七年级数学下册复习公式(北师大)
北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
北师大版七年级下册数学期末总复习资料整理【新教材】

北师大版七年级数学下册总复习第一章 整式的乘除 一、幂的运算性质1、同底数幂相乘:底数不变,指数相加.m n m n a a a +=•2、幂的乘方:底数不变,指数相乘.nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘.n n n b a ab =)(4、零指数幂:任何一个不等于0的数的0次幂等于1.10=a (0≠a ) 注意00没有意义.5、负整数指数幂:pp a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减.m n m n a a a -=÷(0≠a )注意:以上公式的正反两方面的应用.常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+ 二、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式.三、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项. 四、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项.()()bn bm an am n m b a +++=++五、平方差公式两数的和乘以这两数的差,等于这两数的平方差.即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方.()()22b a b a b a -=-+六、完全平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍.()ab b a b a 2222++=+ ()ab b a b a 2222-+=-常见错误:()222b a b a +=+ ()222b a b a -=- 七、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式. 八、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式.第二章 相交线与平行线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余. 性质:同角(或等角)的余角相等.2、相加等于180°的两个角称这两个角互补. 性质:同角(或等角)的补角相等.3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角. 性质:对顶角相等.4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角. (相邻且互补) 二、三线八角: 两直线被第三条直线所截①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角. ②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角. ③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角. 三、平行线的判定及性质同位角相等 ⇔ 两直线平行 内错角相等 ⇔ 两直线平行 同旁内角互补 ⇔ 两直线平行四、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段.②作一个角等于已知角.第三章三角形一、认识三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边.(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)3、三角形的内角和是180°;直角三角形的两锐角互余.锐角三角形(三个角都是锐角)4、三角形按角分类直角三角形(有一个角是直角)钝角三角形(有一个角是钝角)5、三角形的特殊线段:a)三角形的中线:连结顶点与对边中点的线段.(分成的两个三角形面积相等)b)三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段.c)三角形的高:顶点到对边的垂线段.(每一种三角形的作图)二、全等三角形:1、全等三角形:能够重合的两个三角形.2、全等三角形的性质:全等三角形的对应边、对应角相等.3、全等三角形的判定:判定方法内容简称边边边三边对应相等的两个三角形全等SSS边角边两边与这两边的夹角对应相等的两个三角形全等SAS角边角两角与这两角的夹边对应相等的两个三角形全等ASA 角角边两角与其中一个角的对边对应相等的两个三角形全等AAS 斜边直角边斜边与一条直角边对应相等的两个直角三角形全等HL注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等.SSA4、全等三角形的证明思路:5、三角形具有稳定性,三、作三角形1、已经三边作三角形2、已经两边与它们的夹角作三角形3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)4、已经斜边与一条直角边作直角三角形第四章变量之间的关系一、变量、自变量与因变量①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量).二、变量之间的表示方法:①列表法②关系式法:能精确地反映自变量与因变量之间数值的对应关系.③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量.第五章生活中的轴对称一、轴对称图形与轴对称①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形.这条直线叫做对称轴.②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称.这条直线叫做对称轴.③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等.∵∠1=∠2 PB⊥OB PA⊥OA∴ PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线.②性质:线段垂直平分线上的点到线段两个端点的距离相等.∵ OA=OB CD⊥AB∴ PA=PB四、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形;(一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)③等腰三角形的两个底角相等.(简称:等边对等角)五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等.(简称:等角对等边)六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.①等边三角形的三条边相等,三个角都等于60;②等边三角形有三条对称轴.七、轴对称的性质:①关于某条直线对称的两个图形是全等形;②对应线段、对应角相等;②对应点的连线被对称轴垂直且平分;④对应线段如果相交,那么交点在对称轴上.八、镜子改变了什么:3 21cba 第3题第5题ED CBA第6题t (小时)2 O30S (千米)第8题1、物与像关于镜面成轴对称;(分清左右对称与上下对称)2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题第六章 概率初步一、概率:反映事件发生可能性大小的数. 事件P 的概率=所有出现的结果的总数出现的结果数事件P二、事件的分类三、游戏是否公平:双方事件发生的概率是否相等. 【复习题一】2.如果21x kx ++是一个完全平方式,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是 .4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .6. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .7. 现在规定两种新的运算“﹡”和“◎”:a ﹡b =22a b +;a ◎b =2ab ,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= . 8. 某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t =3小时时,物体运动所经过的路程为 千米.第14题1 2 3 4 5t (月)Oc (件)第10题E DCBA9. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-10. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( )A.15°B.20°C.25°D.30° 11. 观察一串数:0,2,4,6,……. 第n 个数应为( )A. 2(n -1)B. 2n -1C. 2(n +1)D. 2n +1 13、如右图,ΔABC ,AB = AC , AD ⊥BC , 垂足为D , E 是AD 上任一点, 则有几对全等三角形( ) A.1 B.2 C.3 D.414. 如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( )A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产D.1月至3月每月产量不变,4、5两月均停止生产 15. 下列图形中,不一定...是轴对称图形的是( ) A. 等腰三角形 B. 线段 C. 钝角 D. 直角三角形16. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A.1B.2C. 3D.4 17. 计算:()()3426y y 2-;18. 先化简()()()()221313151x x x x x --+-+-,再选取一个你喜欢的数代替x ,并求原代数式的值.19. 如图,某村庄计划把河中的水引到水池M 图痕迹,不写作法和证明)理由是: .20. 两个全等的三角形,可以拼出各种不同的图形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种? (至少设计四种)21. 在“五·四”青年节中,全校举办了文艺汇演活动. 小丽和小芳都想当节目主持人,但现在只有一个名额. 小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去. 若你是小芳,会同意这个办法吗? 为什么?22. 一个长方形的养鸡场的长边靠墙,墙长1435米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?ODCB A第24题E DCBA第25题24. 某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD. 小明认为图中的两个三角形全等,他的思考过程是:在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗? 如果正确,他用的是判定三 角形全等的哪个条件? 如果不正确,请你增加一个条件,并 说明你的思考过程.25. 如图所示,要想判断AB 是否与CD 平行,我们可以测量那些角;请你写出三种方案,并说明理由.【复习题二】1. 已知,231()9(732=⋅a 则12a 的值为 .2. 已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .3. 一只小鸟自由自在在空中飞翔,然后随意落在下图(由16个小正方形组成)中,则落在阴影部分的概率是 .4它最终停留在黑色方砖上的概率是 (全相同).5.计算:8100×0.125100 = .6.如图,ΔABC 中,AB 的垂直平分线交AC 于点M .若CM=3cm AM=5cm ,则ΔMBC 的周长=_____________cm ..7、有一种原子的直径约为0.00000053米,它可以用科学记数法表示为___________米. 8.某下岗职工购进一批货物,到集贸市场零售,已知卖出去的货物数量x 与售价y 的关系如下表:写出用x 表示y 的公式是________.9.掷一颗均匀的骰子,6点朝上的概率为( ) A .0 B .21 C .1 D .6110.地球绕太阳每小时转动通过的路程约是51.110km ⨯,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( )A .70.26410km ⨯B .62.6410km ⨯C .526.410km ⨯D .426410km ⨯ 11.=5)(m a ( )(A)m a +5 (B)m a -5 (C) m a 5 (D)55m a 12.)()23)(23(=---b a b a(A)2269b ab a -- (B)2296a ab b -- (C)2249b a - (D)2294a b -15.一个多项式的平方是m a a ++122,则=m ( ). (A)6 (B) 6- (C)36- (D)36O BAt (秒)S (米)12648A CD B16.小强和小敏练短跑,小敏在小强前面12米.如图,OA 、BA 分别表示小强、小敏在短跑中的距离S(单位:米)与时间t (单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快( )A .2.5米B .2米C .1.5D .1米 17、计算:19.已知:线段a 、c 和∠β (如图),利用直尺和圆规作ΔABC ,使BC=a ,AB=c ,∠ABC=∠β.(不写作法,保留作图痕迹).20.如图,如果AC=BD ,要使⊿ABC ≌⊿DCB ,请增加一个条件,并说明理由.21.在下面的解题过程的横线上填空,并在括号内注明理由 .如图,已知∠A=∠F ,∠C=∠D ,试说明BD ∥CE. 解:∵∠A=∠F(已知)∴AC ∥DF( ) ∴∠D=∠ ( ) 又∵∠C=∠D(已知) ∴∠1=∠C(等量代换)∴BD ∥CE( )22.图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t (单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,因变量是_____________,自变量是_______________.路程S /千米时间t / 时111210981614121086420AEB C D第2题图nmba70°70°110°第3题图CBA 2112第六题图DCB A (2)9时,10时30分,12时所走的路程分别是多少?(3)他休息了多长时间?(4)他从休息后直至到达目的地这段时间的平均速度是多少?23.如图,已知:BD AB ⊥,BD ED ⊥,CD AB =,DE BC =,那么AC 与CE 有什么关系? 写出你的猜想并说明理由.【复习题二】2、如图,互相平行的直线是 .3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = .4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 .5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 .6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 .DA 7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=n a . 8、已知412+-kx x 是一个完全平方式,那么k 的值为 . 9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 .10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 . 11、下列各式计算正确的是( ) A. a 2+ a 2=a 4 B. 211aa a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( ) A.91B. 61 C. 51 D. 31 13、一列火车由甲市驶往相距600km 的乙市,火车的速度是200km /时,火车离乙市的距离s (单位:km )随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )876954521DC B A FED CB AEDC BA 14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD ,∠BED=110°,BF 平分∠ABE ,DF 平分∠CDE ,则∠BFD=( )A. 110°B. 115°C.125°D. 130°17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论:① ∠A E D =90° ; ② ∠A D E = ∠ C D E ; ③ D E = B E ; ④ AD =AB +CD , 四个结论中成立的是 ( ) A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④19、计算:(1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-20、某地区现有果树24000棵,计划今后每年栽果树3000棵. (1)试用含年数x (年)的式子表示果树总棵数y (棵); (2)预计到第5年该地区有多少棵果树?乙甲BAOEDCBA21、小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB 上建一个水泵站,向两村供水,用以解决村民生活用水问题.(1)如果要求水泵站到甲、乙两村庄的距离相等,水泵站M 应建在河岸AB 上的何处? (2)如果要求建造水泵站使用建材最省,水泵站M 又应建在河岸AB 上的何处?22、超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元. (1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.23、如图,已知△ABC 中,AB = AC ,点D 、E 分别在AB 、AC 上,且BD = CE ,如何说明OB=OC 呢?解:∵AB=AC ∴∠A B C =∠A C B ( )又∵BD = CE ( ) BC = CB ( ) ∴△BCD ≌△CBE ( )∴∠( ) = ∠( ) ∴OB = OC ( ). 25、星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据(3)她骑车速度最快是在什么时候? 车速多少?(4)玲玲全程骑车的平均速度是多少?26、把两个含有45°角的直角三角板如图放置,点D 在AC上连接AE、BD,试判断AE与BD的关系,并说明理由.【复习题一】参考答案1. 5x ;2a .2.±2.3.平行.4.3.397×1075.836.26或22㎝7. AC=AE(或BC=DE ,∠E=∠C ,∠B=∠D) 8.-20 9. 45 10.B6395 21.解:=1212y 2y - =12y 22.解:=5x 5x 19x 14x 4x 222-++-+- 当x =0时,原式=2 23.解:理由是: 垂线段最短 . ……2作图……2分 24.解25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米, 根据题意得2x +(x +5)=35 解得x =10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为x 米,长为(x +2)米, 根据题意得2x +(x +2)=35解得x =11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分 添加的条件为:∠B=∠C(或∠A=∠D 、或符合即可)…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB CB ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行(3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -. (4):评分标准:每空1分,(4)小题各1分31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分. 【复习题二】参考答案一、1、3; 2、1<x <7; 3、165; 4、2; 5、41; 6、1; 7、12;8、7103.5-⨯; 9、4,百分 ; 10、y =3.1x ; 二、DBACD BBBDC三、1、原式=)4)(4(2222y x y x +-……(3’)= 4416y x -……(6’) 2、原式=x y y xy x y xy x 2)52344(22222÷-+--++……(2’)=x y x xy x -=÷+-2)22(2……(5’)= 212…..(6’)4、设原长方形的宽为x ,……(1’) 则x x 1553)3(12⨯=-……(3’),得3x =36,x =12…….(5’), .答……(6’) 5、加条件AB=DC .……(2’)∵AC=BD ,AB=DC ,BC=BC ……(5’), ∴△ABC ≌△DCB ……(6’)四、1、∵∠A=∠F(已知) ∴AC ∥DF( 内错角相等,两直线平行 ) ……(2’) ∴∠D=∠ 1 (两直线平行,内错角相等) ……(5’) 又∵∠C=∠D(已知) ∴∠1=∠C(等量代换) ∴BD ∥CE(同位角相等,两直线平行 )…….(7’)2、需要长为2x ……(2’) ,宽为4y ……(4’), 高为6z ……(6’), 总长为2x +4y +6z ……(7’). 五、1、(1)时间,路程.……(2’), (2)4千米,9千米,15千米.…….(5’) (3)0.5小时.…….(6’) (4) 4千米/小时.……(8’)2、AC 与CE 垂直……(2’) ∵AB ⊥BD , ∴∠ABC=90°, ∵ED ⊥BD , ∴∠EDC=90°,……(3’)又AB=CD , BC=DE ,∴△ABC ≌△CDE ……(5’)∵∠ACB+∠ECD=90°……(7’) ∴∠ACE=90° ……(8’) 【复习题三】参考答案19、 7.5 , 29,y x 22+ 20、x y 300024000+=,390005==y x 时,21、如图:22、P 一等奖=161, 60×16+50×81+40×41=20 20﹥15 ∴选择摇奖.23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边.24、图略 ,(1)农村居民纯收入不断增加,特别是进入2000年后增幅更大; (2)2005年农村人均纯收入达3865元;(3)2005年农村人均纯收入是1990年的5倍多;(供参考) 25、(1)12点,30千米 (2)10:30 , 30 分钟 (3)13~15点,15千米/小时 (4)10千米/小时26、延长BD 交AE 于F ,证△BCD ≌△ACE ,可得BD=AE ,BD ⊥AE .2015七年级下学期期末数学考试试卷班级 姓名 分数一、选择题(每题5分,共60分) 1、下列运算正确的是( )。
北师大版七年级下册数学课本知识点

北师大版七年级下册数学课本知识点第一章 整式的运算1、(3页)像216b π,35x ,2a h 等,都是数与字母的乘积,这样的代数式叫做单项式。
几个单项式的和叫做多项式,例如216ab b π-,1122ab mn -等。
单项式和多项式统称整式。
2、(3页)一个单项式中,所有字母的指数和叫做这个单项式的次数。
如35x 是1次的,2a h 是3次的。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
例如216ab b π-是2次的,21213x y y +-是3次的。
3、(14页)同底数幂相乘法则:同底数幂相乘,底数不变,指数相加。
即(,)m n m n a a a m n +⋅=都是正整数。
4、(18页)幂的乘方法则:幂的乘方,底数不变,指数相加。
即()(,)n m mn a a m n =都是正整数。
5、(19页)积的乘方法则:积的乘方等于每一个因式乘方的积。
即()()nn n ab a b n =是正整数。
6、(22、23页)同底数幂的除法法则:同底数幂相除,底数不变,指数相减。
即(0,,)m n m n a a a a m n m n -÷=≠>都是正整数,且。
特别的,我们规定:01(0)a a =≠;1(0,)p pa a p a -=≠是正整数。
7、(27页)整式的乘法法则-单项式乘以单项式:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式:8、(29页)整式的乘法法则-单项式乘以多项式:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
9、(32页)整式的乘法法则-多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
10、(35页)平方差公式:两数和与这两数差的积,等于它们的平方差。
即()()22a b a b a b +-=-。
北师大版七年级数学下册《完全平方公式》

做一做
一块完边长全为a平米的方正方公形实式验田,
要将其边长增加 b 米。形成四
块实验田,以种植不同的新品
种(如图1—6).
b
用不同的形式表示实验
田的总面积, 并进行比较.
探索: 你发现了什么?a
法一
直 接 求
总面积=(a+b) 2;
间
法二
接 求
总面积=a2+ ab+ ab+b2.
a
图1—6
公式: (a+b)2=a2+ 2 ab + b2.
(2) 某同学写出=了如下的算式:
(a−b)2=[a+(−b)]2 他是怎么想的?
利用两数和的 (a−b)2= [a+(−b)]2
平方 推证 = a 2 + 2a (−b)+ (−b)2
= a2 − 2ab + b2.
(a+b)2=a2+2ab+b2 (a−b)2= a2 −2ab+b2
结构特征: 左边是 两数和 (差) 的平方; 右边是 两数的平方和 加上 (减去) 这两数乘积的两倍.
有一位老人非常喜欢孩子,每当有 孩子到他家做客时,老人都要拿出糖果 招待他们。 来一个孩子,老人就给这个孩子一块糖 ,来两个孩子,老人就给每个孩子两块 糖,来三个,就给每人三块糖,……
(1) 第一天有 a 个男孩一起去了老人家
,老人一共给了这些孩子多少块糖?
a2
合作探究:
有一位老人非常喜欢孩子,每当有 孩子到他家做客时,老人都要拿出糖果 招待他们。 来一个孩子,老人就给这个孩子一块糖 ,来两个孩子,老人就给每个孩子两块 糖,来三个,就给每人三块糖,……
北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
北师大版《数学》(七年级下册)概念总结

北师大版《数学》(七年级下册)概念总结第一章整式的乘除1.同底数幂相乘,底数不变,指数相加。
2.幂的乘方,底数不变,指数相乘。
3.积的乘方等于积中每一个因式分别乘方。
4.同底数幂相除,底数不变,指数相加。
5.除0外的任何数的零次方都是一6.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
7.单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把所得的积相加。
8.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
9.平方差公式:两数和与这两数差的积,等于与他们的平方差。
10.完全平方公式:11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。
12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第二章相交线与平行线1.在同一平面内,两条直线的位置关系有相交和平行。
2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。
3.在同一平面内,不相交的两条直线叫平行线。
4.对顶角相等。
5.如果两个角的和是180°,称这两个角互为补角。
6.如果两个角的和是90°,称这两个角互为余角。
7.同角或等角的余角相等,同角或等角的补角相等。
8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
9,平面内,过一点有且只有一条直线与已知直线垂直。
10.垂线线段最短。
11、在同一平面内:同位角相等内错角相等两直线平行同旁内角互补.12.过直线外一点有且只有一条直线与已知直线平行。
平行于同一条直线的两只线平行。
13.平行线的定义:同位角相等两直线平行内错角相等同旁内角互补第三章三角形1三角形的内角和是180°。
2直角三角形的两个锐角互余。
北师大版七年级下册数学各章知识点总结复习整理

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章整式的运算
1、整式
数与字母的乘积的代数式叫做单项式(monomial)(单独的一个数或一个字母也是单项式)。
例如:
几个单项式的和叫做多项式(polynomial)。
例如:
单项式和多项式统称整式(integral expression)。
例如:
一个单项式中,所有字母的指数和叫做这个单项式的次数(degree of monomial)(单独一个非零数的次数是0)。
例如:
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
例如:
皮克公式:奥地利数学家皮克(georg pick,18591943)发现了一个计算点阵中多边形面积的公式:S=a+1/2b-1 (其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积)
2、整式的加减
进行整式加减运算时,如果遇到括号先去括号,再合并同类项。
例如:
3、同底数幂的乘法
例如:
4、幂的乘方与积的乘方
幂的乘方,底数不变,指数相乘。
例如:
积的乘方等于每个因式的乘方的积。
例如:
5、同底数幂相除,底数不变,指数相减。
例如:
6、整式的乘法
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
例如:
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
例如:
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:
7、平方差公式
两数和与这两数差的积,等于它们的平方差。
例如:
8、完全平方公式
叙述完全平方公式:
叙述杨辉三角定律:
9、整式的除法
单项式相除,把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
例如:
10、复习巩固
举例说明什么是整式?
说一说如何进行整式的加减运算。
说一说如何进行幂的运算,每一步的依据是什么?
用数2,3,4组成一个算式,使得运算结果最大?
说一说如何做整式的乘法,有关整式乘法的公式有哪些?
举例说明如何进行单项式除以单项式,多项式除以单项式的运算。
第二章平行线与相交线
1、余角与补角
如果两个角的和是直角,那么称这两个角互为余角(complementary angle);如果两个角的和是平角,那么称这两个角互为补角(supplementary angle)。
同角或等角的余角相等,同角或等角的补角相等。
直线AB与CD相交于点O,∠1与∠2有公共顶点O,它们的两边互为方向延长线,这样的两个角叫做对顶角(vertical angles)。
2、探索直线平行的条件
同位角(corresponding angles)相等,两直线平行。
内错角(alternate interior angles)相等,两直线平行。
同旁内角(interior angles on the same side)互补,两直线平行。
3、平行线的特征
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
4、用尺规作线段和角
第三章生活中的数据
1、认识百万分之一
2、近似数和有效数字
对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant figure)。
3、世界新生儿图
4、回顾与思考
10。
请用你熟悉的事物描述一些较小的数据,如6-
哪些数据用科学计数法表示比较方便?举例说明。
你在生活中使用过近似数吗?举例说明。
说一说可以利用哪些统计图来描述数据?
第四章概率
1、游戏公平吗?
人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。
2、摸到红球的概率
必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1。
3、停留在黑砖上的概率。