)0,(-∞,单减区间),0(+∞;3. 单增区间),21(+∞,单减区间)21,0(;4. 单增区间),0()1,(+∞--∞Y ,单减区间)0,1(-.三、提⽰:利⽤函数单调性证明.四、单调递增区间),21(+∞,单调递减区间)21,(-∞.习题三函数的极值⼀、单项选择题:略.⼆、1.)(x f '; 2.)(x f ''; 3. 极⼩值; 4. 3)1(=f .三、最⼤值为10)1(=-f ,最⼩值为22)3(-=f .四、极⼤值为0)0(=f ,极⼩值为41)22()22(-==-f f .五、当直径r 2与⾼h 之⽐为11∶时,所⽤的材料最少.习题四曲线的凹凸性与拐点⼀、填空题:略.⼆、曲线在)332,(--∞及),332(+∞内上凹,在)332,332(-内下凹,拐点为)910,332(--和)910,332(-.三、函数在)2,0(上的极⼤值为2723)31(-=f,极⼩值为1)1(-=f;最⼤值为1)2(=f,最⼩值为1)1(-=f;拐点为)272532(-,.四、⽰意图:第五章不定积分习题⼀不定积分的概念与基本公式⼀、填空题:略.⼆、选择题:略.三、计算下列不定积分1. Cx+13 3;2. C xxx + -5 3 ln 5 3 3;3. C xxx + + --ln 2 sin 3 1;4. C xxx+ +arcsin2cos.四、求解下列各题1. Cxxf x+='2e2d)(;2. xxf x2sece)(+=;3.所求函数为233+-=xxy.习题⼆不定积分的换元积分法⼀、填空题:略.⼆、选择题:略.三、多步填空题:略.四、计算下列不定积分 1. C x +--21; 2.C x +2arcsin 21; 3.C x x +++24arctan )1ln(41; 4.C x x ++3tan 31tan ; 5.()()C x x ++-+1213223; 6.C xx +--3arccos 392.习题三分部积分法简单有理函数的积分⼀、填空题:略.⼆、多步填空题:略.三、求下列不定积分 1. ()C x x +-++11e 21; 2. C x x x x x ++--4ln )2(22; 3. C x x x ++-e )22(2; 4. C x x x +-+212)1(arcsin ; 5. C x x x ++-sin 2cos 2; 6. C x x +--3 )2(ln 2. 四、?''x f x x d )e (e 2C f f xx x +-'=)e ()e (e .第六章定积分习题⼀定积分的概念微积分基本公式⼀、选择题:略.⼆、求下列定积分 1. 43433-;2. 3424-;3. 2;4. 4π1-;5. 4;6. 61. 三、解答下列各题1. x x x f 2sin )(4='; 2. 23d )(lim 200=?→x t t f x x ; 3.67d )(21=?-x x f .习题⼆定积分的换元积分法与分部积分法⼀、填空题:略.⼆、求下列定积分 1. )e 2(2-; 2. 32π2; 3. )1e (412+; 4. 12312π-+; 5. 49ln ; 6. 22a ; 7. )1e (212-π; 8. 3212ln -+.习题三定积分的应⽤⼀、32=S . ⼆、h r V 23π=. 三、(1)2=S ;(2)2π2=V . 四、两部分⾯积⽐为 )34π2(+:)34π2π8(--= )4π6(+:)4π18(-. 五、4π4r W ?=ρ.六、g P ρ18=.习题四反常积分⼀、填空题:略.⼆、选择题:略.三、计算下列⼴义积分 1.21; 2. 2π.四、?∞+∞-+x x x d 12发散.第七章常微分⽅程习题⼀常微分⽅程的基本概念与分离变量法⼀、判断正误:略.⼆、填空题:略.三、多步填空题:略.四、求解下列各题 1.C xy +=-3112(其中1C C -=为任意常数); 2. 冷却规律为kt t T -+=e 3020)(.习题⼆⼀阶线性微分⽅程⼀、填空题:略.⼆、多步填空题:略.三、通解为2e 1x C y -+=(其中C 为任意常数).习题三⼆阶常系数齐次线性微分⽅程⼀、填空题:略.⼆、多步填空题:略.三、求下列微分⽅程的通解1. =y x x C C -+e e 261;2. =y x x C C 521e )(+;3. =y )23sin 23cos (e 2121x C x C x +; 4. =y x C 25e -.四、1e 2)(-==x y x f .习题四⼆阶常系数⾮齐次线性微分⽅程⼀、填空题:略.⼆、多步填空题:略.三、x x x y e )9834(e 3613454+-++-=.四、求下列微分⽅程满⾜初始条件的特解(1)x x x y 22e )(-+=;(2)x y sin =.第⼋章空间解析⼏何习题⼀空间直⾓坐标系与向量的概念⼀、填空题:略.⼆、选择题:略.三、求解下列问题 1. k j i 3223-+-=-;2. ()14=AB d ;3. 939393,, 和---939393,,; 4. ),,(002-C .习题⼆向量的点积与叉积⼀、是⾮题:略.⼆、填空题:略.三、选择题:略.三、求解下列各题 1. -±837833835,,; 2. {}4,6,12-±=b ; 3. 213S ABC =?.习题三平⾯和直线⼀、填空题:略.⼆、选择题:略.三、求解下列问题1. 534=++z y x ;2. 2=-y z ;3. 211211-=--=-z y x ; 4. ①5-=p ;②7=p .习题四曲⾯与空间曲线⼀、填空题:略.⼆、选择题:略.三、求解下列问题1. ⽅程为x z y 422=+,是旋转抛物⾯; 2. 投影⽅程为?==+;0,52x z y 3. 投影⽅程为?==++.0,0422y z x第九章多元函数微分学习题⼀多元函数及其极限⼀、填空题:略.⼆、函数的定义域为{}41),(22<+≤y x y x ;草图三、4 142lim 00-=+-→→xy xy y x .四、表⾯积rh π2r πS 2?+?=,体积h r πV 2?=.五、)0,0(),(f y x f -??=22)()())((y x y x ?+.习题⼆偏导数及⾼阶偏导数⼀、是⾮题:略.⼆、填空题:略.三、解下列各题 1. x x z 4=??,29y y z=??; 2. 34xy x z =??,226y x y z=??; 3. y x x z ln 2+=??,y xy x y z=+=??10,222=??x z ,222y x y z -=??,y x y z 12=; 4. z y x f arctan =??,z x y f arctan =??,21z xyz f +=??.四、略.习题三全微分⼀、填空题:略.⼆、解答下列各题1. y x x x x y z d ln d )1(ln d ++=;2. z z y y z x x x yx u y y d cos d )sin ln (d d 1+++=-;3. 119.0-=?z ;4. 125.0d -=z .三、01.003.0cos 01.0sin ≈.四、对⾓线变化约为m 045.0.五、所需⽔泥的近似值为3m 4.9.习题四复合函数的偏导数⼀、填空题:略.⼆、多步填空题:略.三、解下列各题 1.1d d -=t z ; 2. y z x z =??,2)(y y x z y z +-=??; 3.)cos sin 2(cos 2x x x y xy xz +=??,)2sin (cos sin 22y y y x x y z -=??.习题五偏导数的⼏何应⽤⼀、填空题:略.⼆、求解下列各题1. 切线⽅程为 312111-=-=-z y x 和27272913-=-=-z y x ; 2. 切平⾯⽅程为 )3()1(4)1(2-+--+z y x =0;3. 切线⽅程为 1191161--=-=-z y x ,法平⾯⽅程为 0)1(1)1(9)1(16=---+-z y x .习题六多元函数的极值⼀、判断题:略.⼆、选择题:略.三、计算下列各题1. 函数在)1,2(点取得极⼩值24-;2. 当端⾯半径与半圆柱⾼满⾜2:1:=h r 时,所⽤材料最省.第⼗章多元函数积分学习题⼀⼆重积分及其在直⾓坐标系下的计算⼀、判断题:略.⼆、填空题:略.三、计算下列各题1. 0=I ;2. ①?==20202332d d x y y x I ;②332d d 40222==??y x y y I ; 3. 2 1d e d 1002==y y x x y I .习题⼆极坐标下⼆重积分的计算及⼆重积分的应⽤⼀、填空题:略.⼆、多步填空题提⽰:y x D y x d d e )(22??+-θr D r d rd e 2??-=??π-=2010d e d 2r r θr ?π-=20102)d(e 21d 2r θr θd )e 11(2120-=?π)e 11(π-=.三、求解下列各题 1. π2 2d d )cos(22=+??y x y x D ;(提⽰:化为极坐标下的⼆重积分); 2. π32=V ;3. 薄⽚的质量为121.第⼗⼀章级数习题⼀数项级数⼀、判断题:略.⼆、选择题:略.三、判断下列级数的敛散性1. ∑∞=-1)1(n n 发散; 2. ΛΛ+++++n21614121发散; 3. ∑∞=+1)1(1n n x 当0>x 或2-21n nn 收敛;5. ∑∞=--112)1(n n n n 收敛; 6. ∑∞=-+13)1(2n n n收敛.习题⼆幂级数⼀、填空题:略.⼆、求解下列各题1. 级数∑∞=+0122n n n x n 的收敛半径为21=R ; 2. 级数∑∞=++012122n n nx n 的收敛半径为22=R ; 3. 级数∑∞=-02)1(n n nn x 的收敛域为)3,1[-; 4. 级数∑∞=-011n n nx 的和函数为2)1(1)(x x S +=; 5. 级数ΛΛ+-+++-123123n x x x n 的和函数为21)11ln()(x x x S -+=.习题三函数的幂级数展开⼀、填空题:略.⼆、求解下列各题1. 展开为ΛΛ++-+-+-+=++)1()2()1(3)2(2)2(22ln )2ln(132n x x x x x n n ,收敛域为]2,2(-∈x ; 2.展开为ΛΛ+-++?-?=+)!2(2)2()1(!42)2(!22)2(sin 21422n x x x x n n ,收敛域为),(+∞-∞∈x ; 3. x 2=ΛΛ++++++n x n x x xx n x x x !2)2(ln !32)2(ln !22)2(ln 2ln 213322,收敛区间为),(+∞-∞∈x ;4. 展开式为∑∑∞=∞=---=++002)2()1(21)1(231n n n n n n x x x x ,收敛区间为)1,1(-.。

高等数学-高教版第五版-侯风波 第2章第3节

高等数学-高教版第五版-侯风波 第2章第3节


2
2
3. 复合函数求极限的方法
例 4 求极限 lim ln (1 x ) .
x 0
x

ln(1
x)

ln(1
1
x) x

1
ln(1 x) x


x
1
1
y ln u,u (1 x) x 复合而成的,而lim(1 x) x e,在 u e
x0
点ln u连续,故lim
二、初等函数的连续性
1. 初等函数的连续性
定理 一切初等函数在其定义区间内都是连续的.
求初等函数的连续区间就是求其定义区间.关于分段 函数的连续性,除按上述结论考虑每一段函数的连续性 外,还必须讨论分界点处的连续性.
f (x) 1 x 1
解:要使
f (x)
1 x
1
有意义,则x+1>0
因此函数 f (x) 1 x 1
至少存在一点 (a,b) ,使得 f ( ) .
定理 3 称为根的存在定理.从几何上看,如下页左图 所 示 ,连 续曲 线 y f (x) 从 x 轴 下 侧 的点 A ( 纵坐 标 f (a) 0 ) 笔 不 离 纸 地 画 到 x 轴 上 侧 的 点 B ( 纵 坐 标
f (b) 0时,比与 x轴至少相交于一点C( ,0) .这表明若
无穷间断点属第二类间断点.

1

f
x

x2, x

x
1,
x
1 1

讨论 ,
f
(x)在
x

1处的连续性.
解 因为
lim f (x) lim x2 1 ,

(完整版)侯风波版《高等数学》练习答案

(完整版)侯风波版《高等数学》练习答案

第一章 函数 习题 函数一、填空题:略 . 二、略 . 三、图略 .四、图略; 0 , 2, 6.五、 1.函数 f (x) 与 g(x) 不相同 ; 2.函数 f (x) 与 g(x) 是同一个函数3六、 y log a (2 t)3 .七、 1. y log a u,u sin v, v 2w ,w x 1;2. y arcsin u, u v,v lg w,w x 1 ;2x3. y cosu,u v ,v e 1 ;224. y u ,u cosv,v ln w,w x 2x 1.第二章 极限与连续 习题一 极限的概念一、判断题:略 . 二、图略; lim f (x) =0.x0三、 (1) f(x)无定义 ,g(1) 2,h(1) 3;左极限 lim f(x) 0;右极限 lim f (x) 1;函数在 x 0处的极限不存在 . 0(2) lim f(x) 2; lim g(x)2; lim h(x) 2. x1四、五、 1)lim x1f(x)2; lim f(x)x11;lim f (x) 不存在;x12) lim 3 x 2f(x)9lim f (x) 34x29; lim 3 f (x) 9; x 3 423)lim x2f (x)4; lim f(x)x28; lim f(x)不存在 . x2习题二 极限的四则运算、求下列极限1. 30;2. 17 ;3. 40 ; 、 10x 2 x ;1.1 4. .4四、求下列极限21. ;3 五、 1. 六、 1 .习题三 两个重要极限、求下列极限11. 1;2. 16;3.;4. 1;5. 1; 6. 8.24、求下列极限3 2 91. e ;2. e ;3. e ;4.习题四 无穷小与无穷大一、 1. x ; 2. x0.二、 1. x 1 及 x; 2. x .三、 1. x 1 ; 2. x 1.四、求下列极限1. 0;2. 0 .五、 sin 3 x 是比 4x 2 高阶的无穷小. 六、提示:由极限运算及等价无穷小定义.习题五 函数的连续与间断一、选择题:略 . 二、 a 2.三、 1. 可去间断点是 x 1 ;2. x 7 为函数的第二类间断点; x 1为函数的跳跃间断点四、求下列极限11 1. 0; 2. ; 3. ; 4. 4.22五、 1,4 为函数的定义区间,即为函数的连续区间 .、求下列极限1. 12;2. 0 ;3. 4;4. 1 .62.12.e5第三章 导数与微分 习题一 导数的定义3一、 1. f (1) 2;2. f (2) 3. 4二、y a .三、 f (0) 0.四、左导数 f (0) 1,右导数为 f _(0) 0 ,函数在 x 0处的导数不存在五、在( 1 , 1)点处切线平行于直线 .习题二 导数的四则运算、填空题:略. 、求下列函数的导数41. y 5x ; xln22. y e x (sin x cosx) ;323.y 1 x 2 5 x 33三、① 定义域 R 即为函数的连续区间;4. y5. y12[(2xln x 1cos 2 xx23sec x1 1 x 22x) cosx (1 x )ln xsinx];;6.2xarctanx2x1 x 2dy 2x 5sinx 5dx 25 x 5cosx ;③ 由定义,f (0) 0 ;④ f (x) 23 255x 5 sin x x5 cosx .习题三复合函数求导5第一章 函数 班级 学号 姓名1 3sin 3x ;;x cos3xw sin 2( wt );a(t) 2w 2 cos2(wt ).e f(x)[f (e x )e x f(e x )f (x)] .习题四 隐函数 对数函数求导 高阶导数 、是非题:略.、求下列方程所确定的隐函数 y f (x) 的导数三、用对数求导法求下列函数的导数2. y 2x12e2 2 cosx ;x 23. y 360(12x)8;4. y 6 400sin2x .2 d dx y x 2x (2lnx 2).一、填空题:略 . 二、求下列函数的导数1. sin2x sin x 22xsin 2 xcosx2.sin2x 2 1e [sec ( x 12 ) 2cos2xx2tan 1x];3.99200(1 x)99101 (1 x)1014.xcos1 1ex[cosx 1sin 1] ;xx5.6.2xln x ln(ln x)四、v(t) 1. yxy1 e x esin x; ;x2.xyyexyex1. y1 4 (x 1)(x 1)3(23 4x) (1 4 (x 2)(x 3)(x 13 x14 1 1 )23 4x x 2 x 3)三、求方程所确定的隐函数 y f(x)的微分 dye x 2xyb 2 x1. dy 2dx ; 2. dy 2 dx .x 2 cosya 2 y四、利用微分计算下列各数的近似值1. 3 1.01 1.0033 ;2. e 0.21 1.21.五、球的体积扩大约为 1800π cm 3.第四章 微分学的应用 习题一 洛必达法则、是非题:略 . 、求下列各式的极限1. 0 ;2. 1;3. 1;4. 0.、求下列各式的极限1. 0;2. 0 .四、求下列极限11. 0 ;2. 1;3. 1;4.e 2 ;5. 3;6. 0.、填空题:略 、求下列函数的微分1. dy 2(1 x cosx)1 sinx dx ;2. dy e 2x (2sin3x 3cos3x)dx ; 习题五 微分3. dy4. dy2ln x 3 dx ; x3e 3x 1 1 e 6x 2dx .习题二函数的单调性一、单项选择题:略.二、求下列函数的单调区间1. 单增区间( ,0) (2, ) ,单减区间(0,2) ;2. 单增区间( ,0),单减区间(0, ) ;113. 单增区间(2, ) ,单减区间(0,2);4. 单增区间( , 1) (0, ) ,单减区间( 1,0) .三、提示:利用函数单调性证明.11 四、单调递增区间( , ) ,单调递减区间( , ) .22习题三函数的极值一、单项选择题:略.二、1. f (x) ;2. f (x);3. 极小值;4. f(1) 3.三、最大值为f( 1) 10 ,最小值为f (3) 22.四、极大值为f(0) 0 ,极小值为f( 2 ) f( 2 ) 1.2 2 4五、当直径2r与高h之比为1∶1时,所用的材料最少.习题四曲线的凹凸性与拐点、填空题:略.、曲线在( 2332 3)及(2 333) 内上凹, 在( 2 3, 2 3) 内下凹,拐点为3323 109)和四、示意图第五章 不定积分 习题一 不定积分的概念与基本公式 、填空题:略 .、选择题:略 . 三、计算下列不定积分1332. 3x C ; x 3 5x ln 5 13. 3sinx 2ln x C ;x4.cosx 2 arcsin x πx C .四、求解下列各题1.f (x)dx 2e 2x C ;x22. f (x) e sec x ; 33. 所求函数为 y x 3 3x 2.习题二 不定积分的换元积分法三、函数在 (0,2) 上的极大值为 f ( ) 2327,极小值为 f(1) 1 ;最大值为 f(2) 1 ,最小值为f(1)1;拐点为 (23, 25 27). 1.13C ;一、填空题:略.二、选择题:略.三、多步填空题:略.四、计算下列不定积分1. 1 x2 3C;2. 1arcsinx2C ;23. 1ln(14 x4) arctan x24. tanx 1tan4x C ;32 321 x C;5. 1 x2333arccos C6. x2 9x习题三分部积分法简单有理函数的积分、填空题:略.、多步填空题:略. 、求下列不定积分1x1. 2e 1 x 1 x 1 C ;22xx2. ( x)ln x x C ;242x3. (x 2x 2)e C ;6. ln(x x23)2C.四、e2x f (e x)dx e x f (e x) f (e x) C.第六章定积分习题一定积分的概念微积分基本公式234. x arcsin x (1 x2)2 C;5. 2 xcos x 2sin x C、选择题:略 . 、求下列定积分、解答下列各题41. f (x) sinx 2x ;习题二 定积分的换元积分法与分部积分法 、 填空题:略 .、 求下列定积分π21 2 π 3 1. 2(2 e) ; 2. ; 3. (e 2 1) ; 4.1;324 12 2921221 5. ln ;6. 2;7. (e 21) ; 8. ln4a 2223习题三 定积分的应用六、 P 18 g .、S3.、Vπr 32h . 、(1)S 2;1. 334;2.44 2 4;3.2 ;4. 1π;5. 4 ;6.42.l ximx0 f(t)dt3.21 f(x)dx(2π 4) : (8π 2π 4)= (6π 4) : (18π 4).33习题四 反常积分、填空题:略.、选择题:略.三、计算下列广义积分1π1. ;2. .22四、1 x2 dx发散x 2第七章 常微分方程习题一 常微分方程的基本概念与分离变量法一、判断正误:略 . 二、填空题:略 . 三、多步填空题:略 . 四、求解下列各题21 1. 1 y 2C (其中 C C 1为任意常数) ;3x习题二 一阶线性微分方程习题三 二阶常系数齐次线性微分方程一、填空题:略. 二、多步填空题:略. 三、求下列微分方程的通解6x x1.y C 1eC 2e ;2. 冷却规律为 T (t ) 20 30ekt一、填空题:略. 二、多步填空题: 略.三、通解为 y1 Cex 2其中 C 为任意常数) .2. y(C 1C 2x)e 5x ;3. y1xe 2x3(C 1 cos x123 C 2sin x) ;4. y Ce25x.四、f (x) y 2e x 1 .习题四 二阶常系数非齐次线性微分方程一、填空题:略. 二、多步填空题:略.5 13 4x 4 8 x三、 y e ( x )e .4 36 3 9四、求下列微分方程满足初始条件的特解 (1) y (x x 2)e 2x ; (2) y sin x .第八章 空间解析几何习题一 空间直角坐标系与向量的概念一、填空题:略. 二、选择题:略. 三、求解下列问题4. C( 2,0,0) .习题二 向量的点积与叉积、是非题:略. 、填空题:略.1.3AB 2AC 2i 3k ;2. d AB 14 ;3. 333 9993; 9;三、选择题:略. 三、求解下列各题2. b 12,6, 4 ;习题三 平面和直线一、填空题:略. 二、选择题:略. 三、求解下列问题1. 4x 3y z 5 ;2. z y 2 ; x 1 y 2 z 13. ;1 1 24. ① p 5 ;② p 7 .习题四 曲面与空间曲线一、填空题:略. 二、选择题:略. 三、求解下列问题221. 方程为 y 5z 2 4x ,是旋转抛物面;第九章 多元函数微分学5 投影方程为 y 2z 5,x 0 ;1.5 , 3 , 7 83, 83, 833.S ABC3 21 .3. 投影方程为x 2 2z 4 0,y02四、表面积 S π r 2 2π rh ,体积 V 五、 f ( x, y) f (0, 0)= ( x ()2x)( (y)y)2习题二 偏导数及高阶偏导数 、是非题:略.、填空题:略. 、解下列各题1. z 4x , z 9y 2; xy2. z 4xy 6, z 6x 2 y 2; xy z3. 2x ln y ,x2z四、略.习题三 全微分、填空题:略. 、解答下列各题1. dz y(ln x 1)dx xln xdy ;2. du yx y 1dx (x y lnx sin z)dy y cos zdz ;3. z 0.119 ;x4.xy arctan z ,yx arctan z ,zxy1 z 2习题一 一、填空题:略.二、函数的定义域为(x,y)122xy三、xy三、lim4 1.x y 00 xy4z1x0 x,yyyx,2z1;2,;y 2yxy2, 多元函数及其极限2z2 y 24. dz 0.125 .三、 sin0.01cos0.03 0.01. 四、对角线变化约为 0.045m . 五、所需水泥的近似值为 9.4m 3 .习题四 复合函数的偏导数、填空题:略. 、多步填空题:略. 、解下列各题dz 1;1.dt2.zz, zz(xy);2;x yyy3. z2 xycos y(2sin x z2 2xcosx), x7 8sin x(cos 2 y ysin2y)xy习题五 偏导数的几何应用、填空题:略. 、求解下列各题习题六 多元函数的极值一、判断题:略. 二、选择题:略. 三、计算下列各题24;r :h 1: 2时,所用材料最省.第十章 多元函数积分学7 函数在 (2,1) 点取得极小值 8 当端面半径与半圆柱高满足1. 切线方程为 x1y9z 27 272. 切平面方程为 2(x 1) 4(y 1) (z 3)=0 ;3. 切线方程为x 1 y 1 z 1 16 9 1法平面方程为16(x 1)9(y 1) 1(z 1) 0 .2x( );习题一 二重积分及其在直角坐标系下的计算一、判断题:略. 二、填空题:略. 三、计算下列各题1. I 0 ;、求解下列各题2. V 32π; 13. 薄片的质量为 .12章 级数习题一 数项级数一、判断题:略. 二、选择题:略. 三、判断下列级数的敛散性1. ( 1)n 发散; n14.21n1 2n收敛;2. ① I2 2x20dx 0 y 2dy32;② I 30dyy y 2dx2323. I10dye y dx习题二 、填空题:略. 、多步填空题极坐标下二重积分的计算及二重积分的应用提示: e (x y )dxdye r rd rd θDD1 r2 d θre rdr 0d θ 0 11 e 02 d(r 2) 12(1 1)d θe1. cos(x 2 y 2)dxdy D 2 π;2提示:化为极坐标下的二重积分)2.11 461 2n发散;e5. ( 1)n 1 n n收敛;n 1 26. n 123(n 1)n收敛.习题二幂级数、填空题:略.、求解下列各题1. 级数2n nx n的收敛半径为R0 2n 1 21;;2. 级数2n2 x2n 1的收敛半径为R0 2n 12;2;3. 级数(x 1n)的收敛域为[ 1,3) ;n2n4. 级数n1nx01的和函数为S(x)1;(1 x)2 ;5. 级数2n 1x2n 1的和函数为S(x)1ln(1 x)2 .1x、填空题:略.二、求解下列各题1. 展开为ln(22.展开为sin2 x习题三函数的幂级数展开x)xln 22(2x)22!(2x)42 4!3. 2x=1 x2x ln 2 (ln 2)2 2x2!(2x)22(2x)331)n(2x)n1(n 1),收敛域为x (2,2];1)n1(2x)2n2(2n)! ,收敛域为x( );(ln 2)32x3!(ln 2)n2x x nxn!,收敛区间为2 x( );1 n n4. 展开式为x2 13x 2 n 0( 1)n x n 1 ( 1)n(x)n,收敛区间为( 1,1). 2n 0 2四、切线方程为y 0 .五、求下列函数的二阶导数351. y 10x3(9x5 4) ;4五、Wπ r。

高等数学11单元第八章常微分方程

高等数学11单元第八章常微分方程

授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。

方程的定义:含有未知数的的等式。

它表达了未知量所必须满足的某种条件。

根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。

引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。

例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。

一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。

二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。

类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。

其中F 是n +2个变量的函数。

这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。

例如()()n y f x =也是n 阶微分方程。

例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。

最新侯风波版《高等数学》练习答案

最新侯风波版《高等数学》练习答案

侯风波版《高等数学》练习答案第一章函数习题函数一、填空题:略.二、略.三、图略.四、图略;«Skip Record If...»,«Skip Record If...»,«Skip Record If...».五、1.函数«Skip Record If...»与«Skip Record If...»不相同;2.函数«Skip Record If...»与«Skip Record If...»是同一个函数.六、«Skip Record If...».七、1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».第二章极限与连续习题一极限的概念一、判断题:略.二、图略;«Skip Record If...»=0.三、(1)«Skip Record If...»无定义,«Skip Record If...»,«Skip Record If...»;(2)«Skip Record If...»;«Skip Record If...»;«Skip Record If...».四、左极限«Skip Record If...»;右极限«Skip Record If...»;函数在«Skip Record If...»处的极限不存在.五、(1)«Skip Record If...»;«Skip Record If...»;«Skip Record If...»不存在;(2)«Skip Record If...»«Skip Record If...»;«Skip Record If...»;(3)«Skip Record If...»;«Skip Record If...»;«Skip Record If...»不存在.习题二极限的四则运算一、求下列极限1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».二、«Skip Record If...»;1.三、求下列极限1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».四、求下列极限1. «Skip Record If...»;2. «Skip Record If...».五、«Skip Record If...».六、«Skip Record If...».习题三两个重要极限一、求下列极限1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...».二、求下列极限1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».习题四无穷小与无穷大一、1. «Skip Record If...»; 2. «Skip Record If...».二、1. «Skip Record If...»及«Skip Record If...»; 2. «Skip Record If...».三、1. «Skip Record If...»; 2. «Skip Record If...».四、求下列极限1. «Skip Record If...»;2. «Skip Record If...».五、«Skip Record If...»高阶的无穷小.六、提示:由极限运算及等价无穷小定义.习题五函数的连续与间断一、选择题:略.二、«Skip Record If...».三、1. 可去间断点是«Skip Record If...»;2. «Skip Record If...»为函数的第二类间断点;«Skip Record If...»为函数的跳跃间断点.四、求下列极限1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».五、«Skip Record If...»为函数的定义区间,即为函数的连续区间.第三章导数与微分习题一导数的定义一、1. «Skip Record If...»;2. «Skip Record If...».二、«Skip Record If...».三、«Skip Record If...».四、左导数 «Skip Record If...»,右导数为 «Skip Record If...»,函数在«Skip Record If...»处的导数不存在.五、在(1«Skip Record If...»,1)点处切线平行于直线.习题二导数的四则运算一、填空题:略.二、求下列函数的导数1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...».三、①定义域«Skip Record If...»即为函数的连续区间;② «Skip Record If...»;③由定义,«Skip Record If...»;④ «Skip Record If...».习题三复合函数求导一、填空题:略.二、求下列函数的导数1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...».三、«Skip Record If...»;«Skip Record If...».四、«Skip Record If...».习题四隐函数对数函数求导高阶导数一、是非题:略.二、求下列方程所确定的隐函数«Skip Record If...»的导数1. «Skip Record If...»;2. «Skip Record If...».三、用对数求导法求下列函数的导数1.«Skip Record If...»«Skip Record If...»«Skip Record If...»2. «Skip Record If...».四、切线方程为«Skip Record If...».五、求下列函数的二阶导数1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»«Skip Record If...».习题五微分一、填空题:略.二、求下列函数的微分1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».三、求方程所确定的隐函数«Skip Record If...»的微分«Skip Record If...»1. «Skip Record If...»;2. «Skip Record If...».四、利用微分计算下列各数的近似值1. «Skip Record If...»;2. «Skip Record If...».五、球的体积扩大约为«Skip Record If...».第四章微分学的应用习题一洛必达法则一、是非题:略.二、求下列各式的极限1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».三、求下列各式的极限1. «Skip Record If...»;2. «Skip Record If...».四、求下列极限1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4.«Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...».习题二函数的单调性一、单项选择题:略.二、求下列函数的单调区间1. 单增区间«Skip Record If...»,单减区间«Skip Record If...»;2. 单增区间«Skip Record If...»,单减区间«Skip Record If...»;3. 单增区间«Skip Record If...»,单减区间«Skip Record If...»;4. 单增区间«Skip Record If...»,单减区间«Skip Record If...».三、提示:利用函数单调性证明.四、单调递增区间«Skip Record If...»,单调递减区间«Skip Record If...».习题三函数的极值一、单项选择题:略.二、1.«Skip Record If...»; 2.«Skip Record If...»; 3. 极小值; 4. «Skip Record If...».三、最大值为«Skip Record If...»,最小值为«Skip Record If...».四、极大值为«Skip Record If...»,极小值为«Skip Record If...».五、当直径«Skip Record If...»与高«Skip Record If...»之比为«Skip Record If...»时,所用的材料最少.习题四曲线的凹凸性与拐点一、填空题:略.二、曲线在«Skip Record If...»及«Skip Record If...»内上凹,在«Skip Record If...»内下凹,拐点为«Skip Record If...»和«Skip Record If...».三、函数在«Skip Record If...»上的极大值为«Skip Record If...»,极小值为«Skip Record If...»;最大值为«Skip Record If...»,最小值为«Skip Record If...»;拐点为«Skip Record If...».四、示意图:第五章不定积分习题一不定积分的概念与基本公式一、填空题:略.二、选择题:略.三、计算下列不定积分1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».四、求解下列各题1. «Skip Record If...»;2. «Skip Record If...»;3.所求函数为«Skip Record If...».习题二不定积分的换元积分法一、填空题:略.二、选择题:略.三、多步填空题:略.四、计算下列不定积分1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...».习题三分部积分法简单有理函数的积分一、填空题:略.二、多步填空题:略.三、求下列不定积分1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...».四、«Skip Record If...»«Skip Record If...».第六章定积分习题一定积分的概念微积分基本公式一、选择题:略.二、求下列定积分1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...».三、解答下列各题1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...».习题二定积分的换元积分法与分部积分法一、填空题:略.二、求下列定积分1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...»;5. «Skip Record If...»;6. «Skip Record If...»;7. «Skip Record If...»;8. «Skip Record If...».习题三定积分的应用一、«Skip Record If...».二、«Skip Record If...».三、(1)«Skip Record If...»;(2)«Skip Record If...».四、两部分面积比为«Skip Record If...»:«Skip Record If...»= «Skip Record If...»:«Skip Record If...».五、«Skip Record If...».六、«Skip Record If...».习题四反常积分一、填空题:略.二、选择题:略.三、计算下列广义积分1.«Skip Record If...»;2. «Skip Record If...».四、«Skip Record If...»发散.第七章常微分方程习题一常微分方程的基本概念与分离变量法一、判断正误:略.二、填空题:略.三、多步填空题:略.四、求解下列各题1.«Skip Record If...»(其中«Skip Record If...»为任意常数);2. 冷却规律为«Skip Record If...».习题二一阶线性微分方程一、填空题:略.二、多步填空题:略.三、通解为«Skip Record If...»(其中«Skip Record If...»为任意常数).习题三二阶常系数齐次线性微分方程一、填空题:略.二、多步填空题:略.三、求下列微分方程的通解1. «Skip Record If...»«Skip Record If...»;2. «Skip Record If...»«Skip Record If...»;3. «Skip Record If...»«Skip Record If...»;4. «Skip Record If...»«Skip Record If...».四、«Skip Record If...».习题四二阶常系数非齐次线性微分方程一、填空题:略.二、多步填空题:略.三、«Skip Record If...».四、求下列微分方程满足初始条件的特解(1)«Skip Record If...»;(2)«Skip Record If...».第八章空间解析几何习题一空间直角坐标系与向量的概念一、填空题:略.二、选择题:略.三、求解下列问题1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»和 «Skip Record If...»;4. «Skip Record If...».习题二向量的点积与叉积一、是非题:略.二、填空题:略.三、选择题:略.三、求解下列各题1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...».习题三平面和直线一、填空题:略.二、选择题:略.三、求解下列问题1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. ①«Skip Record If...»;②«Skip Record If...».习题四曲面与空间曲线一、填空题:略.二、选择题:略.三、求解下列问题1. 方程为«Skip Record If...»,是旋转抛物面;2. 投影方程为«Skip Record If...»3. 投影方程为«Skip Record If...»第九章多元函数微分学习题一多元函数及其极限一、填空题:略.二、函数的定义域为«Skip Record If...»;草图三、«Skip Record If...».四、表面积«Skip Record If...»,体积«五、«Skip Record If...»=«Skip Record If...».习题二偏导数及高阶偏导数一、是非题:略.二、填空题:略.三、解下列各题1. «Skip Record If...»,«Skip Record If...»;2. «Skip Record If...»,«Skip Record If...»;3. «Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»;4. «Skip Record If...»,«Skip Record If...»,«Skip Record If...».四、略.习题三全微分一、填空题:略.二、解答下列各题1. «Skip Record If...»;2. «Skip Record If...»;3. «Skip Record If...»;4. «Skip Record If...».三、«Skip Record If...».四、对角线变化约为«Skip Record If...».五、所需水泥的近似值为«Skip Record If...».习题四复合函数的偏导数一、填空题:略.二、多步填空题:略.三、解下列各题1. «Skip Record If...»;2. «Skip Record If...»,«Skip Record If...»;3. «Skip Record If...»,«Skip Record If...».习题五偏导数的几何应用一、填空题:略.二、求解下列各题1. 切线方程为 «Skip Record If...»和«Skip Record If...»;2. 切平面方程为 «Skip Record If...»=«Skip Record If...»;3. 切线方程为 «Skip Record If...»,法平面方程为 «Skip Record If...».习题六多元函数的极值一、判断题:略.二、选择题:略.三、计算下列各题1. 函数在«Skip Record If...»点取得极小值«Skip Record If...»;2. 当端面半径与半圆柱高满足«Skip Record If...»时,所用材料最省.«Skip Record If...»第十章多元函数积分学习题一二重积分及其在直角坐标系下的计算一、判断题:略.二、填空题:略.三、计算下列各题1. «Skip Record If...»;2. ①«Skip Record If...»;②«Skip Record If...»;3.«Skip Record If...».习题二极坐标下二重积分的计算及二重积分的应用一、填空题:略.二、多步填空题提示:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».三、求解下列各题1. «Skip Record If...»;(提示:化为极坐标下的二重积分);2. «Skip Record If...»;3. 薄片的质量为«Skip Record If...».第十一章级数习题一数项级数一、判断题:略.二、选择题:略.三、判断下列级数的敛散性1. «Skip Record If...»发散;2. «Skip Record If...»发散;3. «Skip Record If...»当«Skip Record If...»或«Skip Record If...»时收敛,当«Skip Record If...»时发散;4. «Skip Record If...»收敛;5. «Skip Record If...»收敛;6. «Skip Record If...»收敛.习题二幂级数一、填空题:略.二、求解下列各题1. 级数«Skip Record If...»的收敛半径为«Skip Record If...»;2. 级数«Skip Record If...»的收敛半径为«Skip Record If...»;3. 级数«Skip Record If...»的收敛域为«Skip Record If...»;4. 级数«Skip Record If...»的和函数为«Skip Record If...»;5. 级数«Skip Record If...»的和函数为«Skip Record If...».习题三函数的幂级数展开一、填空题:略.二、求解下列各题1. 展开为 «Skip Record If...»,收敛域为«Skip Record If...»;2.展开为«Skip Record If...»,收敛域为«Skip Record If...»;3. «Skip Record If...»=«Skip Record If...»,收敛区间为«Skip Record If...»;4. 展开式为«Skip Record If...»,收敛区间为«Skip Record If...».。

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

高等数学-高教版第五版-侯风波 第1章

高等数学-高教版第五版-侯风波 第1章

2.函数的两个要素 函数的对应规律和定义域称为函数的两个要素. (1)对应法则 给定自变量的一个值后,通过对应法则得到唯一的函数值。
例3 下面各组对应法则是否相同?为什么?
(1)
f:
x y
1 6
2 7
3 8
4 9
g:
x y
1 6
2 7
3 8
4 9
(2)
φ:
x y
1 1
2 1
3 1
4 1
ψ:
x y
4 1
一、基本初等函数
函数名称
函数表达式
常数函数
y =C
(C 为常数)
幂函数
y x ( 为实数)
指数函数
y ax
(a >0,a ≠1,a 为常数)
对数函数
y =log a x (a >0,a ≠1,a 为常数)
三角函数 y = sin x , y =cos x , y =tan x , y =cot x
而成的,其定义域为[-1,1],它是 u 1 x2 的定义域的一
部分. (3) y =arcsin u ,u =2+x 2 是不能复合成一个函数的.
例2 分析下列复合函数的结构:
⑴ y = cot x
2
解 ⑴ y= u,
⑵ y = eu ,
; u cot v ,
u sin v ,
⑵ y esin . x21
习惯上总是用 x 表示自变量,而用 y 表示函数,因此, 往往把 x = (y )改写成 y = ( x ),称为y = f (x) 的矫形反
函数,记作 y f 1(x) .称函数 y f (x) 的反函数 x ( y) 为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数习题 函数一、填空题:略.二、略.三、图略.四、图略;0,2,6-.五、1.函数)(x f 与)(x g 不相同; 2.函数)(x f 与)(x g 是同一个函数.六、3)2(log t y a +=.七、1.1,2,sin ,log +====x w v v u u y w a ; 2. 1,lg ,,arcsin -====x w w v v u u y ; 3. 1e ,,cos 2-===x v v u u y ;4.12,ln ,cos ,22+-====x x w w v v u u y . 第二章 极限与连续习题一 极限的概念一、判断题:略.二、图略;)(lim 0x f x →=0. 三、(1))(x f 无定义,2)1(=g ,3)1(=h ;(2)2)(lim 1=→x f x ;2)(lim 1=→x g x ;2)(lim 1=→x h x . 四、左极限0)(lim 0=-→x f x ;右极限1)(lim 0=+→x f x ;函数在0=x 处的极限不存在. 五、(1)2)(lim 1=-→x f x ;1)(lim 1=+→x f x ;)(lim 1x f x →不存在; (2)=-→)(lim 23x f x 49)(lim 23=+→x f x ;49)(lim 23=→x f x ; (3)4)(lim 2=-→x f x ;8)(lim 2=+→x f x ;)(lim 2x f x →不存在. 习题二 极限的四则运算一、求下列极限1.30;2.17;3.40;4.41. 二、x x ++210;1.三、求下列极限1. 12-;2. 0;3. 4;4.61. 四、求下列极限 1.32; 2.32. 五、1.六、1-. 习题三 两个重要极限一、求下列极限1. 1;2. 16;3.241;4. 1;5. 1;6. 8. 二、求下列极限1.3e ;2. 2e -;3. 9e ;4. 2e 1. 习题四 无穷小与无穷大一、1. ∞→x ; 2. -→0x .二、1. +-→1x 及+∞→x ; 2. ∞→x .三、1. 1-→x ; 2. 1→x .四、求下列极限1. 0;2. 0.五、234sin x x 是比高阶的无穷小.六、提示:由极限运算及等价无穷小定义. 习题五 函数的连续与间断一、选择题:略.二、2=a .三、1. 可去间断点是1=x ;2.7-=x 为函数的第二类间断点;1=x 为函数的跳跃间断点.四、求下列极限1. 0;2. 21;3. 21; 4. 4. 五、(]4,1为函数的定义区间,即为函数的连续区间.第三章 导数与微分习题一 导数的定义一、1.2)1(='f ;2.43)2(-='f . 二、a y ='.三、0)0(='f .四、左导数 1)0(='+f ,右导数为 0)0(_='f ,函数在0=x 处的导数不存在.五、在(1,1)点处切线平行于直线.习题二 导数的四则运算一、填空题:略.二、求下列函数的导数 1. 2ln 354x x y +='; 2.)cos (sin e x x y x +='; 3. 3223351--+-='x xy ; 4. ]sin ln )1(cos )1ln 2[(cos 122x x x x x x x x xy ++++='; 5. 2211sec 3x x y --=';6.221arctan 2x x x x y ++='. 三、① 定义域R 即为函数的连续区间; ②x x x x x y cos sin 52d d 5253+=-; ③ 由定义,0)0(='f ; ④x x x x x f cos sin 52)(5253+='-. 习题三 复合函数求导一、填空题:略.二、求下列函数的导数1. 222cos sin 2sin 2sin x x x x x y +⋅=';2. ]1tan 2cos 2)1(1[sec e 222sin xx x x y x ⋅+-='; 3. 10199)1()1(200x x y -+='; 4. ]1sin 11[cos e1cos x x x y x x +='; 5.xx x y 3cos 3sin 31-+=';6.)ln(ln ln 21x x x y ='.三、)(2sin )(ϕ+=wt w t v ;)(2cos 2)(2ϕ+=wt w t a .四、)]()e (e )e ([e )(x f f f y x x x x f '+'='.习题四 隐函数 对数函数求导 高阶导数一、是非题:略.二、求下列方程所确定的隐函数)(x f y =的导数1. ()x x y y x x -+-='e sin e 1;2. xy y y x yx --='++e e . 三、用对数求导法求下列函数的导数 1.41='y 4)3)(2()423()1)(1(3---+-x x x x x )312142341311(------++-x x x x x 2. )2ln 2(d d 2+=x x xy x . 四、切线方程为0=y .五、求下列函数的二阶导数1. )49(1053+=''x x y ;2. x xy x cos 2e 1222--=''; 3.8)21(360x y -='';4.=''y x 2sin 4006-.习题五 微分一、填空题:略.二、求下列函数的微分1.()x x x x y d sin 1)cos 1(2d +-+=;2.x x x y x d )3cos 33sin 2(e d 2+=;3.x xx y d ln 21d 3-=; 4.x y x x d e1e 3d 2613+++=. 三、求方程所确定的隐函数)(x f y =的微分y d1.x y x xy y x d cos 2e d 2--=;2. x ya xb y d d 22-=. 四、利用微分计算下列各数的近似值 1. 0033.101.13≈; 2. 21.1e 21.0≈.五、球的体积扩大约为3πcm 1800.第四章 微分学的应用习题一 洛必达法则一、是非题:略.二、求下列各式的极限1. 0;2.1;3.1;4. 0.三、求下列各式的极限1.0;2.0.四、求下列极限1.0;2.1;3.1;4.21e -;5. 3;6. 0.习题二 函数的单调性一、单项选择题:略.二、求下列函数的单调区间1. 单增区间),2()0,(+∞-∞ ,单减区间)2,0(;2. 单增区间)0,(-∞,单减区间),0(+∞;3. 单增区间),21(+∞,单减区间)21,0(;4. 单增区间),0()1,(+∞--∞ ,单减区间)0,1(-.三、提示:利用函数单调性证明. 四、单调递增区间),21(+∞,单调递减区间)21,(-∞. 习题三 函数的极值一、单项选择题:略.二、1.)(x f '; 2.)(x f ''; 3. 极小值; 4. 3)1(=f .三、最大值为10)1(=-f ,最小值为22)3(-=f .四、极大值为0)0(=f ,极小值为41)22()22(-==-f f . 五、当直径r 2与高h 之比为11∶时,所用的材料最少.习题四 曲线的凹凸性与拐点一、填空题:略.二、曲线在)332,(--∞及),332(+∞内上凹,在)332,332(-内下凹,拐点为)910,332(--和)910,332(-. 三、函数在)2,0(上的极大值为2723)31(-=f ,极小值为1)1(-=f ;最大值为1)2(=f ,最小值为1)1(-=f ;拐点为)272532(-,. 四、示意图:第五章 不定积分习题一 不定积分的概念与基本公式一、填空题:略.二、选择题:略.三、计算下列不定积分 1. C x +313133; 2. C x x x+-53ln 533;3. C x x x++--ln 2sin 31; 4. C x x x +++-πarcsin 2cos . 四、求解下列各题1. C x x f x +='⎰2e 2d )(;2. x x f x 2sec e )(+=;3. 所求函数为233+-=x x y . 习题二 不定积分的换元积分法一、填空题:略.二、选择题:略.三、多步填空题:略.四、计算下列不定积分 1. C x +--21; 2.C x +2arcsin 21; 3. C x x +++24arctan )1ln(41; 4.C x x ++3tan 31tan ; 5. ()()C x x ++-+1213223; 6. C xx +--3arccos 392. 习题三 分部积分法 简单有理函数的积分 一、填空题:略.二、多步填空题:略.三、求下列不定积分 1. ()C x x +-++11e 21; 2. C x x x x x ++--4ln )2(22; 3.C x x x++-e )22(2; 4. C x x x +-+212)1(arcsin ; 5. C x x x ++-sin 2cos 2; 6. C x x +--3)2(ln 2. 四、⎰''x f x x d )e (e 2C f f x x x +-'=)e ()e (e .第六章 定积分习题一 定积分的概念 微积分基本公式一、选择题:略.二、求下列定积分 1.43433-;2.3424-;3.2;4.4π1-;5.4;6.61. 三、解答下列各题1. x x x f 2sin )(4⋅='; 2. 23d )(lim 200=⎰→x t t f x x ; 3. 67d )(21=⎰-x x f . 习题二 定积分的换元积分法与分部积分法一、 填空题:略.二、 求下列定积分 1. )e 2(2-; 2. 32π2; 3. )1e (412+; 4. 12312π-+; 5. 49ln ; 6. 22a ; 7.)1e (212-π; 8. 3212ln -+. 习题三 定积分的应用 一、32=S . 二、h r V 23π=. 三、(1)2=S ;(2)2π2=V . 四、两部分面积比为 )34π2(+:)34π2π8(--= )4π6(+:)4π18(-. 五、4π4r W ⋅=ρ. 六、g P ρ18=.习题四 反常积分一、填空题:略.二、选择题:略.三、计算下列广义积分 1.21; 2.2π. 四、⎰∞+∞-+x x x d 12发散. 第七章 常微分方程习题一 常微分方程的基本概念与分离变量法一、判断正误:略.二、填空题:略.三、多步填空题:略.四、求解下列各题 1.C xy +=-3112(其中1C C -=为任意常数); 2. 冷却规律为kt t T -+=e 3020)(.习题二 一阶线性微分方程一、填空题:略.二、多步填空题:略.三、通解为2e 1x C y -+=(其中C 为任意常数). 习题三 二阶常系数齐次线性微分方程一、填空题:略.二、多步填空题:略.三、求下列微分方程的通解1. =y x x C C -+e e 261;2.=y x x C C 521e )(+;3.=y )23sin 23cos (e 2121x C x C x +; 4.=y x C 25e -.四、1e 2)(-==x y x f .习题四 二阶常系数非齐次线性微分方程一、填空题:略.二、多步填空题:略. 三、x x x y e )9834(e 3613454+-++-=. 四、求下列微分方程满足初始条件的特解 (1)x x x y 22e)(-+=;(2)x y sin =. 第八章 空间解析几何习题一 空间直角坐标系与向量的概念一、填空题:略.二、选择题:略.三、求解下列问题 1. k j i 3223-+-=-;2. ()14=AB d ;3. ⎭⎬⎫⎩⎨⎧939393,, 和 ⎭⎬⎫⎩⎨⎧---939393,,; 4.),,(002-C .习题二 向量的点积与叉积一、是非题:略.二、填空题:略.三、选择题:略.三、求解下列各题 1. ⎭⎬⎫⎩⎨⎧-±837833835,,; 2.{}4,6,12-±=b ; 3. 213S ABC =∆.习题三 平面和直线一、填空题:略.二、选择题:略.三、求解下列问题1.534=++z y x ;2.2=-y z ;3.211211-=--=-z y x ; 4. ①5-=p ;②7=p .习题四 曲面与空间曲线一、填空题:略.二、选择题:略.三、求解下列问题1. 方程为x z y 422=+,是旋转抛物面;2. 投影方程为⎩⎨⎧==+;0,52x z y 3. 投影方程为⎩⎨⎧==++.0,0422y z x 第九章 多元函数微分学习题一 多元函数及其极限一、填空题:略. 二、函数的定义域为{}41),(22<+≤y x y x ;草图 三、4142lim 00-=+-→→xy xy y x . 四、表面积rh π2r πS 2⋅+⋅=,体积h r πV 2⋅=.五、)0,0(),(f y x f -∆∆=22)()())((y x y x ∆+∆∆∆. 习题二 偏导数及高阶偏导数一、是非题:略.二、填空题:略.三、解下列各题 1.x xz 4=∂∂,29y y z =∂∂; 2. 34xy xz =∂∂,226y x y z =∂∂; 3.y x xz ln 2+=∂∂,y x y x y z =+=∂∂10, 222=∂∂x z ,222y x y z -=∂∂,y x y z 12=∂∂∂; 4. z y x f arctan =∂∂,z x y f arctan =∂∂,21zxy z f +=∂∂. 四、略.习题三 全微分一、填空题:略.二、解答下列各题1. y x x x x y z d ln d )1(ln d ++=;2. z z y y z x x x yx u y y d cos d )sin ln (d d 1+++=-;3. 119.0-=∆z ;4. 125.0d -=z .三、01.003.0cos 01.0sin ≈.四、对角线变化约为m 045.0.五、所需水泥的近似值为3m 4.9. 习题四 复合函数的偏导数一、填空题:略.二、多步填空题:略.三、解下列各题 1.1d d -=t z ; 2.y z x z =∂∂,2)(y y x z y z +-=∂∂; 3. )cos sin 2(cos 2x x x y xy xz +=∂∂,)2sin (cos sin 22y y y x x y z -=∂∂. 习题五 偏导数的几何应用一、填空题:略.二、求解下列各题1. 切线方程为 312111-=-=-z y x 和27272913-=-=-z y x ; 2. 切平面方程为 )3()1(4)1(2-+--+z y x =0;3. 切线方程为 1191161--=-=-z y x , 法平面方程为 0)1(1)1(9)1(16=---+-z y x .习题六 多元函数的极值一、判断题:略.二、选择题:略.三、计算下列各题1. 函数在)1,2(点取得极小值24-;2. 当端面半径与半圆柱高满足2:1:=h r 时,所用材料最省.第十章 多元函数积分学习题一 二重积分及其在直角坐标系下的计算一、判断题:略.二、填空题:略.三、计算下列各题1.0=I ;2. ①⎰⎰==20202332d d x y y x I ;②332d d 40222==⎰⎰y x y y I ; 3. 21d e d 1002==⎰⎰y y x x y I . 习题二 极坐标下二重积分的计算及二重积分的应用一、填空题:略.二、多步填空题提示:y x D y x d d e )(22⎰⎰+-θr D r d rd e 2⎰⎰-=⎰⎰π-=2010d e d 2r r θr ⎰⎰π-=20102)d(e 21d 2r θr θd )e 11(2120-=⎰π)e 11(π-=. 三、求解下列各题 1. π22d d )cos(22=+⎰⎰y x y x D ;(提示:化为极坐标下的二重积分); 2. π32=V ;3. 薄片的质量为121. 第十一章 级数习题一 数项级数一、判断题:略.二、选择题:略.三、判断下列级数的敛散性1. ∑∞=-1)1(n n 发散; 2. +++++n21614121发散; 3.∑∞=+1)1(1n n x 当0>x 或2-<x 时收敛,当02≤≤-x 时发散; 4.∑∞=+1221n nn 收敛; 5. ∑∞=--112)1(n n n n 收敛; 6. ∑∞=-+13)1(2n n n收敛.习题二 幂级数一、填空题:略.二、求解下列各题1. 级数∑∞=+0122n n n x n 的收敛半径为21=R ; 2. 级数∑∞=++012122n n nx n 的收敛半径为22=R ; 3. 级数∑∞=-02)1(n n nn x 的收敛域为)3,1[-; 4. 级数∑∞=-011n n nx 的和函数为2)1(1)(x x S +=; 5. 级数 +-+++-123123n x x x n 的和函数为21)11ln()(x x x S -+=. 习题三 函数的幂级数展开一、填空题:略.二、求解下列各题1. 展开为 ++-+-+-+=++)1()2()1(3)2(2)2(22ln )2ln(132n x x x x x n n ,收敛域为]2,2(-∈x ; 2.展开为 +-++⋅-⋅=+)!2(2)2()1(!42)2(!22)2(sin 21422n x x x x n n ,收敛域为),(+∞-∞∈x ; 3. x 2= ++++++n x n x x xx n x x x !2)2(ln !32)2(ln !22)2(ln 2ln 213322,收敛区间为),(+∞-∞∈x ;4. 展开式为∑∑∞=∞=---=++002)2()1(21)1(231n n n n n n x x x x ,收敛区间为)1,1(-.。

相关文档
最新文档