2020年高考试题分类汇编(三角函数)

合集下载

2020高考数学分类汇编--三角函数解三角形

2020高考数学分类汇编--三角函数解三角形

2020年普通高等学校招生全国统一考试一卷理科数学7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6C .4π3D .3π29.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=A .53B .23 C .13D .597.C9.A2020年普通高等学校招生全国统一考试理科数学2.若α为第四象限角,则A .02cos >αB .02cos <αC .02sin >αD .02sin <α17.(12分)ABC △中,222sin sin sin sin sin A B C B C --=.(1)求A ;(2)若3BC =,求ABC △周长的最大值.2020年普通高等学校招生全国统一考试理科数学7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .239.已知2tan θ–tan(θ+π4)=7,则tan θ= A .–2B .–1C .1D .216.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 7.A9.D16.②③2020年普通高等学校招生全国统一考试文科数学7.设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3D .3π218.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a 3,b 7ABC △的面积; (2)若sin A 3C 2,求C . 7.C18.解:(1)由题设及余弦定理得22228323cos150c c c =+-⨯︒,解得2c =-(舍去),2c =,从而23a =ABC △的面积为1232sin15032⨯⨯︒=(2)在ABC △中,18030A B C C =︒--=︒-,所以sin 3sin(30)3sin(30)A C C C C =︒-=︒+,故2sin(30)2C ︒+=而030C <<︒,所以3045C ︒+=︒,故15C =︒.2020年普通高等学校招生全国统一考试文科数学13.若2sin 3x =-,则cos2x =__________. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形. 13.1917.解:(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -=.由(1)知23B C π+=,所以2sin sin()33B B ππ--=.即11sin 22B B =,1sin()32B π-=.由于03B 2π<<,故2B π=.从而ABC △是直角三角形. 2020年普通高等学校招生全国统一考试文科数学5.已知πsin sin=3θθ++()1,则πsin =6θ+()A .12BC .23D11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B = AB .C .D .12.已知函数f (x )=sin x +1sin x,则 A .f (x )的最小值为2 B .f (x )的图像关于y 轴对称 C .f (x )的图像关于直线x =π对称D .f (x )的图像关于直线2x π=对称 5.B11.C12.D2020年普通高等学校招生全国统一考试(北京卷)(9)已知αβ∈R ,,则“存在k ∈Z ,使得π(1)kk αβ=+-”是“βαsin sin =”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)2020年3月14日是全球首个国际圆周率日(πay)D 。

三角函数(教师版)--2020-2023高考真题数学专题分类汇编

三角函数(教师版)--2020-2023高考真题数学专题分类汇编

专题五三角函数--2020-2023高考真题数学专题分类汇编真题卷题号考点考向2023新课标1卷8三角恒等变换给值求值15三角函数的性质及应用余弦型函数的零点问题2023新课标2卷7三角恒等变换给值求值16三角函数的图象与性质由部分图象求解析式、求函数值2022新高考1卷6三角函数的性质及应用求三角函数的解析式、求函数值2022新高考2卷6三角恒等变换三角求值9三角函数的图象与性质求三角函数的单调区间、对称轴、极值点、求切线方程2021新高考1卷4三角函数的性质及应用求三角函数的单调区间2021新高考2卷6三角恒等变换给值求值2020新高考1卷10三角函数的图象与性质由图象求三角函数的解析式15三角函数的应用三角函数解决实际问题2020新高考2卷11三角函数的图象与性质由图象求三角函数的解析式16三角函数的应用三角函数解决实际问题【2023年真题】1.(2023·新课标I卷第8题)已知1sin()3αβ-=,1cos sin6αβ=,则cos(22)αβ+=()A.79 B.19 C.19- D.79-【解析】本题考查两角和与差的正弦公式以及二倍角公式,属于中档题.利用两角和与差的正弦公式先求出sin cos αβ的值,从而可以得到sin()αβ+的值,再结合二倍角的余弦公式即可得出结果.解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+=即2221cos(22)12sin ()12(.39αβαβ+=-+=-⨯=故选B.2.(2023·新课标II 卷第7题)已知α为锐角,15cos 4α+=,则sin 2α=()A.358- B.158-+ C.354- D.154-【答案】D 【解析】【分析】本题考查倍角公式,属于基础题.观察题干,发现未知角为已知角的一半,考虑倍角公式,即可得证.【解答】解:221511cos 36114sin ()sin 222816424ααα+----=====⇒=故选:.D 3.(2023·新课标I 卷第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.【答案】[2,3).【解析】【分析】本题考查了余弦型函数的零点问题,属中档题.解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<,得2 3.ω<故答案为:[2,3).4.(2023·新课标II 卷第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π=.【答案】32-【解析】【分析】主要考查了函数sin()y A x ωϕ=+的性质与图象,诱导公式等,属于一般题.根据AB 的长度求出.ω函数图象过点2(,0)3π,求.ϕ诱导公式得到答案.【解答】解:设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈2k =时满足图片条件,故2.3πϕ=-23()sin(4.32f πππ=-=-【2022年真题】5.(2022·新高考I 卷第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=()A.1 B.32C.52D.3【答案】A 【解析】【分析】本题主要考查三角函数的周期性和对称性,属于中档题.根据周期范围,确定ω范围,再根据对称中心确定21(34k ω=-,k Z ∈,二者结合可得结果.【解答】解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++=所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin( 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷第6题)若sin()cos())sin 4παβαβαβ+++=+,则()A.tan()1αβ+=-B.tan()1αβ+=C.tan()1αβ-=-D.tan()1αβ-=【答案】C 【解析】【分析】本题考查三角恒等变换的应用法一:利用特殊值法,排除错误选项即可法二,利用三角恒等变换,求出正确选项【解答】解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos44ππαβαβ=+++,cos )sin 44ππαβαβ+=+故sin()cos cos()sin 044ππαβαβ+-+=,即sin()04παβ+-=,故22sin(sin()cos()0422παβαβαβ-+=-+-=,故sin()cos()αβαβ-=--,故tan() 1.αβ-=-7.(2022·新高考II 卷第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则()A.()f x 在5(0,12π单调递减B.()f x 在11(,)1212ππ-有两个极值点C.直线76x π=是曲线()y f x =的一条对称轴D.直线2y x =-是曲线()y f x =的一条切线【答案】AD 【解析】【分析】本题考查三角函数的图象与性质,三角函数的单调性、三角函数的对称轴与对称中心,函数的极值,切线方程的求解,属于中档题.【解答】解:由题意得:24()sin()033f ππϕ=+=,所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈,又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减;选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点;选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(2)32x π+=-,解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为3(0)2y x -=--,即3.2y x =-【2021年真题】8.(2021·新高考I 卷第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是()A.0,2π⎛⎫ ⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫⎪⎝⎭【答案】A 【解析】【分析】本题考查正弦型函数的单调递增区间,属于基础题.由正弦函数图象和性质可知,得()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,分析选项可得答案.【解答】解:由22262k x k πππππ-+-+,得222,33k xk k Z ππππ-++∈,所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦,故选:.A 9.(2021·新高考I 卷第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+()A.65-B.25-C.25 D.65【答案】C 【解析】【分析】本题考查三角函数的化简求值,涉及同角三角函数的关系、二倍角公式,属于中档题.利用同角三角函数关系、二倍角公式将其化简为2sin sin cos θθθ+后,添加分母1,转化为齐次式,再分子分母同除2cos θ即可.【解答】解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++,故选:.C 【2020年真题】10.(2020·新高考I 卷第10题、II 卷第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+()A.sin ()3x π+ B.sin (2)3x π- C.cos (2)6x π+D.5cos (2)6x π-【答案】BC 【解析】【分析】本题考查正弦型函数的图象,考查逻辑推理能力,属于中档题.借助图象分别求出,ωϕ,结合诱导公式即可判断.【解答】解:由图象可知222()||36T ππππω==-=,故A 错误;解得2ω=±,点5(,1)12π-在函数图象上,当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈,解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷第15题、II 卷第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm 【答案】542π+【解析】【分析】本题考查平面图形中的边角关系,扇形的面积公式,是困难题.设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,由题中长度关系易得45AGD ︒∠=,可得AOH 为等腰直角三角形,即可得到OL 和DL 的长度,根据3tan 5ODC ∠=可得到22x =12AOH O S S S S =+- 阴影圆扇形求解即可.【解答】解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=,又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得22OJ AJ x ==,252OL JK x ==-,72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==,2532522x -=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

2020高考—三角函数(解答+答案)

2020高考—三角函数(解答+答案)

2020年高考——三角函数1.(20全国Ⅰ文18)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ABC △的面积;(2)若sin A C ,求C .2. (20全国Ⅱ文17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.3.(20全国Ⅱ理 17)ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.4.(20新高考Ⅰ17)在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.5.(20天津16)(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求πsin(2)4A +的值.6.(20浙江18)(本题满分14分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2sin 0b A =. (Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.7.(20江苏16)(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.8.(20全国Ⅱ理21)(12分)已知函数f (x )= sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性; (2)证明: 33()f x ≤; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .9.(20北京17)(本小题13分)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.参考答案:1.解:(1)由题设及余弦定理得2222832cos150c c =+-⨯︒,解得2c =-(舍去),2c =,从而a =ABC △的面积为12sin1502⨯⨯︒=(2)在ABC △中,18030A B C C =︒--=︒-,所以sin sin(30)sin(30)A C C C C =︒-=︒+,故sin(30)C ︒+=而030C ︒<<︒,所以3045C ︒+=︒,故15C =︒.2.解:(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -.由(1)知23B C π+=,所以2sin sin()33B B ππ--.即11sin 22B B =,1sin()32B π-=.由于03B 2π<<,故2B π=.从而ABC △是直角三角形.3.解:(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+4.解:方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.5.(Ⅰ)解:在ABC △中,由余弦定理及5,a b c ===222cos 22a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)解:在ABC △中,由正弦定理及π,4C a c ===,可得sin sin 13a C A c ==.(Ⅲ)解:由a c <及sin A =cos A == 进而2125sin 22sin cos ,cos 22cos 113A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=.6.(Ⅰ)由正弦定理得2sin sin B A A ,故sin B =, 由题意得π3B =. (Ⅱ)由πA B C ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2.7.解:(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯8.解:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()3fπ=,最小值为()3f 2π=.而()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx xx333|sin sin 2sin 2|n x xx =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以22223333sin sin 2sin 2()4n nnn x xx ≤=.9.。

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

2020年高考数学·高考真题-分类汇编-第12讲-解三角形精选全文完整版

2020年高考数学·高考真题-分类汇编-第12讲-解三角形精选全文完整版

精选全文完整版专题四 三角函数与解三角形第十二讲 解三角形2020年1.(2020•北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S =选择条件②(Ⅰ)6(Ⅱ)sin C =, S =.2.(2020•全国2卷)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+3.(2020•全国3卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C. 12 D. 23【答案】A4.(2020•江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)5sin C =(2)2tan 11DAC ∠=.5.(2020•新全国1山东)在①3ac =sin 3c A =,③3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析6.(2020•天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值. 【答案】(Ⅰ)4Cπ;(Ⅱ)13sin 13A =;(Ⅲ)172sin 2426A π⎛⎫+= ⎪⎝⎭.7.(2020•浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =.(I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )13,22⎛⎤⎥ ⎝⎦2016-2019年1.(2019全国Ⅰ理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .2.(2019全国Ⅱ理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.3.(2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.4.(2019江苏12)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 .5.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 6.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=________.7.(2019北京15)在ABC △中,a =3,b -c =2 ,1cos 2B =- .(Ⅰ)求b ,c 的值; (Ⅱ)求sin(B -C ) 的值.8.(2019天津理15)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值.9.(2018全国卷Ⅱ)在△ABC 中,cos2=C 1=BC ,5=AC ,则=ABA .BCD .10.(2018全国卷Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .2π B .3π C .4π D .6π 11.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .2a b =B .2b a =C .2A B =D .2B A = 12.(2016年天津)在ABC ∆中,若AB BC =3,120C ∠= ,则AC =A .1B .2C .3D .413.(2016年全国III )在ABC △中,π4B,BC 边上的高等于13BC ,则cos AA B C .1010 D .3101014.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .15.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =,则sin B =___________,c =___________.16.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是___________,cos BDC ∠=__________.17.(2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

2020年高考试题三角函数汇编【题目+答案版】

2020年高考试题三角函数汇编【题目+答案版】

2020年高考各地三角函数真题(1)【2020全国高考III卷(文)第5题】已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=()A. 12B. √33C. 23D. √22(2)【2020全国高考(浙江卷)第4题】函数y=xcosx+sinx在区间[−π,π]的图象大致为()A. B.C. D.(3)【2020全国高考III卷(理)第9题】已知2tanθ−tan(θ+π4)=7,则tanθ=()A. −2B. −1C. 1D. 2(4)【2020全国高考(天津)卷第7题】已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A. ①B. ①③C. ②③D. ①②③(5)【2020全国高考(浙江卷)第13题】已知tttt=2,则ttt2t=______;tan(t−t4)=______.(6)【2020全国高考(江苏卷)第10题】将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是______.(7)【2020全国高考(江苏卷)第18题】在△ttt中,角A、B、C的对边分别为a、b、t.已知t=3,t=√2,t=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ttt=−45,求tan∠ttt的值.(8)【2020全国高考I卷(理)第16题】如图,在三棱锥t−ttt的平面展开图中,tt=1,tt=tt=,AB AC,AB AD,ttt=,则ttt=__________.(9) 【2020全国高考天津卷第15题】如图,在四边形ABCD 中,∠t =60°,tt =3,tt =6,且tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =t tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−32,则实数t 的值为______,若M ,N 是线段BC 上的动点,且|tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=1,则tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为______.(10) 【2020全国高考(浙江卷)第18题】在锐角△ttt 中,角t ,t ,t 的对边分别为t ,t ,t .已知2t sin t −√3t =0. (1)求角B ;(2)求cos t +cos t +cos t 的取值范围.(11) 【2020全国高考(上海卷)第18题】已知函数t (t )=sin tt ,t >0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f 2(x)+√3f(−x)f(π2−x),x ∈[0,π4],求g(x)的值域.(12) 【2020全国高考(天津卷)第16题】在△ttt 中,角A ,B ,C 所对的边分别为a ,b ,t .已知t =2√2,t =5,t =√13. (1)求角C 的大小; (2)求sin A 的值;(3)求sin (2t +t4)的值.(13) 【2020全国高考I 卷(文)第18题】∆ttt 的内角t ,t ,t 的对边分别为t ,t ,t ,已知t =150∘.(1)若a =√3c ,b =2√7,求∆ABC 的面积;(2)若sinA +√3sinC =√22,求C .(14) 【2020全国高考II 卷(理)第16题】∆ttt 中,sin 2t −sin 2t −sin 2t =sin t sin t .(1) 求A ;(2) 若BC =3,求∆ABC 周长的最大值.(15) 【2020全国高考II 卷(文)第17题】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2(π2+A)+cosA =54.(1)求A ;(2)若b −c =√33a ,证明:△ABC 是直角三角形.(16)【2020全国高考II卷理科21题】已知函数t(t)=sin2t sin2t.(1)讨论t(t)在区间(0,t)的单调性;(2)证明:|t(t)|≤3√3;8(3)设t∈N∗,证明:sin2t sin22t sin24t⋯sin22t t≤3t.4t【答案】2020年高考各地三角函数真题(1)【2020全国高考III卷(文)第5题】已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=()A. 12B. √33C. 23D. √22解:∵sin (t+t3)=12sin t+√32cos t,∴sin t+sin (t+t3)=32sin t+√32cos t=√3sin (t+t6)=1得sin (t+t6)=√33故选:B.(2)【2020全国高考(浙江卷)第4题】函数y=xcosx+sinx在区间[−π,π]的图象大致为()A. B.C. D.【答案】A【解析】解:t=t(t)=ttttt+tttt,则t(−t)=−ttttt−tttt=−t(t),∴t(t)为奇函数,函数图象关于原点对称,故排除B,D,当t=t时,t=t(t)=ttttt+tttt=−t<0,故排除B,故选:A.先判断函数的奇偶性,再判断函数值的特点.本题考查了函数图象的识别,掌握函数的奇偶性额函数值得特点是关键,属于基础题.(3)【2020全国高考III卷(理)第9题】已知2tanθ−tan(θ+π4)=7,则tanθ=()A. −2B. −1C. 1D. 2解:∵2tan t−tan (t+t4)=2tan t−tan t+11−tan t=7,∴2tan t(1−tan t)−(tan t+1)=7−7tan t,整理得(tan t−2)2=0,∴tan t=2,故选D.(4)【2020全国高考(天津)卷第7题】已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A. ①B. ①③C. ②③D. ①②③【答案】B【解析】【分析】本题以命题的真假判断为载体,主要考查了正弦函数的性质的简单应用,属于中档题.由已知结合正弦函数的周期公式可判断①,结合函数最值取得条件可判断②,结合函数图象的平移可判断③.【解答】解:因为f(x)=sin(x+π3),①由周期公式可得,f(x)的最小正周期T=2π,故①正确;、②f(π2)=sin(π2+π3)=sin5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象,故③正确.故选:B.(5) 【2020全国高考(浙江卷)第13题】已知tttt =2,则ttt2t =______;tan (t −t4)=______. 【答案】−35 13【解析】解:tttt =2,则ttt2t =cos 2t −sin 2t cos 2t +sin 2t=1−tan 2t 1+tan 2t =1−41+4=−35.tan (t −t4)=tttt −tan t41+ttttttt t4=2−11+2×1=13. 故答案为:−35;13.利用二倍角公式以及同角三角函数基本关系式求解第一问,利用两角和与差的三角函数转化求解第二问.本题考查二倍角公式的应用,两角和与差的三角函数以及同角三角函数基本关系式的应用,是基本知识的考查.(6) 【2020全国高考(江苏卷)第10题】将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.解:因为函数t =3ttt (2t +t4)的图象向右平移t6个单位长度可得t (t )=t (t −t6)=3ttt (2t −t 3+t 4)=3ttt (2t −t12),则t =t (t )的对称轴为2t −t12=t2+tt ,t ∈t ,即t =7t 24+tt2,t ∈t ,当t =0时,t =7t24, 当t =−1时,t =−5t24, 所以平移后的图象中与y 轴最近的对称轴的方程是t =−5t24, 故答案为:t =−5t 24.(7) 【2020全国高考(江苏卷)第18题】在△ttt 中,角A 、B 、C 的对边分别为a 、b 、t .已知t =3,t =√2,t =45°. (1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠ttt =−45,求tan ∠ttt 的值.【答案】解:(1)因为t =3,t =√2,t =45°.,由余弦定理可得:t =√t 2+t 2−2tttttt =√9+2−2×3×√2×√22=√5,由正弦定理可得t tttt =ttttt ,所以tttt =t t⋅ttt45°=√2√5⋅√22=√55,所以tttt =√55;(2)因为cos ∠ttt =−45,所以sin ∠ttt =√1−cos 2∠ttt =35, 在三角形ADC 中,易知C 为锐角,由(1)可得tttt =√1−sin 2t =2√55,所以在三角形ADC 中,sin ∠ttt =sin (∠ttt +∠t )=sin ∠tttttt ∠t +cos ∠tttttt ∠t =2√525,因为∠ttt ∈(0,t2),所以cos ∠ttt =√1−sin 2∠ttt =11√525,所以tan ∠ttt =sin ∠ttt cos ∠ttt=211.(8) 【2020全国高考I 卷(理)第16题】如图,在三棱锥t −ttt 的平面展开图中,tt =1,tt =tt =,AB AC ,ABAD ,ttt =,则ttt =__________.解:由已知得tt =√2tt =√6, ∵t 、E 、F 重合于一点,∴tt =tt =√3,tt =tt =√6, ∴ △ttt 中,由余弦定理得,∴tt =tt =1, ∴在△ttt 中,由余弦定理得.故答案为.(9) 【2020全国高考天津卷第15题】如图,在四边形ABCD 中,∠t =60°,tt =3,tt =6,且tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =t tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,tt⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−32,则实数t 的值为______,若M ,N 是线段BC 上的动点,且|tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=1,则tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为______. (10) 【答案】16 132(11) 【解析】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6, ∴C(6,0), ∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , ∴AD//BC , 设D(x 0,3√32), ∴AD⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52,∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0), ∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ ,∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132, 故答案为:16,132.以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题.(12) 【2020全国高考(浙江卷)第18题】在锐角△ttt 中,角t ,t ,t 的对边分别为t ,t ,t .已知2t sin t −√3t =0. (1)求角B ;(2)求cos t +cos t +cos t 的取值范围.【答案】解:(1)∵2t sin t =√3t , ∴2sin t sin t =√3sin t , ∵sin t ≠0, ∴sin t =√32, ,∴t =t3,(2)∵△ttt 为锐角三角形,t =t3, ∴t =2t3−t ,,△ttt 为锐角三角形,,,解得, ,,∴cos t+cos t+cos t的取值范围为(√3+12,32 ].【解析】本题考查了正弦定理,三角函数的化简,三角函数的性质,考查了运算求解能力和转化与化归能力,属于中档题.(1)根据正弦定理可得sin t=√32,结合角的范围,即可求出,(2)根据两角和差的余弦公式,以及利用正弦函数的性质即可求出.(13)【2020全国高考(上海卷)第18题】已知函数t(t)=sin tt,t>0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f2(x)+√3f(−x)f(π2−x),x∈[0,π4],求g(x)的值域.【答案】解:(1)由于t(t)的周期是4t,所以t=2t4t =12,所以t(t)=sin12t.令sin12t=12,故12t=2tt+t6或2tt+5t6,整理得t=4tt+t3或t=4tt+5t3.故解集为{t|t=4tt+t3或t=4tt+5t3,t∈t}.(2)由于t=1,所以t(t)=sin t.所以t(t)=sin2t+√3sin(−t)sin(t2−t)=1−cos2t2−√32sin2t=−√32sin2t−12cos2t+12=12−sin(2t+t6).由于t∈[0,t4],所以t6≤2t+t6≤2t3.故−1≤−sin(2t+t6)≤−12,故−12≤t(t)≤0.所以函数t(t)的值域为[−12,0].【解析】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【2020全国高考(天津卷)第16题】在△ttt中,角A,B,C所对的边分别为a,b,t.已知t=2√2,t=5,t=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin(2t+t4)的值.【答案】解:(1)由余弦定理以及a=2√2,b=5,c=√13,则cosC=a2+b2−c22ab =2×22×5=√22,∵C∈(0,π),∴C=π4;(2)由正弦定理,以及C=π4,a=2√2,c=√13,可得sinA= asinCc=2√2×√22√13=2√1313;(3)由a<c,及sinA=2√1313,可得cosA=√1−sin2A=3√1313,则sin2A=2sinAcosA=2×2√1313×3√1313=1213,∴cos2A=2cos2A−1=513,∴sin(2A+π4)=√22(sin2A+cos2A)=√22(1213+513)=17√226.【解析】本题考了正余弦定理,同角的三角形函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(1)根据余弦定理即可求出C的大小;(2)根据正弦定理即可求出sin A的值;(3)根据同角的三角形函数的关系,二倍角公式,两角和的正弦公式即可求出.(14)【2020全国高考I卷(文)第18题】∆ttt的内角t,t,t的对边分别为t,t,t,已知t=150∘.(1)若a=√3c,b=2√7,求∆ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得t2=t2+t2−2tt cos t,即28=3t2+t2−2√3t2cos150∘,解得t=4,所以t=4√3,所以t△ttt=12tt sin t=12×4√3×4×12=4√3.(2)因为t=180∘−t−t=30∘−t,所以sin t+√3sin t=sin(30∘−t)+√3sin t=12cos t+√32sin t=sin(30∘+t)=√22,因为t>0°,t>0°,所以0°<t<30°,所以30°<30°+t<60°,所以30°+t=45°,所以t=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.(15) 【2020全国高考II 卷(理)第17题】∆ttt 中,sin 2t −sin 2t −sin 2t =sin t sin t .(2) 求A ;(2) 若BC =3,求∆ABC 周长的最大值.【答案】解:(1)在▵ttt 中,设内角A ,B ,C 的对边分别为a ,b ,c , 因为sin 2t −sin 2t −sin 2t =sin t sin t ,由正弦定理得,t 2−t 2−t 2=tt ,即t 2+t 2−t 2=−tt , 由余弦定理得,cos t =t2+t 2−t 22tt =−12,因为0<t <t ,所以t =2t 3. (2)由(1)知,t =2t3,因为tt =3,即t =3,由余弦定理得,t 2=t 2+t 2−2tt cos t ,所以9=t 2+t 2+tt =(t +t )2−tt , 由基本不等式可得tt ≤(t +t )24,所以9=(t +t )2−tt ≥34(t +t )2,所以t +t ≤2√3(当且仅当t =t =√3时取得等号), 所以▵ttt 周长的最大值为3+2√3.【解析】本题主要考查利用正余弦定理解三角形的问题,属于中档题. (1)直接利用正余弦定理即可求解;(2)利用余弦定理与基本不等式即可求解.(16) 【2020全国高考II 卷(文)第17题】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2(π2+A)+cosA =54.(1)求A ;(2)若b −c =√33a ,证明:△ABC 是直角三角形.【答案】【解答】解:(1)∵cos2(t2+t)+cos t=54,化简得cos2t−cos t+14=0,解得cos t=12,∵t是tttt的内角,故t=t3.(2)证明:∵t−t=√33t,t=t3,由正弦定理可得sin t−sin t=√33sin t=12,又t=t−t−t=2t3−t,∴sin(2t3−t)−sin t=12,化简可得√32cos t−12sin t=12,即可得cos(t+t6)=12,又t∈(0,2t3),得t+t6∈(t6,5t6),故可得t+t6=t3,即t=t6,故t+t=t3+t6=t2,∴tttt是直角三角形.【解析】本题考查了正弦定理的应用以及两角和差的正余弦公式的应用,考查了诱导公式和辅助角公式,属于中档题.(1)利用诱导公式和同角的三角函数关系对已知式进行化简,得到cos t=12,再结合A为三角形的一内角,即可求出角A;(2)利用正弦定理把t−t=√33t中的边化成角,得到sin t−sin t=√33sin t=12,再结合t+t=2t3,对式子进行化简,最后结合辅助角公式以及角C的范围,求出角C,即可证得三角形为直角三角形.(17)【2020全国高考II卷理科21题】已知函数t(t)=sin2t sin2t.(1)讨论t(t)在区间(0,t)的单调性;(2)证明:|t(t)|≤3√38;(3)设t∈N∗,证明:sin2t sin22t sin24t⋯sin22t t≤3t4t.【答案】解:(1)t(t)=sin2t⋅sin2t=2sin2t⋅sin t⋅cos t =2sin3t⋅cos tt′(t)=2[sin2t(3cos2t−sin2t)]=2sin2t⋅(√3cos t+sin t)⋅(√3cos t−sin t)=−8sin2t⋅sin(t+t3)⋅sin(t−t3)所以对于f’(t)有:当t∈(0,t3)时,t′(t)>0;当t∈[t3,23t]时,t′(t)≤0;当t∈(2t3,t)时t′(t)>0。

2020高考—三角函数(选择+填空+答案)

2020高考—三角函数(选择+填空+答案)

2020年高考——三角函数1.(20全国Ⅰ文7).设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3D .3π22.(20全国Ⅰ理9).已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= A 5B .23C .13D 53.(20全国Ⅱ理2).若α为第四象限角,则 A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<04.(20全国Ⅲ文5).已知πsin sin=3θθ++()1,则πsin =6θ+() A .12B 3C .23D 2 5.(20全国Ⅲ文11).在△ABC 中,cos C =23,AC =4,BC =3,则tan B = A 5B .5C .5D .56.(20全国Ⅲ文12).已知函数f (x )=sin x +1sin x,则 A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线x =π对称D .f (x )的图像关于直线2x π=对称 7.(20全国Ⅲ理7).在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .238.(20全国Ⅲ理9).已知2tan θ–tan(θ+π4)=7,则tan θ=A .–2B .–1C .1D .29.(20新高考Ⅰ10).下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x +)B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x -10.(20天津8).已知函数π()sin()3f x x =+.给出下列结论: ①()f x 的最小正周期为2π; ②π()2f 是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移π3个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是 A .①B .①③C .②③D .①②③11.(20浙江4).函数y =x cos x +sin x 在区间[–π,π]上的图象可能是12.(20北京9).已知,R αβ∈,则“存在k Z ∈使得(1)kk απβ=+-”是“sin sin αβ=”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.(20北京10).2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D .60606sintan n n n ︒︒⎛⎫+ ⎪⎝⎭ 14. (20全国Ⅱ文13).若2sin 3x =-,则cos2x =__________. 15.(20全国Ⅲ理)16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________.16.(20浙江13).已知tan 2θ=,则cos2θ=_______,πtan()4θ-=_______.17.(20江苏8).已知2sin ()4απ+=23,则sin 2α的值是 ▲ .18.(20江苏10).将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ .19.(20北京14).若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________. 参考答案:1.C 2.A 3.D 4.B 5.C 6.D 7.A 8.D 9.BC 10.B 11.A 12. C 13. A14.1915.②③ 16.31,53- 17.13 18.524x π=- 19.2π。

专题6 三角函数-2020届全国卷高考数学真题分类汇编含答案

专题6 三角函数-2020届全国卷高考数学真题分类汇编含答案

专题6三角函数研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。

三角函数——近3年三角函数考了45道,每年理科1-3道小题,文科2-4道小题,当考3-4道小题时,当年就不在考三角函数大题了,题目多数难度较小,主要考查公式熟练运用、平移、图像性质、化简求值、解三角形等问题(含应用问题),多数属于“中档题”,小心平移(重点,难点,几乎年年考),也会有难题,如2016年全国1卷12题和2018年全国1卷16题的考法是比较难的,所以当了压轴题。

1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理16))已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.【答案】见解析。

【考点】利用导数研究函数的最值;三角函数的最值.【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用;56:三角函数的求值.【分析】由题意可得T=2π是f(x)的一个周期,问题转化为f(x)在[0,2π)上的最小值,求导数计算极值和端点值,比较可得.【解答】解:由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,故只需考虑f(x)=2sinx+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cosx+2cos2x=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),令f′(x)=0可解得cosx=或cosx=﹣1,可得此时x=,π或;∴y=2sinx+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.【点评】本题考查三角函数恒等变换,涉及导数法求函数区间的最值,属中档题.2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理9))已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】:函数y=Asin(ωx+φ)的图象变换.【专题】计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.3.(2016年普通高等学校招生统一考试新课标Ⅰ卷数学(理12))已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.4.(2018年普通高等学校招生统一考试新课标Ⅱ卷数学(理6))在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.【分析】利用二倍角公式求出C的余弦函数值,利用余弦定理转化求解即可.【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.【点评】本题考查余弦定理的应用,考查三角形的解法以及计算能力.5.(2018年普通高等学校招生统一考试新课标Ⅱ卷数学(理10))若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.【专题】33:函数思想;4R:转化法;56:三角函数的求值.【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],结合已知条件即可求出a的最大值.【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.6.(2018年普通高等学校招生统一考试新课标Ⅱ卷数学(理15))已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考试题分类汇编(三角函数)
考点1三角函数的图像和性质
1.(2020·全国卷Ⅰ·文理科)设函数()cos()
f x x π
ω=+在[,]ππ-的图像大致
如下图,则()f
x 的最小正周期为 A .
109
π
B .76
π C 2.(2020·山东卷)如图是函数
sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=
A
.sin()3x π+ B .sin(2)3x π- C
.cos(2)6x π+ D .5cos(2)6
x π
-
3.(2020·浙江卷)函数cos sin y x x x =+在区间[,]ππ-的图象大致为
4.(2020·全国卷Ⅲ·理科)关于函数1
()sin sin f x x x
=+
有如下四个命题: ①()f x 的图像关于y 轴对称; ②()f x 的图像关于原点对称; ③()f x 的图像关于2
x π=
轴对称; ④()f x 的最小值为2.
其中所有真命题的序号是 .
5.(2020·全国卷Ⅲ·文科)设函数1
()sin sin f x x x
=+
,则 A .()f x 有最小值为2 B .()f x 的图像关于y 轴对称 C .()f x 的图像关于x π=轴对称 D .()f x 的图像关于2
x π
=轴对称
6.(2020·上海卷)已知()sin f x x ω=(0ω>). (Ⅰ)若()f x 的周期是4π,求ω,并求此时1
()2
f x =
的解集;
(Ⅱ)已知1ω=,2()()()()2g x f x x f x π=--,[0,]4x π
∈,求()g x
的值域.
7.(2020·天津卷)已知函数()sin()3f x x π
=+.给出下列结论: ①()f x 的最小正周期为2π; ②()2
f π
是()f x 的最大值;
③把函数sin y x =的图象上所有点向左平移3
π
个单位长度,可得到函数()y f x =的图象.
其中所有正确结论的序号是
A.①
B.①③
C.②③
D.①②③ 8.(2020·北京卷)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为 .
9.(2020·全国卷Ⅱ·理科)已知函数2()sin sin 2f x x x =. (Ⅰ)讨论()f x 在区间(0,)π的单调性;
(Ⅱ)证明:()f x ≤

(Ⅲ)设n N *∈,证明:222
2
3sin sin 2sin 4sin 24
n
n
n x x x
x ≤.
考点2恒等变换
1.(2020·全国卷Ⅰ·理科)已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=
A .23 C .1
3
D 2.(2020·全国卷Ⅱ·理科)若α为第四象限的角,则
A .cos20α>
B .cos20α<
C .sin 20α>
D .sin 20α<
3.(2020·全国卷Ⅱ·文科)2
sin 3x =-,则cos2x = .
4.(2020·全国卷Ⅲ·理科)已知2tan tan()74π
θθ-+=,则tan θ=
A .2-
B .1-
C .1
D .2 5.(2020·全国卷Ⅲ·文科)sin sin()13πθθ++=,则sin()6
π
θ+=
A .12
B
C .2
3
D
6.(2020·浙江卷)已知tan 2θ=,则cos2θ= ;tan()4
π
θ-= .
考点3解三角形
1.(2020·全国卷Ⅲ·理科)在ABC ∆中,2
cos 3
C =
,4AC =,3BC =,则cos B = A .19 B .13 C .12 D .23
2.(2020·全国卷Ⅲ·文科)在ABC ∆中,2
cos 3
C =,4AC =,3BC =,则tan B =
A B ... 3.(2020·全国卷Ⅰ·文科)ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知150B =.
(Ⅰ)若a =,b =ABC ∆的面积;
(Ⅱ)若sin 2
A C =
,求C . 4.(2020·全国卷Ⅱ·理科)ABC ∆中,222sin sin sin sin sin A B C B C --=.
(Ⅰ)求A ;
(Ⅱ)若3BC =,求ABC ∆周长的最大值.
5.(2020·全国卷Ⅱ·文科)ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,
已知25
cos ()cos 24A A π++=.
(Ⅰ)求A ;
(Ⅱ)若b c -=
,证明:ABC ∆是直角三角形.
6.(2020·山东卷)在①ac =,②sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.
问题:是否存在ABC ∆,它的内角A ,B ,C 所对的边分别为a ,b ,c .且sin A
B ,6
C π
=, ?
7.(2020·北京卷)在ABC ∆中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:
(Ⅱ)sin C 和ABC ∆的面积.
条件①:7c =,1
cos 7
A =-;
条件②:1cos 8A =,9
cos 16
B =.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
8.(2020·天津卷)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知
a =5
b =,
c =. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin(2)4
A π
+的值. 9.(2020·浙江卷)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,
且2sin b A =. (Ⅰ)求角B ;
(Ⅱ)求cos cos cos A B C ++的取值范围.。

相关文档
最新文档