学习ansys的一些心得
ansys心得体会

ansys心得体会ANSYS是一款非常强大的通用有限元分析软件,它广泛应用于工程领域的结构力学、流体力学、热传导、电磁场等领域。
经过一段时间的学习和使用,我对ANSYS有了一些心得体会如下:首先,ANSYS的界面简洁直观,操作方便。
软件的界面布局清晰,功能模块分类明确,用户可以根据自己的需求选择相应的模块进行分析和计算。
在进行模型建立和后处理时,软件提供了丰富的工具和命令,可以轻松完成复杂的操作,大大提高了工作效率。
其次,ANSYS具有强大的模拟和计算能力。
软件内置了丰富的材料模型、加载模型和边界条件等,可以模拟各种复杂的结构和工况,并进行准确的分析和计算。
无论是进行静力学、动力学、流体力学还是热传导分析,ANSYS都能够提供准确可靠的结果,并帮助用户更好地理解和解决问题。
此外,ANSYS支持多种求解器和求解方法,可以根据问题的特点选择合适的求解器来进行计算。
软件提供了强大的预处理和后处理功能,可以对模型进行优化和修正,以减少计算误差和提高计算效率。
ANSYS还支持多种标准和规范,用户可以根据需要选择相应的标准进行分析和设计,使得计算结果更加准确和可靠。
另外,ANSYS还具有良好的可扩展性和可定制性。
软件支持用户自定义材料模型和加载模型,在满足特定需求和研究目标的同时,可以充分发挥软件的计算能力。
用户还可以编写自己的脚本和宏命令,自动化完成重复性工作,提高工作效率。
ANSYS还支持与其他软件的接口,可以方便地进行数据交换和共享,实现多领域、多物理场的耦合模拟。
总之,ANSYS是一款非常强大和灵活的工程分析软件,其功能强大、计算精确、操作简单以及可扩展性强等特点,使得它在工程领域得到广泛应用。
通过学习和使用ANSYS,我不仅对有限元分析理论有了更深入的理解,也对实际工程问题的分析与解决有了更好的把握。
希望在以后的工作和学习中,能够继续充分发挥ANSYS的优势,更好地应用于实际工程中。
学习ansys的一些心得

学习ansys的一些心得(送给初学者和没有盟币的兄弟)1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot2 标点的输入是在英文状态下,“,”。
3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps4 还不会环形阵列。
5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。
6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。
7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。
复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。
8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。
9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。
10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines.11 Ansys中没有Undo命令.需及时保存数据库文件.Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界.13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。
15 Ansys的模态分析是线型分析。
任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。
16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain)17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:780018 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options.19 弹簧阻尼器单元:Combination-Spring damper 14.20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。
ANSYS学习的一些心得--隧道开挖的有限元分析

由于水平有限,不足之处,敬请谅解!ANSYS学习的一些心得--隧道开挖的有限元分析推荐的基本参考用书1.《ANSYS7.0基础教程与实例详解》或《ANSYS9.0经典产品基础教程与实例详解》,都是“中国水利水电出版社”的如果要系统地学,最好从基础学起,后面我会具体介绍一下我学习中的一些小小的经验和体会。
2.李权.ANSYS在土木工程中的应用.人民邮电出版社,2005这本书讲的都是实例,基本囊括土木工程中的所有项目,针对每一个实例的操作步骤写的也比较详细。
初学者可以照着练习,但对打基础帮助不大。
关于隧道的那一节,书上的例题考虑材料属性时将岩土简单的设成线性的,而实际工程往往要用非线性来考虑,这就需要再输入材料属性的时候注意了,将岩土材料考虑成弹塑性时,一般材料用Drucker-prager(D-P)屈服条件来输入,具体是在Mainmenu>preprocessor>Material props> MaterialModels,在弹出的对话框中双击structure>Nonliner>Inelastic>Non-metalPlasticity >Drucker-prager,在弹出的对话框中输入粘聚力(cohesion)和内摩擦角(fric angle),如直接输这两个参数,ansys会提示先输入弹性模量以及泊松比,照常输入弹模和泊松比后即可输入C和φ。
3.ANSYS土木工程应用实例,中国水利水电出版社这本书有很多命令流的介绍,还有一些分析方法的介绍,对后期学命令流操作还是很有用的。
要学习ANSYS的命令流,有这本书帮助会很大。
4.《ANSYS9.0经典产品高级分析技术与实例详解》中国水利水电出版社。
这本书介绍了参数化(APDL)有限元分析技术,优化设计,单元生死技术等,是在学习的提高阶段不错的一本书,在做隧道的开挖模拟时,单元生死技术是很关键的,该书的第四篇对单元生死技术有比较详细的讲解,另外还有个基坑开挖的实例,跟隧道的开挖其实也是同出一辙。
ansys论坛

学习ANSYS经验总结1学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:1.1将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
学习有限元ANSYS总结

学习ANSYS经验总结一学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
ANSYS学习经验总结

学习ANSYS经验总结一学习ANSYS需要认识到的几点《材料力学》《弹性力学》《塑性力学》《计算方法》《计算固体力学》先学GUI 再学命令流相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
ansys 学习心得

ANSYS学习心得
封装中心
ANSYS是一种集结构、流体、电场、磁场、声场分析于一体的,广泛应用的商业工程分析软件。
可广泛的用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。
简单的讲, ANSYS的是一款仿真软件,基本原理是基于各门学科的基本理论和计算公式,利用计算机强大的运算能力,求解出我们需要的场域数值,使用过程主要包括五个部分:
1.实体建模
建模就是把复杂的实物抽象转化成由简单几何图形组成的有限元模型。
2.网格划分
根据计算精度的需要,对有限元模型进行网格划分。
创新产品设计仿真计算结构优化生产
产品失效分析仿真计算产品改进试验
3.加载
对模型施加初始边界条件和激励。
以温度场仿真为例,就是要确定物体的初始温度,热源情况以及散热条件等。
4.求解
根据设置好的条件,软件利用计算机完成求解过程。
5.后处理
查看计算结果,(等直线,剃度,矢量,透明,动画效果等),输出计算结果(图表,曲线),检查在一个时间段或子步历程中的结果。
Ansys可分析领域及在封装中心的应用:
1.热管理分析
电路板,管壳,散热情况分析。
烧结炉恒温区工艺曲线分析。
气流场分析
氮气流速对低温炉温度影响净化间挥发物排风情况
静力分析
焊缝疲劳寿命云图
管壳或基板模态分析
4.电磁场分析
电磁铁磁感应强度分布情况
互感器隔离特性分析5.其他
焊料融化—凝固过程
宇航级元器件噪声分析。
ANSYS使用心得体会

ANSYS使用心得体会首先,熟练掌握基本操作是非常重要的。
ANSYS界面繁杂,功能众多,初学者往往会有些迷茫。
但只要掌握了基本操作,就能够快速上手。
比如,了解如何创建几何模型、应用合适的材料属性、添加边界条件等等。
这些基本操作的熟练掌握,能够极大地提高工作效率。
其次,合理的前处理工作是确保结果准确性的关键。
在进行有限元分析前,需要对几何模型进行前处理,包括划分单元网格、定义材料属性和边界条件等。
这些工作的准确性直接影响到最终的分析结果。
因此,需要对模型进行严谨的检查,确保网格质量良好、边界条件设置合理等。
同时,也需要考虑到实际工程情况,合理简化模型,减少计算量。
同时,了解不同分析方法的适用范围也非常重要。
ANSYS提供了很多分析方法和求解器,比如静力学分析、热传导分析、流体流动分析等。
不同的分析方法适用于不同的问题,需要根据实际情况选择合适的分析方法。
比如,对于涉及气体流动的问题,可以选择CFD模块进行流体流动仿真;而对于机械结构的分析,可以选择结构力学模块进行静力学分析等。
另外,对结果的合理解读也是非常重要的。
有限元分析的结果不仅仅是一个数字,它反映了结构或流场的内部应力、变形、温度等信息。
因此,对结果的合理解释能够帮助我们更好地理解问题,并进行后续的工程判断。
比如,在结构分析中,我们可以通过查看应力云图、变形云图等来判断结构的强度、刚度等;在流体流动分析中,我们可以通过查看流速、压力分布等来判断流场的稳定性、流动特性等。
最后,不断学习和探索是提高使用ANSYS技能的关键。
ANSYS是一个功能强大的软件,涉及的领域非常广泛。
通过参加培训课程、阅读相关文献等方式,可以不断提升自己的技能水平。
此外,要保持好奇心,勇于探索新的理论和方法。
只有不断学习和探索,才能够在日常工作中更好地应用ANSYS。
总之,ANSYS是一款非常优秀的工程分析软件,通过使用它,我对工程问题的理解能力得到了很大的提高。
熟练掌握基本操作、合理的前处理工作、选择合适的分析方法、合理解读结果以及不断学习和探索,是我使用ANSYS的一些心得体会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习ansys的一些心得学习ansys的一些心得(送给初学者和没有盟币的兄弟)1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot2 标点的输入是在英文状态下,―,‖。
3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps4 还不会环形阵列。
5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。
6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。
7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。
复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。
8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。
9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。
10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines.11 Ansys中没有Undo命令.需及时保存数据库文件.Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界.13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。
15 Ansys的模态分析是线型分析。
任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。
16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node13)>Options(K3—Plane strain)17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:780018 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options.19 弹簧阻尼器单元:Combination-Spring damper 14.20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。
接触问题有两个基本类型:刚体-柔体的接触,柔体-柔体的接触(许多金属成型的接触问题)。
在刚体-柔体的接触问题中,有的接触面与它接触的变形体相比,有较大的刚度而被当做刚体。
而柔体-柔体的接触,是一种更普遍的类型,此时两个接触体具有近似的刚度,都为变形体。
211 点-点接触:过盈装配问题是用点点接触单元模拟面面接触的典型例子。
2 点-面接触:不必预先知道准确的接触位置,接触面之间也不需要保持一致的网格,并且允许有较大的变形和相对滑动。
典型实例:模拟插头插入插座里。
3 面-面接触:刚性面作为目标面,柔性面作为接触面。
22 打开自动时间步长:Solution>Load Step Opts>Time Frequenc>Time And Substps.24 打开预应力效果:Solution> Analysis Type>Analysis Options.在弹出的对话框中的sstif pstres下拉列表框中选择Prestress ON.单击OK.29 (用关键点)直接建模,不需要智能化网格功能30 过关键点定义面的命令中,关键点个数最多可以有18个,最少当然是3个32 面相加时的面号排序:如AADD,A1,A2,A3,A4,则最后得到A5号面33 命令流支持混合运算,在处理三角函数时,必须化作弧度,三角函数符号用小写29 建实体模型时,一定要用关键点,再连线,到面,到体。
只用单元模拟时用节点30 ―C***‖表示该行的内容是一个注释行,感叹号―! ‖也是注释行的标志32 为了减少分析的总自由度数,可以利用主自由度(Master)概念。
这里―M,3,UY,5‖就是利用主自由度定义命令,将第3个节点到第5个节点的Y方向的自由度UY设置为主自由度,这样在计算中,只有这些位移自由度才被计算和处理34 ANSYS中的单元都有类型名称和编号组成,编号是该单元在ANSYS中惟一的总编号。
这里的单元名称也可以只用编号,但是一般为了便于记忆和别人阅读,尽可能使用类型+编号的名称,如―LINK1‖,―BEAM3‖等等35 这是正常的,有限元在计算频率时,一般总是偏大的。
所以在高阶模态分析,单元的网格应该更密一些36 ANSYS中使用最多的实体单元是Solid45,它有8个结点,每个结点有3个线位移38 做柔性体一定要定义密度,否则不能做出。
即使能画网格,也得定义密度,才能做柔性体22 模态分析模态分析过程包括建模,施加载荷和求解,扩展模态和查看结果等几个步骤1 必须定义材料的弹性模量和密度。
2 模态分析的结果包括结构的频率,振型,相应应力和力等。
3 模态分析的步骤:①指定分析类型:Solution>Analysis Type>New Analysis在弹出的对话框中的Type of Analysis选项中选择Modal.②指定分析选项:Solution>Analysis Type>Analysis Options.在弹出的对话框中的No.of modes to extract文本框中输入10(十阶模态)。
弹出Block Lanczos method对话框,单击OK.Expand Modes在弹出的对话框中的NMODE文本框中输入10(扩展的模态数)。
单击OK.④施加约束。
⑤求解。
⑥列表固有频率:General Postproc>Results Summary⑦从结果文件读出结果:General Postproc>Read Results>First Set⑧用动画观察模型的一阶模态PlotCtrls>Animate>Mode Shape在弹出的对话框中单击OK.⑨观察其余各阶模态:General Postproc>Read Results>Next Set.4 0阶模态(MODE = 0)是轴对称振动模态,而MODE = 2是它的第2阶振动频率。
在0阶模态情况下,需要选择半径方向的自由度作为主自由度。
对于MODE=2的情况,半径方向和环向自由度都必须指定为主自由度谐响应分析主要用于确定线性结构承受随时间按正弦规律变化的载荷时的稳态响应。
主要采用缩减发(reduced),模态叠加法(Mode Superposition),完全发(Full)。
初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
Beam3是一个具有张紧,压缩和弯曲能力的单向元素。
它有三个自由度,分别是x方向和y方向的移动和沿z轴的旋转(UX,UY,ROTZ)。
该元素由两个节点,两个横截面,转动惯量,高和材料性能来定义。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。
通常情况下,shell63单元就够用了。
3.实体单元的选择。
实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。
常用的实体单元类型有solid45, solid92,solid185,solid187这几种。
其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。
Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。
实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。
新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。