基于DC5V四相步进电机变频调速的控制

合集下载

步进电机四相五线

步进电机四相五线

步进电机四相五线
步进电机是一种常见的电机类型,广泛应用于各种自动化系统中。

其中,四相五线步进电机是一种常用的步进电机类型,具有较好的性能和稳定性。

本文将介绍步进电机四相五线的基本原理、工作方式和应用领域。

步进电机四相五线由四个相位线圈组成,每个线圈分别为A相、B相、C相和D 相。

这四个线圈之间是相互独立的,通过合理地控制电流流过这些线圈,可以实现步进电机的准确控制。

与其他类型的步进电机相比,四相五线步进电机在控制上更加简单和灵活。

四相五线步进电机的工作原理是通过改变每个线圈的通电顺序和电流方向来实现电机的旋转。

通过依次通电不同的线圈,可以使步进电机按照一定的步数和方向旋转。

这种控制方式可以实现非常精确的位置控制,适用于需要高精度定位的应用场景。

在应用领域方面,步进电机四相五线被广泛应用于打印机、数控机床、3D打印机、机器人等自动化设备中。

由于其结构简单、控制方便和精度高的特点,四相五线步进电机可以满足各种复杂系统的控制需求,提高系统的稳定性和可靠性。

总的来说,步进电机四相五线是一种性能稳定、控制简单、精度高的电机类型,适用于各种自动化系统中的位置控制和定位任务。

在未来的发展中,随着自动化技术的不断进步,步进电机四相五线将继续发挥重要作用,为各种应用领域提供高效、精准的控制方案。

1。

永磁同步电机变频调速控制方法研究

永磁同步电机变频调速控制方法研究

永磁同步电机变频调速控制方法研究第一章前言随着社会的发展,电机控制技术的研究和应用越来越受到关注。

永磁同步电机作为一种新型电机,具有高效、低噪音、小体积、高可靠性等优点,被广泛应用于新能源汽车、电动机车、风力发电以及工业自动控制等领域。

而变频调速控制技术则是电机驱动中的核心技术之一,可以改变电机输出的频率和电压,从而实现精准控制。

本文将着重研究永磁同步电机的变频调速控制方法,分别从控制系统结构、控制算法和实验验证三个方面进行探讨,旨在为永磁同步电机的实际应用提供参考。

第二章控制系统结构永磁同步电机的控制系统框图如下图所示:其中,电机控制器、变频器、传感器和计算机组成了整个控制系统。

电机控制器主要负责控制永磁同步电机的转速和电流,实现闭环控制;变频器则是将直流电源转换成交流电源,并可实现变换频率和电压的功能;而传感器主要用于测量电机的实际速度、位置以及转矩等信号,为电机控制提供反馈信号。

在永磁同步电机的控制系统中,最为关键的部分是电机控制器。

电机控制器可以采用矢量控制算法、直接转矢量控制算法、预测控制算法等不同控制算法进行实现。

其中,矢量控制算法具有控制精度高、响应速度快等优点,被广泛应用于永磁同步电机的控制中。

第三章控制算法3.1 矢量控制算法矢量控制算法是在永磁同步电机坐标系中进行控制的一种算法,其核心思想是将三相电压和电流通过变换矢量的方式,转换成两相电压和电流进行控制,从而实现在任意转速下永磁同步电机的控制。

具体来说,矢量控制算法是将永磁同步电机转换成dq坐标系,通过dq坐标系下的电压矢量和电流矢量,实现对电机的精确控制。

该算法不仅控制精度高,而且稳定性好,已经成为永磁同步电机控制中最为常用的方法。

3.2 直接转矩控制算法直接转矩控制算法又称为直接转矩控制算法,它也是在dq坐标系下进行控制的一种算法。

与矢量控制算法不同的是,直接转矩控制算法不需要进行矢量变换,通过直接控制dq坐标系下的电流,控制永磁同步电机的电磁转矩。

四相五线步进电机驱动原理

四相五线步进电机驱动原理

四相五线步进电机驱动原理
步进电机是一种将电脉冲信号转换为机械旋转运动的电机,具有结构简单、控制方便、精度高等优点,因此被广泛应用于各种自动化设备中。

四相五线步进电机是其中一种常见类型,其驱动原理相对简单,下面将对其进行介绍。

首先,四相五线步进电机由电机主体和控制驱动电路组成。

电机主体包括定子和转子,定子上布有4组线圈(称为相),每组线圈都与控制驱动电路相连。

控制驱动电路通过周期性地改变电流流向和大小来控制电机旋转。

在四相五线步进电机中,每相线圈都与控制驱动电路的输出端口相连。

控制驱动电路通过向每相线圈施加不同的电流信号来控制电机旋转方向和步距。

常见的控制方式包括单相励磁、双相励磁和全相励磁。

在单相励磁方式下,控制驱动电路依次激活每一相线圈,使其产生磁场,从而驱动电机旋转。

在双相和全相励磁方式下,同时激活两相及全部相线圈,以增加驱动力矩和稳定性。

步进电机的驱动原理基于这样的工作机制:通过改变线圈的电流方向和大小,可以使电机产生磁场旋转,从而带动转子转动。

通过适时地改变电流信号,可以控制电机按特定的步距旋转,实现精确的位置控制。

同时,步进电机具有较高的定位精度和速度响应,适用于需要精确控制运动的场合。

其工作原理简单清晰,易于控制,适用于各种自动控制系统和精密设备中。

总的来说,四相五线步进电机通过控制驱动电路向不同相线圈施加电流信号,实现精确的旋转运动控制。

其驱动原理基于电磁学和控制理论,具有结构简单、控制方便、精度高的特点,是自动化设备中重要的执行元件之一。

1。

5v直流电机调速电路设计ad设计及其原理

5v直流电机调速电路设计ad设计及其原理

5v直流电机调速电路设计ad设计及其原理
为了设计一个5V直流电机的调速电路,我们可以使用一个无刷直流电机(BLDC motor),以及一个电子调速器(ESC)来控制电机的转速。

基本原理是通过调整输入给电机的电压来改变电机的转速。

通常情况下,直流电机的转速与输入电压之间存在线性关系。

因此,我们可以通过调整输入电压的大小来实现对电机转速的调节。

以下是一个简单的5V直流电机调速电路设计及其原理:
1. 材料准备:
- 5V直流电机
- 电子调速器(ESC)
- Arduino或其他微控制器
- 电源(可选择5V电源)
2. 连接电机和电子调速器:
- 将电机的电源线连接到电源的正极,将电机的地线连接到电源的负极。

- 将电机的三个相线(A、B、C)连接到电子调速器的对应引脚。

3. 连接电子调速器和微控制器:
- 将电子调速器的信号线连接到微控制器的数字引脚。

这个信号线用于发送控制电机转速的指令。

4. 编程微控制器:
- 使用Arduino或其他微控制器来编写调速程序。

- 根据需要,使用PWM信号模拟模式或其他相应的驱动方式编程。

5. 控制电机转速:
- 在程序中,使用微控制器发送PWM信号控制电子调速器的输入电压。

通过调整PWM信号的占空比(即高电平持续时间占整个周期的比例)来调整电机的输出转速。

通过这样的设计,我们可以实现对5V直流电机的精确调速。

这种设计可以应用于许多需要对电机转速精确控制的场合,如机械设备、机器人、无人机等。

合泰单片机控制5线4相步进电机控制程序

合泰单片机控制5线4相步进电机控制程序

合泰单片机控制5线4相步进电机控制程序;步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!!; 28BYJ48 步进电机步进角为 5.625 度; A 组线圈对应PC.0; B 组线圈对应PC.1; C 组线圈对应PC.2; D 组线圈对应PC.3; 正转次序: AB 组--BC 组--CD 组--DA 组(即一个脉冲,正转5.625 度); 完整的源程序下载:51hei/f/htbjdj.rarinclude HT66F50.incORG0000HJMPA1ORG0014H ;多功能中断入口地址JMPZD1ORG002DHQ1:DC03H; 0ABDC06H; 1BCDC0CH; 2CDDC09H; 3DAA1: MOVA,08H;跟CP1C 寄存器设置要求选择数据MOVCP1C,A;设置PC 口为I/0 口而不是中断口CLRPCC;设置pc 口为输出口MOVA,0;设置初始脉冲MOV[80H],A;MOVA,00000000B;设置TM2 计数时钟位为fSYS/4MOVTM2C0,AMOVA,11000001B ;设置TM2 中断为定时/计数模式选择比较器A 匹配MOVTM2C1,AMOVA,LOW 5000;设置中断时间为5000 个时钟周期MOVTM2AL,A;低8 位MOVA,HIGH 5000;设置中断时间为5000 个时钟周期MOVTM2AH,A;高8 位不能少于3500 个时钟周期否则无法启动CLRMF0F;清多功能中断0 标志CLRT2AF;清定时器2 较器A 中断标志SETMF0E;使能多功能0 中断SETT2AE;使能定时器2 较器A 中断SETEMI;使能总中断SETT2ON;开始计数JMP$;;*******************************************************;中断服务子程序;*******************************************************ZD1:MOV[0F0H],A;压栈ACC 到0F0HMOVA,STATUS;MOV[0F1H],A;压栈status 标志寄存器。

四相五线步进电机工作原理是什么

四相五线步进电机工作原理是什么

四相五线步进电机工作原理是什么在现代工业自动化控制系统中,步进电机作为一种常用的执行器件,广泛应用于各种机械设备中。

其中,四相五线步进电机作为一种常见类型的步进电机,其工作原理相对简单却极具效率和精度,因此备受青睐。

四相五线步进电机的基本结构和工作原理四相五线步进电机通常由电机本体、定子、转子、端子等部件组成。

在其内部,定子上包裹着绕有不同电流的四组线圈,而转子则是由多极永磁体构成。

通过合适的控制方法,可以实现步进电机的精确位置控制。

四相五线步进电机的工作原理主要基于磁场的相互作用。

当电流通过步进电机的各个线圈时,会在定子和转子之间产生磁场。

根据不同的电流激励组合,这些磁场的变化将导致电机的转子按固定的步距旋转,从而实现精确的位置调节。

步进电机的工作模式四相五线步进电机通常分为全步进和半步进两种工作模式。

在全步进模式下,电机按照固定的步距顺时针或逆时针旋转,每次只转动一个步距。

而在半步进模式下,电机每个步距可以再次细分为更小的步距,从而提高了电机的分辨率和位置控制的精度。

控制方法和应用领域为了实现对步进电机的精确控制,可以采用脉冲信号驱动的方法。

通过对不同组合的脉冲信号进行控制,可以使步进电机按照预定的步距旋转,实现所需的运动效果。

四相五线步进电机广泛应用于各种需要精确位置控制的场合,如数控机床、打印设备、医疗器械等。

其工作原理简单、结构紧凑、运行可靠,使其成为自动化控制系统中的重要组成部分。

未来发展趋势随着技术的不断发展,步进电机在控制精度、效率和稳定性方面有望进一步提升。

未来,步进电机有望在更多领域得到广泛应用,为工业自动化带来更多便利和效益。

总的来说,四相五线步进电机以其简单而高效的工作原理,在现代自动化控制系统中发挥着重要作用。

通过精确的控制和位置调节,它为各种机械设备的运行提供了可靠支持,推动了工业自动化的发展进程。

4相5线步进电机原理

4相5线步进电机原理

4相5线步进电机原理
4相5线步进电机是一种常见的步进电机类型。

它的原理是通
过电流的变化来驱动电机的转动。

在电机内部,有4个线圈,分别被标记为A、B、C和D。


些线圈被连接到外部的电源,并且根据一定的模式循环通电和断电。

在每个电流通路中,只有两个线圈被激活,例如A和B线圈。

此时,电流会通过这两个线圈,而其他两个线圈则没有电流通过。

这会导致电机中的磁场发生变化。

当电流通过线圈A和B时,会在电机内部产生一个磁场,使
得电机的转子朝特定的方向旋转一步。

之后,电流会切换到线圈B和C,继续推动转子旋转一步。

通过不断循环这个过程,电机可以以一定的角度逐步旋转。

这就是为什么它被称为“步进电机”的原因。

为了控制步进电机的旋转速度和方向,需要使用一个驱动器电路。

驱动器电路通常接收外部的控制信号,并根据信号的变化来控制电流的流动。

通过这种方式,我们可以精确地控制步进电机的转动,使其能够在各种应用中发挥作用,例如打印机、机器人和CNC机床等。

《2024年PLC控制电机变频调速试验系统的设计与实现》范文

《2024年PLC控制电机变频调速试验系统的设计与实现》范文

《PLC控制电机变频调速试验系统的设计与实现》篇一一、引言随着工业自动化程度的不断提高,PLC(可编程逻辑控制器)与电机变频调速技术已经成为了现代工业生产中的重要组成部分。

本文旨在设计并实现一套基于PLC控制的电机变频调速试验系统,以实现对电机运行状态的有效监控与精确控制,提高生产效率与产品质量。

二、系统设计1. 硬件设计本系统主要由PLC控制器、变频器、电机、传感器等部分组成。

其中,PLC控制器负责整个系统的控制与协调,变频器用于调节电机的运行速度,电机则作为执行机构实现具体的运动,传感器则用于实时监测电机的运行状态。

(1)PLC控制器:选用高性能的PLC控制器,具备强大的逻辑控制与数据处理能力。

(2)变频器:选用适合电机类型与功率的变频器,具备高精度、高效率的调速性能。

(3)电机:根据实际需求选择合适的电机类型与功率。

(4)传感器:选用能够实时监测电机运行状态的高精度传感器。

2. 软件设计软件设计主要包括PLC控制程序的编写与调试。

首先,根据系统需求,设计合理的控制逻辑;其次,利用编程软件编写控制程序;最后,通过调试与测试,确保程序能够正常运行并实现预期功能。

(1)控制逻辑设计:根据电机运行的需求,设计合理的控制逻辑,包括启动、停止、调速等功能。

(2)编程软件选择:选用适合PLC控制的编程软件,如梯形图、结构化控制语言等。

(3)程序调试与测试:对编写好的程序进行调试与测试,确保程序能够正常运行并实现预期功能。

三、系统实现1. 连接硬件设备根据硬件设计,将PLC控制器、变频器、电机、传感器等设备进行连接。

确保各部分之间的连接牢固、可靠。

2. 编写与调试程序根据软件设计,编写PLC控制程序。

在编写过程中,需要充分考虑系统的实时性、稳定性以及可扩展性。

编写完成后,通过调试与测试,确保程序能够正常运行并实现预期功能。

3. 系统测试与优化对系统进行全面的测试,包括启动、停止、调速等功能。

根据测试结果,对系统进行优化与调整,提高系统的性能与稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:步进电机正反转及调速设计陈超渭南师范学院物理与电气工程系2008级电气(1)班摘要:利用单片机组成的变频调速控制器可以实现从低频(1~2 Hz) 起动到50 Hz ,可以消除以往工频50 Hz 直接起动对电机的冲击, 延长电机的使用寿命,同时由于变频器的输出电压可以自适应调节, 使负载电机可以工作在额定电压以下,不仅节能且可延长电机的使用寿命。

本设计利用Atmel公司的AT89S52单片机对步进电机的变频调速进行开发,设计了实现所需功能的硬件电路,应用C语言进行软件编程,并用实验板进行演示、验证。

关键词:单片机、AT89S52、变频调速、C语言编程一、绪论1.1 课题背景随着电力电子技术的日益发展和PWM控制技术的成熟, 利用电机的转速和输入电源的频率是线性关系这一原理, 将50 Hz 的交流电通过整流和逆变转换为频率可调的电源, 供给异步电动机, 实现调速的目的。

不仅在方便经济的基础上有一定的优势,同时21世纪又是一个低碳环保型社会,对变频调速的研发具有很高的实际价值。

1.2 设计任务系统控制原理图1.3 课题意义在相应绿色节能经济的同时,顺应21世纪低碳经济的发展模式,本设计采用经济、小型、环保、低功耗的单片机作为核心控制模块,模拟变频器工作对电机实行“变频调速”控制。

采用变频的目的在,于当前变频调速技术已经在经济社会,绿色环保社会,低碳节约型社会发挥着重要的最用。

目前变频调速器已全部采用了数字化技术,并且日趋小型化、高可靠性和高精度。

从应用角度看,其不仅具有显著的节电性能,而且还具有如下的优良性能:(1) 高速响应、低噪声、大范围、高精度平滑无级调速;(2) 体积小、重量轻、可挂墙安装,占地面积小;(3) 保护功能完善,能自诊断显示故障所在,维护简便;(4) 操作方便、简单;(5) 内设功能多,可满足不同工艺要求;(6) 具有通用的外部接口端子,可同计算机、PLC 联机,便于实现自动控制;(7) 软起动、软停机,具有电流限定和转差补偿控制;(8) 电动机直接在线起动,起动转矩大,起动电流小,减小对电网和设备的冲击,并具有转矩提升功能,节省软起动装置;(9) 功率因数高,节省电容补偿装置;(10) 与鼠笼式;转子电动机结合,使调速系统维护更加简单经济。

AT89S52 电源电路 时钟电路 键盘电路 LCD 显示电路步进电机驱动电路 霍尔检测电路此次设计在于全方位的模仿变频器,实现对电机的变频调速控制。

同时,对周边辅助模块,如:LCD显示模块、磁敏式传感器工作方式以及整个系统的运行和控制衔接方式都有了更深层次的探究。

是对现实工作场景的一个缩写,为变频调速技术提前打下了一定的基础。

1.4 本章小节本章主要介绍了课题背景、设计任务和课题意义,对单片机的优点及结构作了简要叙述,也对本系统的应用及概况进行了说明。

二、系统功能及操作2.1 系统功能的确定2.1.1 基本功能能实现对四相步进电机的简单控制,如:电机正转,电机反转,电机加速以及电机减速等功能,同时对电机实时速度有一个直观的显示和说明。

2.1.2 扩展功能本设计在满足其预定工作状态下,对测速模块和显示模块有了更进一步的研究和说明。

它除了能正常地实现电机的常规动作之外,而且能实时显示电机的工作状态及转速。

2.2 系统操作说明(1)接通电源,检查装置周边设备是否具有良好的工作环境(2)打开电脑及做好硬件的准备和软件的烧写检查工作(3)打开Kiel编程软件对程序进行正确编译,并规范应用软件正确烧如芯片内。

(4)连接好外围硬件设备,确保无漏接、错接、乱接、无接触松动等现象(5)按照硬件电路按钮标示进行对电机的操作(6)实验完毕后,关断电源,合理有序的摆放好物料2.3 本章小节本章主要对整个系统进行了一个全方位的概括和简要介绍,同时,对安全规范操作设备也做了一定详细的说明。

为对后续章节更好的理解有了一个实质性的认识。

三、系统硬件设计—实验板介绍3.1 芯片的选择本设计选用AT89S52芯片,它是一种低功耗、高性能CMOS 8位微控制器,具有8K(0000H~1FFFH)在线系统可编程Flash存储器。

片上Flash允许程序存储器在线编程,也适于常规编程器。

在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供灵活、高效的解决方案。

3.2 实验板电路原理图实验板电路结构框图如图3-2所示,原理电路图(只有本设计所需部分)见附录A。

图3-2 实验板结构框图3.3 功能电路分析3.3.1 时钟电路实验板的时钟振荡源电路如图3-3所示。

其中JT 为11.0592MHz 的晶振,改变两电容CB的值即可对此晶振频率进行调节。

该电路提供单片机工作所需的振荡频率,计算定时器初值即需此晶振频率,在通信时也需知道晶振频率,以对波特率进行计算。

图3-3 时钟电路3.3.2 电源模块电源模块为系统板上其它模块提供+5V 电源,系统板为从USB 接口获取+5V 电源,只要用相应配套的USB线从电脑主机获取+5V直流电源。

3.3.3 复位电路如图3-4所示为实验板的复位电路,当RESET 信号为低电平时,实验板为工作状态,当RESET信号为高电平时,实验板为复位或下载程序状态。

由于AT89S52具有ISP 的功能,即可以通过并口线直接将程序下载到单片机内,因此,AT89S52 具有两种状态,下载程序状态和运行状态。

该复位电路能实现上电自动复位,也能手动复位,一般复位时RESET应保持20毫秒以上高电平,此复位时间由接地电容控制。

图3-4 复位电路3.3.4 键盘电路设计中编者采用自做独立键盘实现了对电机的远程控制。

A T08C51内设有4 X4矩阵键盘和独立键盘模块,本设计公用到8个独立键盘分别控制电机的7种工作方式以及芯片的复位功能。

实现了对电机正转、反转、刹停、停机、加速、减速和清零的有效控制,操作便宜。

7位控制独立键盘图示如下:图3-4 键盘电路3.3.5 LCD显示电路LCD1602显示模块可以与本设计单片机AT89S52单片机直接接口,LCD1602的8位双向数据线D0~D7连接P0口的P0.0~P0.7,LCD1602使能信号E连接P2口线的P2.2。

LCD1602读/写选择信号R/W连接P2口线的P2.1,当P2.1=0时为写数据信号,当P2.1=1时为读数据信号。

LCD1602数据/命令选择信号RS连接P2口线的P2口线的P2.0,当P2.0=0时为命令信号;当P2.0=1时为数据信号。

需要注意的是液晶显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块的忙标志为低电平,表示不忙,否则此指令失效。

要显示字符时要先输入显示字符地址,也就是告诉模块在哪里显示字符。

LCD1602的V CC引脚接+5电源,引脚GND接地。

LCD1602显示模块与单片机AT89S52的接口电路如下所示:图3-5 LCD 显示电路3.3.6 步进电机驱动电路本设计所使用的电机驱动模块为SGS公司的恒压恒L298N,它属于恒压恒流桥式2A驱动芯片。

L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。

可以方便的驱动两个直流电机,或一个两相步进电机。

L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便。

本设计是利用来L298N芯片驱动四相五线式的步进电机,四线分别连接驱动芯片的4个输出端口,另外2线实质可以看为1线式接+5V电源即可。

相关驱动芯片的接口图及连接图如下图所示:图3-6 步进电机驱动电路3.3.7 霍尔检测电路霍尔传感器的外形图和与原理图,如下图所示。

磁钢用来提供霍尔能感应的磁场,当霍尔元件以切割磁力线的方式相对磁钢运动时,在霍尔输出端口就会有电压输出,所以霍尔传感器和磁钢需要配对使用。

本设计既是利用这一原理来进行对步进电机的速度测试的。

图3-7 霍尔检测模块3.4 本章小节本章主要对芯片及周边辅助功能芯片进行了一个系统的介绍,以及它们在设计电路中所起到的作用进行了一个很好的阐释,通过原理图直观的说明了其在整个设计中所起的作用。

四、系统软件设计4.1 主程序设计整个程序进行模块化设计,主程序只需调用相应的程序即可。

主程序流程如下图所示:主程序系统初始函数扫描函数显示函数停机图4-1 总设计流程图4.2 系统中涉及的存储器的作用4.2.1 TMR0相关的存储器的作用与TMR0相关的存储器有3个它们的作用如下所示:1、定时器/计数器0——》TMR0用于对光电传感器送入的脉冲进行计数2、选项寄存器——》OPTION_REG用于控制定时器是对下降沿信号作为T0CKI的外部时钟源3、中断寄存器——》INTCON用与控制定时器是否溢出,是否溢出中断4、RA方向控制寄存器——》TRISA4作为定时器的外部时钟源的输入引脚4.2.2 芯片输出端口功能本设计中利用了单片机的P0、P1、P2、P3端口。

其中,P0端口作用于LCD 常规引脚D 端口,P1端口主要用于外接独立键盘的引脚输入,P2端口总共引用了单片机的三个控制引脚P2.0、P2.1、P2.2分别对LCD 的RS 、RW 、E 控制线端口相连,P3端口P3.3主要实现外部中断功能,实时反映霍尔传感器的输入信号,起到一个脉冲检测输入功能。

同时,另外四个引脚P3.4到P3.7分别引接与步进电机驱动模块的INT 脚,实现对电机的控制。

4.3 子程序设计模块以下分别是各子程序模块的流程图:是 否图4-2 扫描模块流程图传感器主要以电机是否受感应以脉冲的方式对电机状态进行实时的检测,同时将信号及时地传给单片机核心部分进行处理。

开始传感器检测到信号? 功能设置命令 定时器,计数器模块运行 LCD ,定时器模块无任何反应LCD 实现计数以及实时显示电机速度等参数是 否图4-3 LCD 显示模块 LCD 显示模块在正常烧写成功,电机尚未启动的情况下,已实现了部分功能,即显示了字符型指示语言。

当单片机接收到由霍尔传感器传来的脉冲信号后,单片机指示计时模块进行对电机实时速度及工作状态的一个很好显示。

4.4、本章小结本章着重介绍了该设计的总流程以及相关子程序的工作流程,为后续设计告成的硬件连接奠定一定的基础。

五、系统调试该程序的功能模块先后实现的顺序为:主程序→初始化函数模块→扫描函数模块→显示函数模块。

每完成一个模块就与前一个已完成的模块结合起来调试,直至实现相应功能,再编写下一模块程序。

在与主程序衔接时,主程序和各子程序也需作相应的改动,以便与子程序更好的衔接,特别是显示子程序需作较大改动,以便对不同内容进行显示。

相关文档
最新文档