2012年贵州省安顺市中考数学试卷及解析

合集下载

数量和位置变化2012年贵州中考题(附答案)

数量和位置变化2012年贵州中考题(附答案)

数量和位置变化2012年贵州中考题(附答案)贵州各市2012年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1.(2012贵州安顺3分)在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为【】A.15B.7.5C.6D.3【答案】D。

【考点】三角形的面积,坐标与图形性质。

【分析】如图,根据题意得,△ABO的底长OB为2,高为3,∴S△ABO=×2×3=3。

故选D。

2.(2012贵州安顺3分)下列说法中正确的是【】A.是一个无理数B.函数的自变量的取值范围是x>﹣1C.若点P(2,a)和点Q(b,﹣3)关于x轴对称,则a﹣b的值为1 D.﹣8的立方根是2【答案】C。

【考点】无理数,函数自变量的取值范围,二次根式有意义的条件,关于x轴对称的点的坐标,立方根。

【分析】A、=3是有理数,故此选项错误;B、函数的自变量的取值范围是x≥﹣1,故此选项错误;C、若点P(2,a)和点Q(b,﹣3)关于x轴对称,则b=2,a=3,故a﹣b=3﹣2=1,故此选项正确;D、﹣8的立方根式﹣2,故此选项错误。

故选C。

3.(2012贵州毕节3分)如图,在平面直角坐标系中,以原点O为位中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是【】A.(2,4)B.(,)C.(,)D.(,)【答案】C。

【考点】位似变换,坐标与图形性质。

【分析】根据以原点O为位中心,将△ABO扩大到原来的2倍,即可得出对应点的坐标应应乘以-2,即可得出点A′的坐标:∵点A的坐标是(1,2),∴点A′的坐标是(-2,-4),故选C。

4.(2012贵州六盘水3分)如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是【】A.张大爷去时所用的时间少于回家的时间B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时直下坡路D.张大爷去时速度比回家时的速度慢【答案】D。

2012年贵州省安顺市中考数学试卷及解析

2012年贵州省安顺市中考数学试卷及解析

2012年贵州省安顺市中考数学试卷 一.选择题(共10小题)1. (2011 台州)在2、0、1、2 -2这四个数中,最小的数是() A. 1 2 B. 0C. 1D. ■2考点:有理数大小比较.解答:解:在有理数丄0.1、2 -2中,最大的是1•只有-2是负数,最小的是-2.故选D.2. (2011衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表 示(保留两个有效数字)为()A ・ 3.1×106 元B. 3.18×106 元 考点:科学记数法与有效数字. 解答:解 3185800≈3.2×106.故选C.3.1×1O 5 元 C ・ 3.2×106 元 D.3. (2011南通川•算宿的结果是()A ・±3勺兮B.√3 C. ±3 D. 3 考点:立方根.解答:解:V 33=27,故选D.4.(2011张家界)已知1是关于X 的一元二次方程(m - l )x 2+x+l=O 的一个根,则m 的值是()A. 1B. - 1C. 0D. 无法确定考点:一元二次方程的解:一元二次方程的左义.解答:解:根据题意得:(m- 1)+1+1=0,解得:m= - 1.故选B.5. 在平而直角坐标系XOy 中,若A 点坐标为(-3,3).B 点坐标为(2.0),贝仏ABO 的面枳为( )A. 15B. 7.5C. 6D. 3考点:三角形的而积:坐标与图形性质.解答:解:如图,根据题意得,△ ABO的底长OB为2,髙为3,.,.SA ABC)=-×2×3=3.2故选D.6.(2011长沙)一个多边形的内角和是900。

.则这个多边形的边数是()A. 6B. 7C. 8D.9考点:多边形内角与外角.解答:解:设这个多边形的边数为n.则有(n - 2)180o=900o.解得:n=7,•••这个多边形的边数为7.故选B.7.(2011丹东)某一时刻,身髙l∙6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的髙度是()A・ 1.25m B. IOm C. 20m D・8m考点:相似三角形的应用.解答:解:设该旗杆的髙度为xm,根据题意得,1.6:0.4=x:5,解得 x=20(m).即该旗杆的髙度是20m.故选C.8.在实数314159•申丽.1.010010001...4 21几举中,无理数的()A. 1 个B. 2 个C. 3 个D.4个考点:无理数•解答:解:T 3∕β4=4,无理数有:1.010010001...,π.故选B.9.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是()A.甲、乙射中的总环数相同B.甲的成绩稳泄C.乙的成绩波动较大D.甲、乙的众数相同考点:方差.解答:解:A 、根据平均数的左义,正确:B 、 根据方差的定义,正确:C 、 根据方差的定义,正确,D 、 一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确龙众数,错误. 故选D.10. (2012安顺)下列说法中正确的是()A.√5是一个无理数 B.函数『至亘的自变量的取值范围是x>-l 2 C.若点P(2,a)和点Q(b,- 3)关于X 轴对称,则a - b 的值为1 D. - 8的立方根是2考点:关于X 轴、y 轴对称的点的坐标;算术平方根:立方根:无理数:函数自变量的取值范 围. 解答:解:A 、屁3是有理数,故此选项错误;B 、 函数的自变量的取值范用是x≥- 1,⅛此选项错误;2C 、 若点P(2,a)和点Q(b,- 3)关于X 轴对称,则b=2.a=3,故a - b=3 - 2=1,故此选项正确:D 、 - 8的立方根式-2,故此选项错误;故选:C.二.填空题(共8小题)11. (2011 衡阳川-^ι√12+√3=^√3-.考点:二次根式的加减法.解答:解:原式=2∖∕^⅞+V5=3VE12. (2011 宁夏)分解因式:a 3 - a= a(a+l)(a-l). 考点:提公因式法与公式法的综合运用.解答:解:a* - a.=a(a 2 - 1),=a(a+l)(a - 1).13. (2012安顺)以方程组J y=X+1的解为坐标的点(x,y)在第 一 象限.y= - x+2考点:一次函数与二元一次方程(组)・①+②得,2y=3,把珂代入①畤Z解叫.解答:解:y=x+l y= 一 ∑+2因为2»卫>o,2 2根据务象限内点的坐标特点可知,所以点(x,y )在平面直角坐标系中的第一象限.故答案为:一.14. (2011衢州)在一自助夏令营活动中,小明同学从营地A 岀发,要到A 地的北偏东60。

【初中数学】贵州省各市2012年中考数学试题分类解析汇编(实数等12份) 通用6

【初中数学】贵州省各市2012年中考数学试题分类解析汇编(实数等12份) 通用6

贵州各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012贵州贵阳3分)下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A.B.C.D.【答案】C。

【考点】轴对称图形和中心称对形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,∵根据轴对称图形的定义得出四个图案都是轴对称图形,但是中心对称图形的图形只有C,∴一副扑克牌的四种花色图案中,既是轴对称图形又是中心对称图形的图案是C。

故选C。

2. (2012贵州安顺3分)一个多边形的内角和是900°,则这个多边形的边数是【】A. 6 B. 7 C. 8 D.9【答案】B。

【考点】多边形内角和定理。

【分析】设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7。

∴这个多边形的边数为7。

故选B。

3. (2012贵州毕节3分)下列图形是中心对称图形的是【】A. B. C. D.【答案】B。

【考点】中心称对形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A、C、D不是中心对称图形,B是中心对称图形。

故选B。

4. (2012贵州毕节3分)下列命题是假命题的是【】A.同弧或等弧所对的圆周角相等B.平分弦的直径垂直于弦C.两条平行线间的距离处处相等D.正方形的两条对角线互相垂直平分【答案】A。

【考点】命题与定理,圆周角定理,垂径定理,平行线之间的距离,正方形的性质。

【分析】分析是否为假命题,可以举出反例;也可以分别分析各题设是否能推出结论,从而利用排除法得出答案:A、错误,同弧或等弧所对的圆周角相等或互补,是假命题;B、平分弦(不是直径)的直径垂直于弦是正确的,是真命题;C、两条平行线间的距离处处相等是正确的,是真命题;D、正方形的两条对角线互相垂直平分是正确的,是真命题。

安顺中考数学试题及答案

安顺中考数学试题及答案

安顺中考数学试题及答案本文将为您提供安顺中考数学试题及答案。

试题与答案将按照合适的格式进行呈现,以帮助您更好地理解和应对中考数学题。

**一、选择题(每题4分,共50分)**1. 在一个等差数列中,首项为2,公差为3,前n项和为50,则n 的值是:A. 5B. 8C. 10D. 12答案:C2. 若a:b = 2:3,且b:c = 4:5,则a:b:c的比值为:A. 8:12:15B. 4:6:10C. 6:9:10D. 8:12:16答案:A3. 下列哪个图形不是一个正多边形?A. 正三角形B. 正方形C. 正五边形D. 正六边形答案:D(...以下省略部分选择题...)**二、填空题(每题4分,共40分)**1. 一个线段上有5个点,它们把这个线段分成了几份?答案:42. 两个互为倒数的数的乘积等于多少?答案:-13. 已知等差数列的前两项分别为a1和a4,公差为d,那么a5是多少?答案:a5 = a4 + d(...以下省略部分填空题...)**三、解答题(共40分)**1. 某商店打折促销,原价500元的商品打8.8折,求打折后的价格。

解答:打折后的价格 = 原价 ×打折比例打折后的价格 = 500元 × 0.88 = 440元2. 某车行共有150辆汽车,其中30%为SUV车型,剩下的都为轿车。

求轿车的数量。

解答:轿车的数量 = 总数量 - SUV车的数量轿车的数量 = 150辆 - 30% × 150辆= 150辆 - 0.3 × 150辆= 150辆 - 45辆= 105辆(...以下省略部分解答题...)希望以上提供的安顺中考数学试题及答案能够对您有所帮助。

祝您在中考中取得优异的成绩!。

贵州安顺

贵州安顺

2012年贵州省安顺市中考数学试卷一.选择题(共10小题)1.(2011台州)在、0、1、﹣2这四个数中,最小的数是()A.B. 0 C. 1 D.﹣2考点:有理数大小比较。

解答:解:在有理数、0、1、﹣2中,最大的是1,只有﹣2是负数,∴最小的是﹣2.故选D.2.(2011衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()A. 3.1×106元B. 3.1×105元C. 3.2×106元D.3.18×106元考点:科学记数法与有效数字。

解答:解:3185800≈3.2×106.故选C.3.(2011南通)计算的结果是()A.±3B. 3C.±3 D.3考点:立方根。

解答:解:∵33=27,∴=3.故选D.4.(2011张家界)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A. 1 B.﹣1 C. 0 D.无法确定考点:一元二次方程的解;一元二次方程的定义。

解答:解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.5.在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为()A. 15 B. 7.5 C. 6 D.3考点:三角形的面积;坐标与图形性质。

解答:解:如图,根据题意得,△ABO的底长OB为2,高为3,∴S△ABO=×2×3=3.故选D.6.(2011长沙)一个多边形的内角和是900°,则这个多边形的边数是()A. 6 B. 7 C. 8 D.9考点:多边形内角与外角。

解答:解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.7.(2011丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A. 1.25m B. 10m C. 20m D.8m考点:相似三角形的应用。

2012年贵州贵阳中考数学试卷-答案

2012年贵州贵阳中考数学试卷-答案

贵州省贵阳市2012年初中毕业生学业考试试题卷数学答案解析一、选择题 1.【答案】A【解析】解:∵43223-<-<-<<,∴整数4-、2-、2、3中,小于4-的整数是4-,故选A.【提示】根据正数都大于负数,两个负数比较大小,其绝对值大的反而小,得出2和3都大于3-,求出|33|-=,|22|-=,|44|-=,比较即可.【考点】有理数大小比较,绝对值 2.【答案】C【解析】解:将110000用科学记数法表示为:51.110⨯.【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【考点】科学记数法—表示较大的数 3.【答案】D【解析】解:A.圆锥的主视图、左视图都是等腰三角形,俯视图是圆形,不符合题意,故此选项错误; B.圆柱的主视图、左视图可以都是矩形,俯视图是圆形,不符合题意,故此选项错误; C.三棱柱的主视图、左视图都是矩形,俯视图是三角形,不符合题意,故此选项错误; D.球的三视图都是圆形,故此选项正确.【提示】根据几何体的三种视图,进行选择即可. 【考点】简单几何体的三视图 4.【答案】B【解析】解:A.根据AB DE =,BC EF =和BCA F ∠=∠不能推出ABC DEF △≌△,故本选项错误; B.∵在ABC △和DEF △中AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF △≌△()SAS ,故本选项正确; C.∵BC EF ∥,∴F BCA ∠=∠,根据AB DE =,BC EF =和F BCA ∠=∠不能推出ABC DEF △≌△,故本选项错误;D.根据AB DE =,BC EF =和A EDF ∠=∠不能推出ABC DEF △≌△,故本选项错误.【提示】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB DE =,BC EF =,其两边的夹角是B ∠和E ∠,只要求出B E ∠=∠即可.【考点】全等三角形的判定 5.【答案】D【解析】解:由题意可得,6100%30%n⨯=,解得,20()n =个. 故估计n 大约有20个.【提示】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【考点】利用频率估计概率 6.【答案】C【解析】解:∵根据轴对称图形的定义得出四个图案都是轴对称图形,但是中心对称图形的图形只有C , ∴一副扑克牌的四种花色图案中,既是轴对称图形又是中心对称图形的图案是C ,故选C.【提示】根据轴对称图形的定义得出四个图案都是轴对称图形,但是中心对称图形的图形只有C ,即可得出答案.【考点】中心对称图形,轴对称图形 7.【答案】A【解析】解:∵由图象可知:一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 的交点P 的坐标是(2,3)-,∴方程组1122y k x b y k x b =+⎧⎨=+⎩的解是23x y =-⎧⎨=⎩,故选A.【提示】根据图象求出交点P 的坐标,根据点P 的坐标即可得出答案. 【考点】一次函数与二元一次方程(组) 8.【答案】B【解析】解:连接AF ,∵DF 是AB 的垂直平分线,∴AF BF =,∵FD AB ⊥, ∴30AFD BFD ∠=∠=︒,903060B FAB ∠=∠=︒-︒=︒,∵90ACB ∠=︒, ∴30BAC ∠=︒,603030FAC ∠=︒-︒=︒,∵1DE =,∴22AE DE ==, ∵30FAE AFD ∠=∠=︒,∴2EF AE ==,故选B.【提示】连接AF ,求出AF BF =,求出AFD ∠、B ∠,得出30BAC ∠=︒,求出AE ,求出30FAC AFE ∠=∠=︒,推出AE EF =,代入求出即可.【考点】线段垂直平分线的性质,角平分线的性质,含30度角的直角三角形 9.【答案】C【解析】解:由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m 可知只有九(3)符合要求,故选:C.【提示】根据标准差的意义,标准差越小数据越稳定,故比较标准差后可以选出身高比较整齐的班级,再根据平均身高的要求即可作出判断. 【考点】方差,算术平均数,标准差 10.【答案】B【解析】解:由二次函数的图象可知,∵50x -≤≤,∴当2x =-时函数有最大值,6y =最大; 当5x =-时函数值最小,3y =-最小.【提示】直接根据二次函数的图象进行解答即可. 【考点】二次函数的最值 二、填空题 11.【答案】2x ≤ 【解析】移项得:2x ≤.【提示】利用不等式的基本性质,把不等号右边的x 移到左边,合并同类项即可求得原不等式的解集. 【考点】解一元一次不等式 12.【答案】AB CD ∥【解析】解:∵12∠=∠(已知),∴AB CD ∥(内错角相等,两直线平行). 【提示】直接根据平行线的判定定理进行解答即可. 【考点】平行线的判定 13.【答案】二【解析】解:∵正比例函数3y mx =-中,函数y 的值随x 值的增大而增大,∴30m ->,解得0m <, ∴点(,5)P m 在第二象限.【提示】先根据正比例函数3y mx =-中,函数y 的值随x 值的增大而增大判断出3m -的符号,求出m 的取值范围即可判断出P 点所在象限. 【考点】正比例函数的性质,点的坐标 14.【答案】90【解析】解:∵100,80,x ,90,90,∴分为3种情况: ①当众数是90时,∵这组数据的众数与平均数相等, ∴100809090905x ++++=,解得:90x =; ②当众数是80时,即80x =,∵这组数据的众数与平均数相等, ∴100809090805x ++++≠,∴此时不行; ③当众数是100时,即100x =,∵这组数据的众数与平均数相等, ∴1008090901005x ++++≠,∴此时不行; ∵当90x =时,数据为80,90,90,90,100,∴中位数是90,故答案为:90.【提示】分别求出当80x =、90x =、100x =时的x 值,再看看这组数据的众数与平均数是否相等,最后求出这组数据的中位数即可. 【考点】中位数,算术平均数,众数15.【答案】1802n -︒【解析】解:∵在1ABA △中,20B ∠=︒,1AB A B =, ∴1180180208022B BA A ︒-∠︒-︒∠===︒, ∵121A A AC =,1BA A ∠是12A A C △的外角,∴121804022BA A CA A ∠︒∠===︒; 同理可得,3220DA A ∠=︒,4310EA A ∠=︒,∴1802n n A -︒∠=.【提示】先根据等腰三角形的性质求出1BA A ∠的度数,再根据三角形外角的性质及等腰三角形的性质分别求出21CA A ∠,32DA A ∠及43EA A ∠的度数,找出规律即可得出n A ∠的度数. 【考点】等腰三角形的性质,三角形的外角性质 三、解答题 16.【答案】3-【解析】解:原式222222(2)b a b a b ab =++---2222222b a b a b ab --+-=+2ab =,当3a =-,12b =时,原式12(3)32=⨯-⨯=-. 【提示】先根据整式混合运算的法则把原式进行化简,再把3a =-,12b =代入进行计算即可.【考点】整式的混合运算—化简求值17.【答案】《标准》和《解读》的单价各是14元、39元【解析】解:设《标准》的单价为x 元,则《解读》的单价是(25)x +元,由题意得:378105325x x =+, 解得:14x =,经检验14x =是原方程的根,则25251439x +=+=. 答:《标准》和《解读》的单价各是14元、39元.【提示】首先设《标准》的单价为x 元,根据《解读》的单价比《标准》的单价多25元,得出《解读》的单价是(25)x +元,利用两种书数量相同得出等式方程求出即可 【考点】分式方程的应用 18.【答案】(1)560名 (2)84 (3)4.8万人【解析】解:(1)22440%560÷=名;(2)讲解题目的学生数为:5608416822456047684---=-=,补全统计图如图;(3)16816 4.8560⨯=万,答:在试卷讲评课中,“独立思考”的学生约有4.8万人. 【提示】(1)根据扇形统计图专注听讲的百分比与条形统计图中专注听讲的人数,列式计算即可; (2)用被抽查的学生人数减去主动质疑、独立思考、专注听讲的人数,求出讲解题目的人数,然后补全统计图即可;(3)用独立思考的学生的百分比乘以16万,进行计算即可得解. 【考点】条形统计图,用样本估计总体,扇形统计图 19.【答案】74m【解析】解:∵68ACB =︒,34D ∠=︒,ACB ∠是ACD △的外角, ∴683434CAD ACB D ∠=∠-∠=︒-︒=︒,∴CAD D ∠=∠,∴80AC CD ==,在Rt ABC △中,sin68800.92774()AB AC m =⨯︒≈⨯≈. 答:落差AB 为74m .【提示】先根据三角形外角的性质求出CAD ∠的度数,故可得出CAD D ∠=∠,所以80AC CD ==,在Rt ABC △中,由sin68AB AC =⨯︒即可得出结论.【考点】解直角三角形的应用-仰角俯角问题20.【答案】(1)共有9种可能,分别是(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,6),(6,7),(6,8)(2)小红要想在游戏中获胜,她应该选择规则1画树状图如下:共有9种可能,分别是(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,6),(6,7),(6,8);(2)从图表或树状图可知,至少有一次是“6”的情况有5种,所以,小红赢的概率是P(至少有一次是“6”)59=,小莉赢的概率是49,∵5499>,∴此规则小红获胜的概率大,卡片上的数字是球上数字的整数倍的有:(2,6)(2,8)(4,8)(6,6)共4种情况,所以,小红赢的概率是P(卡片上的数字是球上数字的整数倍)49=,小莉赢的概率是59,∵5499>,∴此规则小莉获胜的概率大,∴小红要想在游戏中获胜,她应该选择规则1.【提示】(1)利用列表法或者画出树状图,然后写出所有的可能情况即可;(2)分别求出至少有一次是“6”和“卡片上的数字是球上数字的整数倍”的概率,小红选择自己获胜的概率比小莉获胜的概率大的一种规则即可在游戏中获胜.【考点】列表法与树状图法21.【答案】(1)见解析(2)【解析】(1)证明:∵四边形ABCD是正方形,∴AB AD=,∵AEF△是等边三角形,∴AE AF=,在Rt ABE△和Rt ADF△中,∵AB ADAE AF=⎧⎨=⎩,∴Rt ABE Rt ADF △≌△,∴CE CF =(2)解:连接AC ,交EF 于G 点,∵AEF △是等边三角形,ECF △是等腰直角三角形,∴AC EF ⊥,在Rt AGE △中,1sin30212EG AE =︒=⨯=,∴EC =BE x =,则AB x =Rt ABE △中,222AB BE AE +=,即22(4x x ++=,解得x =,∴AB =ABCD 的周长为4AB =【提示】(1)根据正方形可知AB AD =,由等边三角形可知AE AF =,于是可以证明出ABE ADF △≌△,即可得出CE CF =;(2)连接AC ,交EF 与G 点,由三角形AEF 是等边三角形,三角形ECF 是等腰直角三角形,于是可知AC EF ⊥,求出1EG =,设BE x =,利用勾股定理求出x ,即可求出BC 的上,进而求出正方形的周长. 【考点】正方形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形 22.【答案】(1)A (3,0)-,B (0,2) (2)12y x=【解析】解:(1)∵223y x =+,∴当0x =时,2y =,当0y =时,3x =-, ∴A 的坐标是(3,0)-,B 的坐标是(0,2).(2)∵A (3,0)-,∴3OA =,∵OB 是ACD △的中位线,∴3OA OD ==,即D 点、C 点的横坐标都是3,把3x =代入223y x =+得:224y =+=,即C 的坐标是(34),, ∵把C 的坐标代入k y x =得:3412k =⨯=,∴反比例函数(0)k y x x=>的关系式是12y x =.【提示】(1)分别把0x =和0y =代入一次函数的解析式,即可求出A ,B 的坐标;(2)根据三角形的中位线求出3OA OD ==,即可得出D ,C 的横坐标是3,代入一次函数的解析式,求出C 的坐标,代入反比例函数的解析式,求出k 即可.【考点】反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征,待定系数法求反比例函数解析式,三角形中位线定理23.【答案】(1(2)1【解析】解:(1)连接AD ,∵AC 是⊙O 的切线,∴AB AC ⊥,∵45C ∠=︒,∴2AB AC ==,∴BC ==AB 是⊙O 的直径,∴90ADB ∠=︒,∴D 是BC 的中点,∴12BD BC =(2)连接OD ,∵O 是AB 的中点,D 是BC 的中点,∴OD 是ABC △的中位线,∴1OD =,∴OD A B ⊥,∴BD AD =,∴BD 与弦BD 组成的弓形的面积等于AD 与弦AD 组成的弓形的面积, ∴1111=212112222ABC ABD S S S AB AC AB OD -=-=⨯2⨯2-⨯⨯=-=△△阴影.【提示】(1)连接AD ,由于AC 是⊙O 的切线,所以AB AC ⊥,再根据45C ∠=︒可知2AB AC ==,由勾股定理可求出BC 的长,由于AB 是⊙O 的直径,所以90ADB ∠=︒,故D 是BC 的中点,故可求出BD 的长度;(2)连接OD ,因为O 是AB 的中点,D 是BC 的中点,所以OD 是ABC △的中位线,所以OD AB ⊥,故BD AD =,所以BD 与弦BD 组成的弓形的面积等于AD 与弦AD 组成的弓形的面积,所以=A B C A B DS S S -△△阴影,故可得出结论.【考点】切线的性质,圆周角定理,扇形面积的计算 24.【答案】(1)6 无数 (2)见解析 (3)见解析【解析】解:(1)根据“面积等分线”的定义知,对于三角形,一定是三角形的面积等分线的是三角形的中线所在的直线;对于平行四边形应该有无数条,只要过两条对角线的交点的直线都可以把平行四边形的面积分成2个相等的部分; 故答案是:6;无数;(2)如图①所示:连接2个矩形的对角线的交点的直线即把这个图形分成2个相等的部分.即OO '为这个图形的一条面积等分线;(3)如图②所示.能,过点B 作BE AC ∥交DC 的延长线于点E ,连接AE .∵BE AC ∥,∴ABC △和AEC △的公共边AC 上的高也相等,∴有ABC AEC S S =△△, ∴ACD ABC ACD AEC AED ABCD S S S S S S =+=+=△△△△△四边形;∵ACD ABC S S >△△,所以面积等分线必与CD 相交,取DE 中点F ,则直线AF 即为要求作的四边形ABCD 的面积等分线.【提示】(1)读懂面积等分线的定义,不难得出:一定是三角形的面积等分线的是三角形的中线所在的直线;平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线; (2)由(1)知,矩形的一条对角线所在的直线就是矩形的一条面积等分线;(3)能.过点B 作BE AC ∥交DC 的延长线于点E ,连接AE .根据“ABC △和AEC △的公共边AC 上的高也相等”推知ABC AEC S S =△△;然后由“割补法”可以求得ACD ABC ACD ABCD S S S S =+=+△△△四边形AEC AED S S =△△ 【考点】面积及等积变换,平行线之间的距离,三角形的面积,平行四边形的性质,矩形的性质25.【答案】(1)21122y x x -=-(2)125(3)存在,见解析【解析】解:(1)∵(4,0)A -在二次函数212y x x c =-+的图象上, ∴21(4)4)02(c --⨯-+=,解得12c =-,∴二次函数的关系式为21122y x x -=-; (2)∵22211112512(21)12(1)22222y x x x x x =--=-+--=--, ∴顶点M 的坐标为251,2⎛⎫- ⎪⎝⎭,∵(4,0)A -,对称轴为1x =,∴点B 的坐标为(6,0),∴6(4)6410AB =--=+=,∴12512510222ABM S =⨯⨯=△,∵顶点M 关于x 轴的对称点是M′, ∴125221252ABM AMBM S S '==⨯=△四边形; (3)存在抛物线232y x x x ---=,使得四边形AMBM′为正方形.理由如下:令0y =,则2102x x c +=-,设点AB 的坐标分别为12(0),0,()A x B x ,则121212x x -+==,12122cx x c ==,所以,AB =,点M 的纵坐标为:2121241421442c ac b c a ⨯⨯---==⨯, ∵顶点M 关于x 轴的对称点是M′,四边形AMBM′为正方形,2122c -⨯,整理得,24430c c +-=,解得112c =,232c =-,又抛物线与x 轴有两个交点,∴2214(1)402b ac c ∆=-=--⨯>,解得12c <,∴c 的值为32-,故,存在抛物线21322y x x -=-,使得四边形AMBM′为正方形.【提示】(1)把点A 的坐标代入二次函数解析式,计算求出c 的值,即可得解;(2)把二次函数解析式整理成顶点式解析式,根据二次函数的对称性求出点B 的坐标,从而求出AB 的长,再根据顶点坐标求出点M 到x 轴的距离,然后求出ABM △的面积,根据对称性可得2ABM AMBM S S '=△四边形,计算即可得解;(3)令0y =,得到关于x 的一元二次方程,利用根与系数的关系求出AB 的长度,根据抛物线解析式求出顶点M的纵坐标,然后根据正方形的对角线互相垂直平分且相等列式求解,如果关于c的方程有解,则存在,否则不存在.【考点】二次函数综合题11 / 11。

最新贵州省安顺市初中毕业生中考试卷

最新贵州省安顺市初中毕业生中考试卷

2012年贵州省安顺市初中毕业生学业招生考试(试卷三)数 学(本卷为数学科试题单,共27个题,满分150分.考试时间120分钟.)一、选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是 【 】A. 21-B. 21C. -2D. 22.2010年8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。

就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达212000000元人民币。

212000000用科学记数法应记为 【 】 A. 72.1210⨯ B. 82.1210⨯ C. 92.1210⨯ D. 90.21210⨯3. 下列运算正确的是 【 】 A .22a a a =⋅B .33()ab ab =C .632)(a a =D .5210a a a=÷4.如图,直线l 1∥l 2,则α为 【 】A .150°B .140°C .130°D .120° 5.二元一次方程组2x y x y +=⎧⎨-=⎩的解是 【 】 A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩6..如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边 OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为 (6-,4),则△AOC 的面积为 【 】A .12B .9C .6D .47.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22(20)1558y x =--+,由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是 【 】 A .20. B. 1508 C. 1550 D. 1558第4题D C BA P 第6题8.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的 【 】A. B. C. D. 二、填空题 (本大题共8小题,每小题3分,共24分) 9.计算818-的结果是 。

2012年贵阳中考数学试题答案解析

2012年贵阳中考数学试题答案解析

2012年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)2.(3分)(2012•贵阳)在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将3.(3分)(2012•贵阳)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是4.(3分)(2012•贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两5.(3分)(2012•贵阳)一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复关系入手,列出方程求解.解:由题意可得,×100%=30%,解得,n=20(个).故估计n大约有20个.故选:D.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概6.(3分)(2012•贵阳)下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称.B.C.D.7.(3分)(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是().B.C.D.解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,8.(3分)(2012•贵阳)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是().DAFE=30°,推出AE=EF,代入求出即可.解:连接AF,∵AB的垂直平分线DE交于BC的延长线于F,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应9.(3分)(2012•贵阳)为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为)10.(3分)(2012•贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是()二、填空题(共5小题,每小题4分,满分20分)11.(4分)(2012•贵阳)不等式x﹣2≤0的解集是x≤2.12.(4分)(2012•贵阳)如图,已知∠1=∠2,则图中互相平行的线段是AB∥CD.13.(4分)(2012•贵阳)在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P (m,5)在第二象限.14.(4分)(2012•贵阳)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是90.∴=90,∴≠80,∴≠100,15.(4分)(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.2A13A24A3n 解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠A n=.故答案为:.三、解答题(共10小题,满分100分)16.(8分)(2012•贵阳)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.先根据整式混合运算的法则把原式进行化简,再把a=﹣3,b=代入进行计算即可.解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.本题考查的是整式的化简求出,熟知整式混合运算的法则是解答此题的关键.17.(8分)(2012•贵阳)为了全面提升中小学教师的综合素质,贵阳市将对教师的专业知识每三年进行一次考核.某校决定为全校数学教师每人购买一本义务教育《数学课程标准(2011年版)》(以下简称《标准》),同时每人配套购买一本《数学课程标准(2011年版)解读》(以下简称《解读》),其中《解读》的单价比《标准》的单价多25元.若学校购买《标准》用了378元,购买《解读》用了1053元,请问《标准》和《解读》的单价各是多少元?解:设《标准》的单价为x元,则《解读》的单价是(x+25)元,由题意得:=,解得:x=14,经检验x=14是原方程的根,则x+25=25+14=39.答:《标准》和《解读》的单价各是14元、39元.此题主要考查了分式方程的应用,根据已知表示出两种书的数量,进而得出等式方程是解18.(10分)(2012•贵阳)林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)请将条形统计图补充完整;(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?(3)用独立思考的学生的百分比乘以16万,进行计算即可得解.解:(1)224÷40%=560名;(2)讲解题目的学生数为:560﹣84﹣168﹣224=560﹣476=84,补全统计图如图;(3)×16=4.8万,答:在试卷讲评课中,“独立思考”的学生约有4.8万人.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到19.(10分)(2012•贵阳)小亮想知道亚洲最大的瀑布黄果树夏季洪峰汇成巨瀑时的落差.如图,他利用测角仪站在C处测得∠ACB=68°,再沿BC方向走80m到达D处,测得∠ADC=34°,求落差AB.(测角仪高度忽略不计,结果精确到1m)20.(10分)(2012•贵阳)在一个不透明的口袋里有分别标注2、4、6的3个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片.(1)请你用列表或画树状图的方法,表示出所有可能出现的结果;(2)小红和小莉做游戏,制定了两个游戏规则:规则1:若两次摸出的数字,至少有一次是“6”,小红赢;否则,小莉赢.规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.小红要想在游戏中获胜,她会选择哪一种规则,并说明理由.择自己获胜的概率比小莉获胜的概率大的一种规则即可在游戏中获胜.解:(1)列表如下:画树状图如下:共有9种可能,分别是(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,6),(6,7),(6,8);(2)从图表或树状图可知,至少有一次是“6”的情况有5种,所以,小红赢的概率是P(至少有一次是“6”)=,小莉赢的概率是,∵>,∴此规则小红获胜的概率大,卡片上的数字是球上数字的整数倍的有:(2,6)(2,8)(4,8)(6,6)共4种情况,所以,小红赢的概率是P(卡片上的数字是球上数字的整数倍)=,小莉赢的概率是,∵>,∴此规则小莉获胜的概率大,∴小红要想在游戏中获胜,她应该选择规则1.本题考查了列表法或树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2012•贵阳)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC 和CD上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.上,进而求出正方形的周长.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF.又BC=DC,∴BC﹣BE=DC﹣DF,即EC=FC∴CE=CF,(2)解:连接AC,交EF于G点,∵△AEF是等边三角形,△ECF是等腰直角三角形,∴AC⊥EF,在Rt△AGE中,EG=sin30°AE=×2=1,∴EC=,设BE=x,则AB=x+,在Rt△ABE中,AB2+BE2=AE2,即(x+)2+x2=4,解得x=,∴AB=+=,∴正方形ABCD的周长为4AB=2(+).本题考查了正方形的性质,全等三角形的判定与性质,等边三角形的性质和等腰三角形的22.(10分)(2012•贵阳)已知一次函数y=x+2的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数y=(x>0)的图象相交于C点.(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=(x>0)的关系式.的解析式,求出C的坐标,代入反比例函数的解析式,求出k即可.解:(1)∵y=x+2,∴当x=0时,y=2,当y=0时,x=﹣3,∴A的坐标是(﹣3,0),B的坐标是(0,2).(2)∵A(﹣3,0),∴OA=3,∵OB是△ACD的中位线,∴OA=OD=3,即D点、C点的横坐标都是3,把x=3代入y=x+2得:y=2+2=4,即C的坐标是(3,4),∵把C的坐标代入y=得:k=3×4=12,∴反比例函数y=(x>0)的关系式是y=.本题考查了一次函数与反比例函数的交点问题,用待定系数法求反比例函数的解析式,一23.(10分)(2012•贵阳)如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,则(1)BD的长是;(2)求阴影部分的面积.(1)连接AD,由于AC是⊙O的切线,所以AB⊥AC,再根据∠C=45°可知AB=AC=2,由勾股定理可求出BC的长,由于AB是⊙O的直径,所以∠ADB=90°,故D是BC的中点,故可求出BD的长度;(2)连接OD,因为O是AB的中点,D是BC的中点,所以OD是△ABC的中位线,所以OD⊥AB,故=,所以与弦BD组成的弓形的面积等于与弦AD组成的弓形的面积,所以S阴影=S△ABC﹣S△ABD,故可得出结理论.解:(1)连接AD,∵AC是⊙O的切线,∴AB⊥AC,∵∠C=45°,∴AB=AC=2,∴BC===2,∵AB是⊙O的直径,∴∠ADB=90°,∴D是BC的中点,∴BD=BC=;(2)连接OD,∵O是AB的中点,D是BC的中点,∴OD是△ABC的中位线,∴OD=1,∴OD⊥AB,∴=,∴与弦BD组成的弓形的面积等于与弦AD组成的弓形的面积,∴S阴影=S△ABC﹣S△ABD=AB•AC﹣AB•OD=×2×2﹣×2×1=2﹣1=1.本题考查的是切线的性质,涉及到三角形的面积、等腰三角形的性质及三角形中位线定24.(12分)(2012•贵阳)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有无数条面积等分线,平行四边形有无数条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.(2)如图①所示:连接2个矩形的对角线的交点的直线即把这个图形分成2个相等的部分.即OO′为这个图形的一条面积等分线;(3)如图②所示.能,过点B作BE∥AC交DC的延长线于点E,连接AE.∵BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴有S△ABC=S△AEC,∴S四边形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;∵S△ACD>S△ABC,所以面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线.本题考查了学生的阅读理解能力、运用作图工具的能力,以及运用三角形、等底等高性质25.(12分)(2012•贵阳)如图,二次函数y=x2﹣x+c的图象与x轴分别交于A、B两点,顶点M关于x轴的对称点是M′.(1)若A(﹣4,0),求二次函数的关系式;(2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线y=x2﹣x+c,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.解:(1)∵A(﹣4,0)在二次函数y=x2﹣x+c的图象上,∴×(﹣4)2﹣(﹣4)+c=0,解得c=﹣12,∴二次函数的关系式为y=x2﹣x﹣12;(2)∵y=x2﹣x﹣12,=(x2﹣2x+1)﹣﹣12,=(x﹣1)2﹣,∴顶点M的坐标为(1,﹣),∵A(﹣4,0),对称轴为x=1,∴点B的坐标为(6,0),∴AB=6﹣(﹣4)=6+4=10,∴S△ABM=×10×=,∵顶点M关于x轴的对称点是M′,∴S四边形AMBM′=2S△ABM=2×=125;(3)存在抛物线y=x2﹣x﹣,使得四边形AMBM′为正方形.理由如下:令y=0,则x2﹣x+c=0,设点AB的坐标分别为A(x1,0)B(x2,0),则x1+x2=﹣=2,x1•x2==2c,所以,AB==,点M的纵坐标为:==,∵顶点M关于x轴的对称点是M′,四边形AMBM′为正方形,∴=2×,整理得,4c2+4c﹣3=0,解得c1=,c2=﹣,又抛物线与x轴有两个交点,∴△=b2﹣4ac=(﹣1)2﹣4×c>0,解得c<,∴c的值为﹣,故存在抛物线y=x2﹣x﹣,使得四边形AMBM′为正方形.本题综合考查了二次函数的问题,主要利用了待定系数法求函二次数解析式,二次函数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
则 ,
解得x=10,
经检验,x=10是原方程的解.
答:原计划每天铺设管道10米.
22.(2011台州)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位, ≈1.7).
考点:解直角三角形的应用.
解答:解:由∠ABC=120°可得∠EBC=60°,在Rt△BCE中,CE=51,∠EBC=60°,
C、若点P(2,a)和点Q(b,﹣3)关于x轴对称,则b=2,a=3,故a﹣b=3﹣2=1,故此选项正确;
D、﹣8的立方根式﹣2,故此选项错误;
故选:C.
二.填空题(共8小题)
11.(2011衡阳)计算: + =3 .
考点:二次根式的加减法.
解答:解:原式=2 + =3 .
12.(2011宁夏)分解因式:a3﹣a=a(a+1)(a﹣1).
A.甲、乙射中的总环数相同B.甲的成绩稳定
C.乙的成绩波动较大D.甲、乙的众数相同
考点:方差.
解答:解:A、根据平均数的定义,正确;
B、根据方差的定义,正确;
C、根据方差的定义,正确,
D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.
故选D.
10.(2012安顺)下列说法中正确的是()
(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?
(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.
考点:作图-平移变换;三角形的面积.
解答:解:(1)图中格点△A′B′C′是由格点△ABC向右平移7个单位长度得到的;
2012年贵州省安顺市中考数学试卷
一.选择题(共10小题)
1.(2011台州)在 、0、1、﹣2这四个数中,最小的数是()
A. B.0C.1D.﹣2
考点:有理数大小比较.
解答:解:的是﹣2.
故选D.
2.(2011衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()
=﹣4.
20.(2011荆州)解不等式组.并把解集在数轴上表示出来.

考点:解一元一次不等式组;在数轴上表示不等式的解集.
解答:解:不等式①去分母,得x﹣3+6≥2x+2,
移项,合并得x≤1,
不等式②去括号,得1﹣3x+3<8﹣x,
移项,合并得x>﹣2,
∴不等式组的解集为:﹣2<x≤1.
数轴表示为:
A.3.1×106元B.3.1×105元C.3.2×106元D.3.18×106元
考点:科学记数法与有效数字.
解答:解:3185800≈3.2×106.
故选C.
3.(2011南通)计算 的结果是()
A.±3 B.3 C.±3D.3
考点:立方根.
解答:解:∵33=27,
∴ =3.
故选D.
4.(2011张家界)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()
21.(2011张家界)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?
考点:分式方程的应用.
解答:解:设原计划每天铺设管道x米,
体育兴趣小组对应扇形圆心角的度数为: ;
(3)参加科技小组学生”的概率为: .
25.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知AD=6求圆心O到BD的距离.
考点:圆周角定理;三角形内角和定理;垂径定理.
解答:解:(1)∵∠APD=∠C+∠CAB,
(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),则格点△DEF各顶点的坐标分别为D(0,﹣2),E(﹣4,﹣4),F(3,﹣3),
S△DEF=S△DGF+S△GEF= ×5×1+ ×5×1=5
或=7×2﹣ ×4×2﹣ ×7×1﹣ ×3×1=14﹣4﹣ ﹣ =5.
24.(2012安顺)我市某中学为推进素质教育,在七年级设立了六个课外兴趣小组,下面是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:
∴a>b>c.
故答案为:a>b>c.
17.在镜中看到的一串数字是“ ”,则这串数字是309087.
考点:镜面对称.
解答:解;拿一面镜子放在题目所给数字的对面,很容易从镜子里看到答案是309087
故填309087.
18.(2009湛江)已知2+ =22× ,3+ =32× ,4+ =42× …,若8+ =82× (a,b为正整数),则a+b=71.
解答:解:如图,根据题意得,
△ABO的底长OB为2,高为3,
∴S△ABO= ×2×3=3.
故选D.
6.(2011长沙)一个多边形的内角和是900°,则这个多边形的边数是()
A.6B.7C.8D.9
考点:多边形内角与外角.
解答:解:设这个多边形的边数为n,
则有(n﹣2)180°=900°,
解得:n=7,
∴这个多边形的边数为7.
故选B.
7.(2011丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()
A.1.25mB.10mC.20mD.8m
考点:相似三角形的应用.
解答:解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,
根据各象限内点的坐标特点可知,
所以点(x,y)在平面直角坐标系中的第一象限.
故答案为:一.
14.(2011衢州)在一自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距200m.
点Q坐标(6,﹣6)
若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:
(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),
(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
考点:相似三角形的判定.
解答:解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠CAB.
当∠D=∠C或∠E=∠B或 = 时,△ADE∽△ACB.
16.如图,a,b,c三种物体的质量的大小关系是a>b>c.
考点:一元一次不等式的应用.
解答:解:∵2a=3b,
∴a>b,
∵2b>3c,
∴b>c,
考点:提公因式法与公式法的综合运用.
解答:解:a3﹣a,
=a(a2﹣1),
=a(a+1)(a﹣1).
13.(2012安顺)以方程组 的解为坐标的点(x,y)在第一象限.
考点:一次函数与二元一次方程(组).
解答:解: ,
①+②得,2y=3,
y= ,
把y= 代入①得, =x+1,
解得:x= ,
因为 0, >0,
考点:规律型:数字的变化类.
解答:解:根据题意可知a=8,b=82﹣1=63,
∴a+b=71.
三.解答题(共8小题)
19.(2012安顺)计算:﹣22﹣ +|1﹣4sin60°|+( )0.
考点:实数的运算;零指数幂;特殊角的三角函数值.
解答:解:原式=﹣4﹣2 +|1﹣4× |+1
=﹣4﹣2 +2 ﹣1+1
考点:解直角三角形的应用-方向角问题.
解答:解:由已知得:
∠ABC=90°+30°=120°,
∠BAC=90°﹣60°=30°,
∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣120°﹣30°=30°,
∴∠ACB=∠BAC,
∴BC=AB=200.
故答案为:200.
15.(2010临沂)如图,∠1=∠2,添加一个条件使得△ADE∽△ACB∠D=∠C或∠E=∠B或 = .
(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
综上所述,点R坐标为(3,﹣18).
(1)七年级共有320人;
(2)计算扇形统计图中“体育”兴趣小组所对应的扇形圆心角的度数;
(3)求“从该年级中任选一名学生,是参加科技小组学生”的概率.
考点:条形统计图;扇形统计图;概率公式.
解答:解:(1)64÷20%=320(人);
(2)体育兴趣小组人数为320﹣48﹣64﹣32﹣64﹣16=96,
A.1B.﹣1C.0D.无法确定
考点:一元二次方程的解;一元二次方程的定义.
相关文档
最新文档