高考数学专题练习:平面向量与复数

合集下载

高考数学复习单元检测(文):平面向量与复数【含答案】

高考数学复习单元检测(文):平面向量与复数【含答案】

高考数学复习单元检测(文):平面向量与复数考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间100分钟,满分130分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足i z =3+4i ,则|z |等于( ) A .1B .2C.5D .5 答案 D解析 因为z =3+4ii =-(3+4i)i =4-3i ,所以|z |=42+(-3)2=5.2.若z 1=(1+i)2,z 2=1-i ,则z 1z 2等于( ) A .1+iB .-1+iC .1-iD .-1-i 答案 B解析 ∵z 1=(1+i)2=2i ,z 2=1-i , ∴z 1z 2=2i 1-i =2i (1+i )(1-i )(1+i )=-2+2i2=-1+i.3.设平面向量m =(-1,2),n =(2,b ),若m ∥n ,则|m +n |等于( ) A.5B.10C.2D .3 5 答案 A解析 由m ∥n ,m =(-1,2),n =(2,b ),得b =-4,故n =(2,-4),所以m +n =(1,-2),故|m +n |=5,故选A.4.如图所示,向量OA →=a ,OB →=b ,OC →=c ,点A ,B ,C 在一条直线上,且AC →=-4CB →,则( )A .c =12a +32bB .c =32a -12bC .c =-a +2bD .c =-13a +43b答案 D解析 c =OB →+BC →=OB →+13AB →=OB →+13(OB →-OA →)=43OB →-13OA →=43b -13a .故选D.5.设向量a =(x ,1),b =(1,-3),且a ⊥b ,则向量a -3b 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 D解析 因为a ⊥b ,所以x -3=0,解得x =3,所以a =(3,1),a -3b =(0,4),则cos 〈a -3b ,b 〉=(a -3b )·b|a -3b |·|b |=-434×2=-32,所以向量a -3b 与b 的夹角为5π6,故选D.6.如图,在正方形ABCD 中,E 为DC 的中点,若AD →=λAC →+μAE →,则λ-μ等于( )A .1B .3C .-1D .-3答案 D解析 E 为DC 的中点,故AE →=12(AC →+AD →),所以AD →=-AC →+2AE →,所以λ=-1,μ=2,所以λ-μ=-3,故选D.7.已知向量a =(1,x ),b =(x ,4)则“x =-2”是“向量a 与b 反向”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 若a ∥b ,则x 2=4,解得x =±2,当且仅当x =-2时,向量a 与b 反向,所以“x =-2”是“向量a 与b 反向”的充要条件,故选C.8.在△ABC 中,边BC 的垂直平分线交BC 于点Q ,交AC 于点P ,若|A B →|=1,|AC →|=2,则AP →·BC →的值为( )A .3B.32C.3D.32答案 B解析 由题知QP ⊥BC ,所以QP →·BC →=0,则AP →·BC →=(AQ →+QP →)·BC →=AQ →·BC →+QP →·BC →=12(AB→+AC →)·(AC →-AB →)=12(A C →2-AB →2)=32,故选B.9.已知a =(2,cos x ),b =(sin x ,-1),当x =θ时,函数f (x )=a ·b 取得最大值,则sin ⎝ ⎛⎭⎪⎫2θ+π4等于( )A.7210B.210C .-210D .-7210 答案 D解析 f (x )=a ·b =2sin x -cos x =5sin(x -φ),其中sin φ=15,cos φ=25,θ-φ=2k π+π2,k ∈Z ,解得θ=2k π+π2+φ,k ∈Z ,所以sin θ=cos φ=25,cos θ=-sin φ=-15,所以sin2θ=2sin θcos θ=-45,cos2θ=1-2sin 2θ=-35,所以sin ⎝⎛⎭⎪⎫2θ+π4=22(sin2θ+cos2θ)=-7210,故选D.10.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BE →·CE →=2,BF →·CF →=-1,则BA →·CA →等于( )A .5B .6C .7D .8答案 C解析 BE →·CE →=ED →2-BD →2=4FD →2-BD →2=2,BF →·CF →=FD →2-BD →2=-1,所以FD →2=1,BD →2=2,因此BA →·CA →=AD →2-BD →2=9FD →2-BD →2=7,故选C.11.(2018·西宁检测)定义:|a ×b |=|a ||b |sin θ,其中θ为向量a 与b 的夹角,若|a |=2,|b |=5,a ·b =-6,则|a ×b |等于( )A .6B .-8或8C .-8D .8答案 D 解析 cos θ=a ·b |a ||b |=-610=-35,且θ∈[0,π],则sin θ=45,则|a ×b |=|a |·|b |sin θ=10×45=8,故选D.12.在△ABC 中,CM →=2MB →,过点M 的直线分别交射线AB ,AC 于不同的两点P ,Q ,若AP →=mAB →,AQ →=nAC →,则mn +m 的最小值为( )A .63B .23C .6D .2 答案 D解析 由已知易得,AM →=23AB →+13AC →,∴AM →=23m AP →+13n AQ →.又M ,P ,Q 三点共线, ∴23m +13n=1, ∴m =2n3n -1,易知3n -1>0.mn +m =m (n +1)=2n3n -1·(n +1) =29⎣⎢⎡⎦⎥⎤(3n -1)+43n -1+5≥2, 当且仅当m =n =1时取等号. ∴mn +m 的最小值为2.第Ⅱ卷(非选择题 共70分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若复数(a +i)2在复平面内对应的点在y 轴负半轴上,则实数a 的值是________. 答案 -1解析 因为复数(a +i)2=(a 2-1)+2a i ,所以其在复平面内对应的点的坐标是(a 2-1,2a ). 又因为该点在y 轴负半轴上,所以有⎩⎪⎨⎪⎧a 2-1=0,2a <0,解得a =-1.14.在△ABC 中,AB =5,AC =7.若O 为△ABC 的外接圆的圆心,则AO →·BC →=________. 答案 12解析 取BC 的中点D ,由O 为△ABC 的外接圆的圆心得OD ⊥BC ,则AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AC →+AB →)·(AC →-AB →)=12(AC →2-AB →2)=12.15.欧拉在1748年给出了著名公式e i θ=cos θ+isin θ(欧拉公式)是数学中最卓越的公式之一,其中,底数e =2.71828…,根据欧拉公式e i θ=cos θ+isin θ,任何一个复数z =r (cos θ+isin θ),都可以表示成z =r e i θ的形式,我们把这种形式叫做复数的指数形式,若复数z 1=2i 3e π,z 2=i 2e π,则复数z =z 1z 2在复平面内对应的点在第________象限. 答案 四解析 因为z 1=2i 3e π=2⎝⎛⎭⎪⎫cos π3+isin π3 =1+3i ,z 2=i2e π=cos π2+isin π2=i ,所以z =z 1z 2=1+3i i =(1+3i )(-i )i (-i )=3-i.复数z 在复平面内对应的点为Z (3,-1),点Z 在第四象限.16.已知点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0.设△OBC 与△ABC 的面积分别为S 1,S 2,则S 1S 2=______.答案 16解析 设E 为AB 的中点,连接OE ,延长OC 到D ,使OD =4OC ,因为点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,所以OA →+OB →+OD →=0,则点O 是△ABD 的重心,则E ,O ,C ,D 共线,OD ∶OE =2∶1,所以OC ∶OE =1∶2,则CE ∶OE =3∶2,则S 1=13S △BCE =16S △ABC ,所以S 1S 2=16.三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)已知向量a =(-3,1),b =(1,-2),c =(1,1). (1)求向量a 与b 的夹角的大小; (2)若c ∥(a +k b ),求实数k 的值. 解 (1)设向量a 与b 的夹角为α, 则cos α=a ·b |a |·|b |=-3-210·5=-22,又α∈[0,π],所以α=3π4,即向量a 与b 的夹角的大小为3π4.(2)a +k b =(-3+k ,1-2k ),因为c ∥(a +k b ),所以1-2k +3-k =0, 解得k =43,即实数k 的值为43.18.(12分)已知a =(3,-2),b =(2,1),O 为坐标原点. (1)若m a +b 与a -2b 的夹角为钝角,求实数m 的取值范围; (2)设OA →=a ,OB →=b ,求△OAB 的面积. 解 (1)∵a =(3,-2),b =(2,1),∴m a +b =(3m +2,-2m +1),a -2b =(-1,-4), 令(m a +b )·(a -2b )<0, 即-3m -2+8m -4<0,解得m <65,∵当m =-12时,m a +b =-12a +b ,a -2b 与m a +b 方向相反,夹角为平角,不合题意.∴m ≠-12,∴若m a +b 与a -2b 的夹角为钝角,m 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,65. (2)设∠AOB =θ,△OAB 面积为S , 则S =12|a |·|b |sin θ,∵sin 2θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫a ·b |a |·|b |2, ∴4S 2=|a |2|b |2·sin 2θ =|a |2|b |2-(a ·b )2=65-16=49. ∴S =72.19.(13分)如图,在△OAB 中,点P 为线段AB 上的一个动点(不包含端点),且满足AP →=λPB →.(1)若λ=12,用向量OA →,OB →表示OP →;(2)若|OA →|=4,|OB →|=3,且∠AOB =60°,求OP →·AB →取值范围. 解 (1)∵AP →=12PB →,∴OP →-OA →=12(OB →-OP →),∴32OP →=OA →+12OB →,即OP →=23OA →+13OB →. (2)∵OA →·OB →=|OA →|·|OB →|·cos 60°=6,AP →=λPB →(λ>0), ∴OP →-OA →=λ(OB →-OP →),(1+λ)OP →=OA →+λOB →, ∴OP →=11+λOA →+λ1+λOB →.∵AB →=OB →-OA →,∴OP →·AB →=错误!·(错误!-错误!)=-11+λOA →2+λ1+λOB →2+⎝ ⎛⎭⎪⎫11+λ-λ1+λOA →·OB →=-16+9λ+6-6λ1+λ=3λ-101+λ=3-131+λ.∵λ>0,∴3-131+λ∈(-10,3).∴OP →·AB →的取值范围是(-10,3).20.(13分)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫x +π3的值; (2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (2A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x4+cos 2x4 =32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12.由f (x )=1,得sin ⎝ ⎛⎭⎪⎫x 2+π6=12,所以cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12.(2)因为(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12.又0<B <π2,所以B =π3,则A +C =23π,A =23π-C .又0<C <π2,则π6<A <π2,得π3<A +π6<2π3,所以32<sin ⎝⎛⎭⎪⎫A +π6≤1.又因为f (2A )=sin ⎝⎛⎭⎪⎫A +π6+12,故函数f (2A )的取值范围是⎝ ⎛⎦⎥⎤3+12,32.。

专题2 平面向量与复数(解析版)-2021年高考冲刺之二轮专题精讲精析

专题2 平面向量与复数(解析版)-2021年高考冲刺之二轮专题精讲精析

专题2平面向量与复数一、单选题1.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5 BC .D .5i【答案】B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫- ⎪⎝⎭,在第四象限, 故选:D.3.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1 B .1C .-iD .i【答案】B 【分析】1iz i-+=,然后算出即可. 【详解】由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B4.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+iC .76i -D .76i +【答案】D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D . 5.已知复数5i5i 2iz =+-,则z =( )A B .C .D .【答案】B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z ==故选:B.6.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③【答案】D 【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-,故2z z a R +=∈,2z z bi -=,22222z a bi a b abiz a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.7.在平行四边形ABCD 中,点E ,F 分别满足12BE BC =,13DF DC =.若λ=+BD AE μAF ,则实数λ+μ的值为( ) A .15- B .15C .75-D .75【答案】B 【分析】设AB a AD b ,==,由12BE BC =,13DF DC =,得到1123AE a b AF a b =+=+,,结合平面向量的基本定理,化简得到1132a b a b λμλμ⎛⎫⎛⎫-+=+++ ⎪ ⎪⎝⎭⎝⎭,即可求解. 【详解】由题意,设AB a AD b ,==,则在平行四边形ABCD 中,因为12BE BC =,13DF DC =,所以点E 为BC 的中点,点F 在线段DC 上,且2CF DF =, 所以1123AE a b AF a b =+=+,, 又因为BD AE AF λμ=+,且BD AD AB b a =-=-, 所以11112332a b AE AF a b a b a b λμλμλμλμ⎛⎫⎛⎫⎛⎫⎛⎫-+=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以113112λμλμ⎧+=-⎪⎪⎨⎪+=⎪⎩,解得8595λμ⎧=-⎪⎪⎨⎪=⎪⎩,所以15λμ+=。

高考数学一轮复习 第六章 平面向量与复数 第1节 平面向量的概念及线性运算练习-人教版高三全册数学试

高考数学一轮复习 第六章 平面向量与复数 第1节 平面向量的概念及线性运算练习-人教版高三全册数学试

第1节 平面向量的概念及线性运算[A 级 基础巩固]1.(多选题)已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的是()A .①B .②C .③D .④解析:由题知结果为零向量的是①④. 答案:AD2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是()A .a =2bB .a ∥bC .a =-13b D .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a 与b 共线且方向相反,因此当向量a 与向量b 共线且方向相反时,能使a |a |+b|b |=0成立.观察选项,C 项中a ,b 共线且方向相反. 答案:C3.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是() A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D解析:因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.答案:B4.在△ABC 中,G 为重心,记AB →=a ,AC →=b ,则CG →=() A.13a -23b B.13a +23b C.23a -13b D.23a +13b 解析:因为G 为△ABC 的重心,所以AG →=13(AB →+AC →)=13a +13b ,所以CG →=CA →+AG →=-b +13a +13b =13a -23b .答案:A5.设a 是非零向量,λ是非零实数,下列结论中正确的是() A .a 与λa 的方向相反B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|·a解析:对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.答案:B6.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则() A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上. 答案:B7.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .4解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.答案:B8.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值X 围是()A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析:设CO →=yBC →,因为AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),所以y ∈⎝ ⎛⎭⎪⎫0,13, 因为AO →=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0. 答案:D9.如图所示,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析:根据正六边形的性质和相等向量的定义,易知与向量OA →相等的向量有CB →,DO →,EF →,共3个.答案:310.(2020·武邑中学质检)在锐角△ABC 中,CM →=3 MB →,AM →=xAB →+yAC →(x ,y ∈R),则xy=________.解析:由题设可得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14.故xy =3.答案:311.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为λa +b 与a +2b 平行,所以λa +b =t (a +2b ), 即λa +b =ta +2tb ,所以⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:1212.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,因为DE →=λ1AB →+λ2AC →, 所以λ1=-16,λ2=23,因此λ1+λ2=12.答案:12[B 级 能力提升]13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于()A.58B.14 C .1 D.516解析:DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58.答案:A14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值X 围是()A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0) 解析:设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线, 所以λm +μm=1,即λ+μ=m , 所以λ+μ>1. 答案:B15.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△ABC 与△AOC 的面积之比为________.解析:取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,所以OB →=-OD →,所以O 是AC 边上的中线BD 的中点, 所以S △ABC =2S △OAC ,所以△ABC 与△AOC 面积之比为2∶1. 答案:2∶1[C 级 素养升华]16.(多选题)(2020·某某四校联考)如图所示,在△ABC 中,点D 在边BC 上,且CD =2DB ,点E 在边AD 上,且AD =3AE ,则()A.CE →=29AB →+89AC →B.CE →=29AB →-89AC →C.CE →=13AD →+AC →D.CE →=13AD →-AC →解析:因为CE →=CA →+AE →,AE →=13AD →,AD →=AB →+BD →,BD →=13BC →,BC →=BA →+AC →,所以CE →=13AD →-AC →,BD →=13(BA →+AC →),所以AD →=AB →+BD →=AB →+13BA →+13AC →, 所以AE →=13(AB →+13BA →+13AC →),所以CE →=CA →+13AB →+19BA →+19AC →=13AB →+19BA →+CA →+19AC →=29AB →-89AC →. 答案:BD素养培育直观想象——共线向量定理的推广(自主阅读)共线定理:已知PA →,PB →为平面内两个不共线的向量,设PC →=xPA →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.推广形式:如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xPA →+yPB →(x ,y ∈R).当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λPA →+μPB →(λ,μ∈R),则λ+μ=1.由△PAB 与△PED 相似,知必存在一个常数m ∈R ,使得PC →=mPF →,则PC →=mPF →=mλPA →+mμPB →.又PC →=xPA →+yPB →(x ,y ∈R), 所以x +y =mλ+mμ=m . 以上过程可逆.因此得到结论:PC →=xPA →+yPB →, 则x +y =m (定值),反之亦成立.[典例1] 如图,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R),则α+β的取值X 围是________.解析:当P 在△CDE 内时,直线EC 是最近的平行线,过D 点的平行线是最远的,所以α+β∈⎣⎢⎡⎦⎥⎤AN AM ,AD AM =[3,4].答案:[3,4][典例2] 如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值X 围是________.解析:由点D 是圆O 外的一点,可设BD →=λBA →(λ>1),则OD →=OB →+BD →=OB →+λBA →=λOA →+(1-λ)OB →.因为C 、O 、D 三点共线,令OD →=-μOC →(μ>1).所以OC →=-λμOA →-1-λμOB →(λ>1,μ>1).因为OC →=mOA →+nOB →,所以m =-λμ,n =-1-λμ,所以m +n =-λμ-1-λμ=-1μ∈(-1,0).答案:(-1,0)。

高考专题——平面向量与复数 -含答案

高考专题——平面向量与复数 -含答案

高考专题——平面向量与复数一、单选题1.(2022·北京·高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是( ) A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-2.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ( ) A .1-B .1C .3-D .33.(2021·全国·高考真题(文))设i 43i z =+,则z =( ) A .–34i -B .34i -+C .34i -D .34i +4.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -5.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( ) A .1i --B .1i -+C .1i -D .1i +6.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限7.(2022·全国·高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .28.(2022·全国·高考真题(文))若1i z =+.则|i 3|z z +=( )A .B .C .D .9.(2020·全国·高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b +B .2a b +C .2a b -D .2a b -10.(2020·全国·高考真题(理))已知向量 a ,b 满足||5a =, ||6b =,6a b ⋅=-,则cos ,=a a b <+>( )A .3135-B .1935-C .1735D .193511.(2020·海南·高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是( ) A .()2,6- B .(6,2)- C .(2,4)-D .(4,6)-12.(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件13.(2020·山东·高考真题)已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是( ) A .()2,6-或()2,1 B .()2,6--或()2,1- C .()2,6或()2,1-D .()2,6-或()2,1--14.(2022·全国·高考真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( ) A .32m n -B .23m n -+C .32m n +D .23m n +15.(2022·全国·高考真题(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2-B .1-C .1D .216.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6-B .5-C .5D .617.(2021·全国·高考真题)已知2i z =-,则()i z z +=( ) A .62i -B .42i -C .62i +D .42i +18.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --19.(2011·全国·高考真题(理))复数2i12i+-的共轭复数是( ) A .3i 5-B .35iC .i -D .i20.(2022·全国·高考真题)(22i)(12i)+-=( ) A .24i -+B .24i --C .62i +D .62i -21.(2022·全国·高考真题(理))若1z =-,则1zzz =-( )A .1-B .1-C .13-+D .13-22.(2022·全国·高考真题(文))设(12i)2i a b ++=,其中,a b 为实数,则( )A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-23.(2022·北京·高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .2524.(2022·浙江·高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==25.(2022·全国·高考真题(理))已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-26.(2020·山东·高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF 等于( )A .()12a b + B .()12a b - C .()12b a - D .12a b +27.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2B .3C .4D .5二、多选题28.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅三、填空题29.(2020·浙江·高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______. 30.(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d 在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________.31.(2020·江苏·高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.32.(2022·浙江·高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++的取值范围是_______.33.(2022·天津·高考真题)已知i 是虚数单位,化简113i1+2i-的结果为_______. 34.(2020·全国·高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.35.(2020·全国·高考真题(理))设,a b 为单位向量,且||1a b +=,则||a b -=______________.36.(2020·全国·高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.37.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________. 38.(2021·全国·高考真题(理))已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.39.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.40.(2021·全国·高考真题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.41.(2022·全国·高考真题(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________.42.(2021·天津·高考真题)i 是虚数单位,复数92i2i+=+_____________. 43.(2021·全国·高考真题(理))已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.44.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.四、双空题45.(2020·天津·高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.46.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.47.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.48.(2022·天津·高考真题)在ABC 中,,CA a CB b ==,D 是AC 中点,2CB BE =,试用,a b 表示DE 为___________,若AB DE ⊥,则ACB ∠的最大值为____________ 49.(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.参考答案:1.D【分析】依题意建立平面直角坐标系,设()cos ,sin P θθ,表示出PA ,PB ,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解:依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动, 设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=--,()cos ,4sin PB θθ=--, 所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈-; 故选:D2.C【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-. 故选:C. 3.C【分析】由题意结合复数的运算法则即可求得z 的值. 【详解】由题意可得:()2434343341i i i i z i i i ++-====--. 故选:C. 4.C【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C. 5.D【分析】由题意利用复数的运算法则整理计算即可求得最终结果. 【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+. 故选:D. 6.A【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置. 【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限, 故选:A. 7.D【分析】利用复数的除法可求z ,从而可求z z +.【详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D 8.D【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D. 9.D【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意; B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意; C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意. 故选:D.【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力. 10.D【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 11.A【分析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目. 12.B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,△不是a b =的充分条件,当a b =时,0a b -=,△()00a b c c -⋅=⋅=,△成立,△是a b =的必要条件,综上,“”是“”的必要不充分条件故选:B. 13.C【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得. 【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--=,解得6y =或1y =-,所以(2,6)P 或(2,1)P -,故选:C . 14.B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-, 所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 15.C【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:△222|2|||44-=-⋅+a b a a b b , 又△||1,||3,|2|3,==-=a b a b △91443134=-⋅+⨯=-⋅a b a b , △1a b ⋅= 故选:C. 16.C【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C 17.C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C. 18.B【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解. 【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅. 故选:B. 19.C【分析】利用复数的乘除运算求出2ii 12i+=-,结合共轭复数的概念求出它的共轭复数即可. 【详解】由题意知, 令2i (2i)(1+2i)i 12i (12i)(1+2i)z ++===--, 所以复数的共轭复数为i z =-, 故选:C 20.D【分析】利用复数的乘法可求()()22i 12i +-. 【详解】()()22i 12i 244i 2i 62i +-=+-+=-, 故选:D. 21.C【分析】由共轭复数的概念及复数的运算即可得解.【详解】1(1113 4.z zz =-=--=+=113z zz ==-+- 故选 :C 22.A【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【详解】因为,a b R ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A. 23.B【分析】利用复数四则运算,先求出z ,再计算复数的模.【详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z =.故选:B . 24.B【分析】利用复数相等的条件可求,a b .【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B. 25.A【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【详解】12i z =+12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩故选:A 26.A【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线, ∴111222EF AC a b ==+,故选:A 27.D【分析】先求得a b -,然后求得a b -.【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D 28.AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP ==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β==,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC 29.2829【分析】利用向量模的平方等于向量的平方化简条件得1234e e ⋅≥,再根据向量夹角公式求2cos θ函数关系式,根据函数单调性求最值.【详解】12|2|2e e -≤,124412e e ∴-⋅+≤, 1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题. 30.25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b cm n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =,所以d a -在c 方向上的投影(1()||m x ny d a c z c -+-⋅==, 即252x y z +=,所以(()()2222222222112212510105x y z x y z x yz⎡⎤++=++++≥+=⎢⎥⎣⎦,当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值. 31.185或0 【分析】根据题设条件可设()0PA PD λλ=>,结合32PA mPB m PC ⎛⎫=+- ⎪⎝⎭与,,B D C 三点共线,可求得λ,再根据勾股定理求出BC ,然后根据余弦定理即可求解. 【详解】△,,A D P 三点共线, △可设()0PA PD λλ=>,△32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,△32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫-⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线, △321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=, △9AP =,△3AD =,△4AB =,3AC =,90BAC ∠=︒, △5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.△根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,△()cos cos 0θπθ+-=,△()()2570665x x x --+=-,解得185x =,△CD 的长度为185. 当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185. 【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=>.32.[12+【分析】根据正八边形的结构特征,分别以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设(,)P x y ,再根据平面向量模的坐标计算公式即可得到()2222212888PA PA PA x y +++=++,然后利用cos 22.5||1OP ≤≤即可解出.【详解】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726(0,1),,(1,0),,(0,1),,(1,0)A A A A A A A ⎛-- ⎝⎭⎝⎭⎝⎭,822A ⎛ ⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++,因为cos 22.5||1OP ≤≤,所以221cos 4512x y +≤+≤,故222128PA PA PA +++的取值范围是[12+.故答案为:[12+.33.15i -##5i 1-+【分析】根据复数代数形式的运算法则即可解出.【详解】()()()()113i 12i 113i 11625i15i 1+2i 1+2i 12i 5-----===--. 故答案为:15i -.34.2【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值. 【详解】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力. 35【分析】整理已知可得:()2a b a b+=+,再利用,a b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.【详解】因为,a b 为单位向量,所以1a b == 所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=解得:21a b ⋅=-所以()22223a b a ba ab b -=-=-⋅+=【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 36.5【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果. 【详解】由a b ⊥可得0a b ⋅=, 又因为(1,1),(1,24)a b m m =-=+-, 所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=, 即5m =, 故答案为:5.【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.37.85【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.38.103-. 【分析】利用向量的坐标运算法则求得向量c 的坐标,利用向量的数量积为零求得k 的值 【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.39.【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】△5a b -=△222229225a b a b a b b -=+-⋅=+-= △32b =.故答案为: 40.92-【分析】由已知可得()20a b c ++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-. 41.11【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得.【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11. 42.4i -【分析】利用复数的除法化简可得结果. 【详解】()()()()92i 2i 92i 205i4i 2i 2i 2i 5+-+-===-++-. 故答案为:4i -.43.35【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得, ()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.44.34-##0.75-【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.45.16 132【分析】可得120BAD ∠=,利用平面向量数量积的定义求得λ的值,然后以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,设点(),0M x ,则点()1,0N x +(其中05x ≤≤),得出DM DN ⋅关于x 的函数表达式,利用二次函数的基本性质求得DM DN ⋅的最小值. 【详解】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=,以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,△3,60AB ABC =∠=︒,△A 的坐标为32A ⎛ ⎝⎭,△又△16AD BC =,则52D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤),5,2DM x ⎛=- ⎝⎭,3,2DN x ⎛=- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题. 46. 11120【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值. 【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=,2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311)(12)(1)53151020x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭,所以当310x =时,()DE DF DA +⋅的最小值为1120.故答案为:1;1120.47.1-【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值.【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-=()021(1)1PB PD ⋅=⨯-+⨯-=-.1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题. 48.3122b a - 6π【分析】法一:根据向量的减法以及向量的数乘即可表示出DE ,以{},a b 为基底,表示出,AB DE ,由AB DE ⊥可得2234b a b a +=⋅,再根据向量夹角公式以及基本不等式即可求出. 法二:以点E 为原点建立平面直角坐标系,设(0,0),(1,0),(3,0),(,)E B C A x y ,由AB DE ⊥可得点A 的轨迹为以(1,0)M -为圆心,以2r =为半径的圆,方程为22(1)4x y ++=,即可根据几何性质可知,当且仅当CA 与M 相切时,C ∠最大,即求出. 【详解】方法一:31=22DE CE CD b a -=-,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-=,2234b a a b +=⋅222333cos 244a b a b b a ACB a ba ba b⋅+⇒∠==≥=,当且仅当3a b =时取等号,而0πACB <∠<,所以(0,]6ACB π∠∈.故答案为:3122b a -;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,),(1,)22x yDE AB x y +=--=--, 23()(1)022x y DE AB x +⊥⇒-+=22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a-;6π.49.03【分析】根据坐标求出a b+,再根据数量积的坐标运算直接计算即可.【详解】以,a b交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c==-=,()4,0a b∴+=,()40010a b c+⋅=⨯+∴⨯=,()22113a b∴⋅=⨯+⨯-=.故答案为:0;3.。

高考数学平面向量及复数专项训练试题、参考答案

高考数学平面向量及复数专项训练试题、参考答案

高考数学平面向量及复数专项训练试题一、选择题(本题每小题5分,共60分)1.设向量(cos 23,cos67),(cos53,cos37),a b a b =︒︒=︒︒⋅=则 ( )AB .12C .D .12-2.如果复数212bi i-+(其中i 为虚数单位,b 为实数)的实部和虚部是互为相反数,那么b 等于( )A B .23C .2D . 23-3.220041i i i ++++的值是 ( ) A .0 B .1- C .1 D .i 4.若(2,3)a =-, (1,2)b =-,向量c 满足c a ⊥,1b c ⋅=,则c 的坐标是 ( ) A .(3,2)- B .(3,2) C .(3,2)-- D .(3,2)- 5.使4()a i R +∈(i 为虚数单位)的实数a 有( ) A .1个 B .2个 C .3个D .4个6.设e 是单位向量,3,3,3AB e CD e AD ==-=,则四边形ABCD 是( )A .梯形B .菱形C .矩形D .正方形7.已知O 、A 、B 三点的坐标分别为(0,0)O ,(3,0)A ,(0,3)B ,点P 在线段AB 上,且(0AP t AB =≤t ≤1),则OA OP ⋅的最大值为( )A .3B .6C .9D .128.已知2,1a b ==,a 与b 的夹角为60︒,则使向量a b λ+与2a b λ-的夹角为钝角的实数λ的取值范围是 ( )A . (,1-∞--B . (1)-++∞C . (,1(13,)-∞--++∞D . (11--+9.若z 为复数,下列结论正确的是 ( )A .若12,z z C ∈且120z z ->且12z z >B .22z z =C .若0,z z -=则z 为纯虚数D .若2z 是正实数,那么z 一定是非零实数10.若sin 211)i θθ-++是纯虚数,则θ的值为 ( ) A .2()4k k Z ππ-∈ B .2()4k k Z ππ+∈ C .2()4k k Z ππ±∈ D .()24k k Z ππ+∈11.已知△ABC 的三个顶点的A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,下列结论中正确的是 ( ) A .P 在△ABC 内部 B .P 在△ABC 外部 C .P 在AB 边所在直线上 D .P 是AC 边的一个三等分点 12.复数z 在复平面上对应的点在单位圆上,则复数21zz+ ( )A .是纯虚数B .是虚数但不是纯虚数C .是实数D .只能是零 二、填空题(本题每小题4分,共16分)13.已知复数z 满足等式:2||212z zi i -=+,则z= .14.把函数)2245y x x =-+的图象按向量a 平移后,得到22y x =的图象,且a ⊥b ,(1,1)c =-,4b c ⋅=,则b =_____________。

数学练习(新教材人教A版强基版)第五章平面向量与复数51平面向量的概念及线性运算

数学练习(新教材人教A版强基版)第五章平面向量与复数51平面向量的概念及线性运算

1.化简2(a -3b )-3(a +b )的结果为( )A .a +4bB .-a -9bC .2a +bD .a -3b2.(多选)下列命题中,正确的是( )A .若a ∥b ,b ∥c ,则a ∥cB .在△ABC 中,AB →+BC →+CA →=0C .若两个单位向量互相平行,则这两个单位向量相等或相反D .如果非零向量a ,b 的方向相同或相反,那么a +b 的方向与a ,b 之一的方向一定相同3.设a ,b 是平面内两个向量,“|a |=|a +b |”是“|b |=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ),则( )A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,C ,D 三点共线D .B ,C ,D 三点共线5.在边长为1的正方形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,则|a -b +c |等于( )A .1B .2C .3D .46.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,且FC →=λFD →+μFE →,则λ+μ等于( )A .1B .2C .3D .47.已知向量e 1,e 2是两个不共线的向量,a =2e 1-e 2与b =e 1+λe 2共线,则λ等于( )A .2B .-2C .-12 D.12 8.已知向量OA →=OB →·logsin θ+OC →·log 2cos θ,若A ,B ,C 三点共线,则sin θ+cos θ等于( )A .-355B.355 C .-55 D.559.设向量a ,b 不平行,向量t a +b 与a +3b 平行,则实数t 的值为________.10.已知A ,B ,C 三点共线,且AC →=3BC →,若AB →=λCB →,则λ=________.11.已知平面上不共线的四点O ,A ,B ,C ,若OA →-4OB →+3OC →=0,则|AB →||CA →|等于( ) A.13 B.34 C.12 D.4312.已知M 为△ABC 的重心,D 为BC 的中点,则下列等式成立的是( )A .|MA →|=|MB →|=|MC →|B.MA →+MB →+MC →=0C.BM →=23BA →+13BD → D .S △MBC =13S △ABC 13.已知O 为△ABC 内一点,且OA →+3OB →+4OC →=0,则△ABO 与△ABC 的面积之比为( )A.16B.13C.12D.2314.(2023·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD →|=13|AC →|,点Q 为线段BD 上任意一点,若实数x ,y 满足AQ →=xAB →+yAC →,则1x +1y的最小值为________.15.(多选)设点M 是△ABC 所在平面内一点,则下列说法正确的是( )A .若BM →=13BC →,则AM →=13AC →+23AB → B .若AM →=2AC →-3AB →,则点M ,B ,C 三点共线C .若点M 是△ABC 的重心,则MA →+MB →+MC →=0D .若AM →=xAB →+yAC →且x +y =13,则△MBC 的面积是△ABC 面积的2316.如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC =CN CE =r ,当r =________时,B ,M ,N 三点共线.。

高三数学专题复习之平面向量与复数

高三数学专题复习之平面向量与复数

平面向量与复数
高考分析及预测
从内容上看:向量的基本概念(共线、垂直)及其运算(加法、减法、数乘和数量积)是高考的必考内容;从题型上看,平面向量的考题比较灵活,多以向量的运算为主,平面几何图形作为载体,考查向量加减法的几何意义,考查学生分析问题、解决问题的能力和运算能力,填空题、解答题都有可能出现,可能是容易题,也可能是中档题。

复数题在高考中主要以小题形式呈现,难度不大,主要考查复数的运算。

高考能级要求:
知识梳理:
重点及易错点回顾:
典例精研:
目标达成反馈:
课堂小结:
学教反思:。

2022年高考数学真题:平面向量与复数(解析版)

2022年高考数学真题:平面向量与复数(解析版)

第4讲平面向量与复数一、单选题1.(2022·全国·高考真题)已知向量(3,4),(1,0),t a b c a b ,若,,a cbc ,则t ()A .6B .5C .5D .6【答案】C 【解析】【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解: 3,4c t ,cos ,cos ,a c b c ,即931635t t c c,解得5t ,故选:C2.(2022·全国·高考真题)在ABC 中,点D 在边AB 上,2BD DA .记CA m CD n,,则CB ()A .32m nB .23m nC .32m nD .23m n【答案】B 【解析】【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA ,所以2BD DA,即2CD CB CA CD ,所以CB 3232CD CA n m 23m n .故选:B .3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b,,则a b r r ()A .2B .3C .4D .5【答案】D 【解析】【分析】先求得a b,然后求得a b r r .【详解】因为 2,12,44,3a b ,所以5a b .故选:D4.(2022·全国·高考真题(理))已知向量,a b 满足||1,||2|3a b a b ,则a b()A .2B .1C .1D .2【答案】C 【解析】【分析】根据给定模长,利用向量的数量积运算求解即可.【详解】解:∵222|2|||44a b a a b b ,又∵||1,||2|3,a b a b ∴91443134 a b a b ,∴1a b 故选:C.6.(2022·全国·高考真题)(22i)(12i) ()A .24i B .24iC .62iD .62i【答案】D 【解析】【分析】利用复数的乘法可求 22i 12i .【详解】22i 12i 244i 2i 62i ,故选:D.7.(2022·全国·高考真题)若i(1)1z ,则z z ()A .2B .1C .1D .2【答案】D 【解析】【分析】利用复数的除法可求z ,从而可求z z .【详解】由题设有21i1i i iz ,故1+i z ,故 1i 1i 2z z ,故选:D8.(2022·全国·高考真题(文))设(12i)2i a b ,其中,a b 为实数,则()A .1,1a bB .1,1a bC .1,1a bD .1,1a b 【答案】A 【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【详解】因为,a b ÎR , 2i 2i a b a ,所以0,22a b a ,解得:1,1a b .故选:A.9.(2022·全国·高考真题(理))若1z ,则1zzz ()A .1B .1 C .133 D .1i33【答案】C 【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】1(1113 4.z zz 13i 13i 1333z zz 故选:C10.(2022·全国·高考真题(文))若1i z .则|i 3|z z ()A .B .C .D .【答案】D 【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1i z ,所以 i 3i 1i 31i 22i z z ,所以i 3z z 故选:D.11.(2022·全国·高考真题(理))已知12z i ,且0z az b ,其中a ,b 为实数,则()A .1,2a bB .1,2a b C .1,2a b D .1,2a b 【答案】A 【解析】【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可【详解】12iz 12i (12i)(1)(22)i z az b a b a b a 由0z az b ,得10220a b a ,即12a b故选:A 二、填空题12.(2022·全国·高考真题(理))设向量a ,b 的夹角的余弦值为13,且1a ,3b r ,则2a b b_________.【答案】11【解析】【分析】设a 与b 的夹角为 ,依题意可得1cos 3,再根据数量积的定义求出a b ,最后根据数量积的运算律计算可得.【详解】解:设a 与b 的夹角为 ,因为a 与b 的夹角的余弦值为13,即1cos 3,又1a ,3b r ,所以1cos 1313a b a b ,所以22222221311a b b a b b a b b .故答案为:11.13.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m.若a b ,则m ______________.【答案】34##0.75【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m,解得34m .故答案为:34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题练习:平面向量与复数
1.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
解析:由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,解得m =-6,则m =-6时,a =(-1,2),a +b =(2,-4),所以a ∥(a +b ),则“m =-6”是“a ∥(a +b )”的充要条件,故选A. 答案:A
2.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则m n =( ) A .-3 B .-13
C.13 D .3
解析:过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=
-26BC →+BA →=-13BC →+BA →,所以m n =1-13
=-3.
答案:A
3.已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( )
A .1 B. 2
C. 3 D .2
解析:因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=
±12+32=2,故选D.
答案:D
4.已知向量a =(m,1),b =(m ,-1),且|a +b |=|a -b |,则|a |=( )
A .1 B.62
C. 2 D .4
解析:∵a =(m,1),b =(m ,-1),∴a +b =(2m,0),a -b =(0,2),又|a +b |=|a -b |,∴|2m |=2,∴m =
±1,∴|a |=m 2+12= 2.故选C. 答案:C 5.已知A (-1,cos θ),B (sin θ,1),若|OA →+OB →|=|OA →-OB →|(O 为坐标原点),则锐角θ=( )
A.π3
B.π6
C.π4
D.π12
6.在△ABC 中,AB =AC =3,∠BAC =30°,CD 是边AB 上的高,则CD →·CB →=( )
A .-94 B.94
C.274 D .-274
解析:依题意得|CD →|=32,CD →·AB →=0,CD →·CB →=CD →·(CA →+AB →)=CD →·CA →+CD →·AB →=CD →·CA →=|CA
→|·|CD →|·cos60°=3×32×12=94,故选B.
(2)由(1),可得f (x )=a ·b -2λ|a +b |=cos 2x -4λcos x ,
即f (x )=2(cos x -λ)2-1-2λ2.
因为x ∈⎣⎢⎡⎦
⎥⎤0,π2,所以0≤cos x ≤1. ①当λ<0时,当且仅当cos x =0时,f (x )取得最小值-1,这与已知矛盾;
②当0≤λ≤1时,当且仅当cos x =λ时,f (x )取得最小值-1-2λ2,由已知得-1-2λ2=-32,解得λ=12;
③当λ>1时,当且仅当cos x =1时,f (x )取得最小值1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ
>1相矛盾;综上所述λ=12. 26.设复数z=a+i (i 是虚数单位,a ∈R,a >0),且|z|=

(Ⅰ)求复数z ;
(Ⅱ)在复平面内,若复数+(m ∈R )对应的点在第四象限,求实数m 取值范围. 【答案】(Ⅰ)3i +;(Ⅱ)51m -<<.
27.已知平面上三个向量,,a b c ,其中(1,2)a =.
(1)若35c =,且//a c ,求c 的坐标;
(2)求函数f (x )在⎣⎢⎡⎦
⎥⎤0,2π3上的单调区间. 20.已知△ABC 的三个内角A 、B 、C 所对的边分别是a 、b 、c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n .
(1)求角B 的大小;学=科网
(2)若b =3,求a +c 的取值范围.
(2)由余弦定理,得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34
(a +c )2,当且仅当a =c 时取等号, ∴(a +c )2≤4,∴a +c ≤2,
又a +c >b =3,∴a +c ∈(3,2].。

相关文档
最新文档