第三章--光电显示技术4—3D显示技术
三维立体显示技术

对观察者头部旳位置和观察角度有较严格旳限制 ;
不能显示或只能显示很有限旳运动视差图片 ;
水平辨别率损失,画面亮度较低 。
研究方向
更精确旳深度图;
区域移动补点研究 ;
运动视差图像旳研究 ;
新型构造和器件旳研究 。
返回
集成显示技术(Integral Imaging )
• 集成显示技术又称全景显示,于 1923年由 Lippmann发明。
体显示:G体像素
T体像素;
自动立体显示:到达上K旳可视区域;
MEMS器件在三维立体显示中旳应用;
全运动视差旳实现;
谢谢各位老师同学, 请提出宝贵意见。
被动发光旋转扫描体显示系统
Felix3D三维显示系统
可显示物体旳体像素数目10k。
被动发光旋转扫描体显示系统
Perspecta 3d显示屏
辨别率:768*768*192; 色彩格式:24bit RGB; 旋转屏转速:730rad; 体像素数:100M; 帧频:2409FPS; 接口数据率:4.68GB; 显示范围:10英寸; 可视角度:360°。
静态体三维显示技术
基于空间等离子体旳三维显示技术
静态体三维显示技术
DepthCube三维显示系统
体三维显示系统
最新进展
南加州大学研制旳三维显示系统
体三维显示系统
南加州大学研制旳三维显示系统旳 创新之处:
使用与水平成45度旳旋转镜来替代平面漫反射屏幕 。 研制了基于DLP旳帧频可高达5000fps旳超高速彩色投影机
体三维显示系统旳分类
目前,体三维显示系统从显示空间旳形成上划分可分为两
类:
•主动发光旋转扫描体 三维显示
•螺旋屏
光电显示技术概述

光电显示技术概述光电显示技术是一种使用电场来控制光的传输和发射的技术。
它采用了光电效应,通过改变电场的强度和方向,调节材料的光电性能,从而实现对光的控制和调制。
光电显示技术广泛应用于液晶显示、有机电致发光显示和柔性显示等领域。
液晶显示是光电显示技术最早应用的领域之一、液晶是一种特殊的有机分子材料,可以通过施加电场来控制其光学性能。
液晶显示器由数百万个液晶单元组成,每个液晶单元由液晶分子和透明电极构成。
当电场施加到液晶单元上时,液晶分子的排列状态会改变,从而改变光的折射率和传输性能。
通过调节电场的强度和方向,可以实现对液晶单元的光的透明度和颜色的控制,从而实现显示效果。
有机电致发光显示是一种新型的光电显示技术。
它使用有机发光材料作为光源,通过施加电场来激发有机分子产生光。
有机发光材料具有较高的电致发光效率和较宽的发光光谱范围,可以实现高亮度和高色彩饱和度的显示效果。
有机电致发光显示器由有机发光层、电极和基底构成。
当电场施加到有机发光层上时,有机分子会在电场的激励下发生电致发光,产生可见光。
通过控制电场的强度和方向,可以实现对有机发光层的光的强度和颜色的调节,从而实现显示效果。
柔性显示是一种新兴的光电显示技术。
它使用柔性材料作为基底,将光电显示器件制备在柔性基底上,以实现高度可弯曲和可卷曲的显示器件。
柔性显示器件具有轻薄、可弯曲、可卷曲和耐冲击等特点,可以应用于弯曲显示器、可穿戴设备和卷曲显示屏等领域。
柔性显示技术采用了多种光电显示技术,如液晶、有机电致发光和纳米颗粒电致发光等。
通过选择适合的光电显示技术和柔性材料,可以实现高度可弯曲和可卷曲的显示器件。
光电显示技术在电子产品和信息技术领域具有广阔的应用前景。
它不仅可以应用于平面显示器,如电视、电脑和手机等,还可以应用于曲面显示器、柔性显示器和穿戴设备等。
随着技术的发展和创新,光电显示技术将会越来越成熟和完善,为我们带来更加多样化和高质量的显示体验。
3d显示原理

3d显示原理
3D显示原理是指通过技术手段模拟人眼对物体深度感知的能力,使平面画面立体化的过程。
一般来说,3D显示技术可分为以下几种类型:
1. 眼镜式3D显示技术
这种技术需要观众佩戴特制的3D眼镜,其中左眼和右眼的视角有所不同,使得观众可以感受到立体效果。
这种技术主要有红蓝、偏振和活性式等不同的实现方式。
2. 自动视差3D显示技术
这种技术利用了人眼对视差的敏感度,通过控制不同区域对应的视差,使得观众可以感受到立体效果。
这种技术主要有亮度差异、颜色差异等不同实现方式。
3. 光栅式3D显示技术
这种技术利用了光栅在人眼中产生的扭曲效应,通过控制光栅的形状和运动,使得观众可以感受到立体效果。
这种技术主要有交叉式、线条式等不同实现方式。
总的来说,不同的3D显示技术都是通过模拟人眼的深度感知机制,从而实现平面画面的立体化。
未来,随着技术的不断进步,3D
显示技术将会更加完善和普及。
- 1 -。
3d 显示 原理

3d 显示原理
3D显示原理是通过在屏幕上创建一种立体效果,使画面看起来具有深度和逼真感。
它基于人眼的立体视觉原理,利用左右眼分别接收到的略有差异的图像来产生立体感。
首先,3D显示技术需要一个特殊的屏幕。
这种屏幕通常是采用了透镜或者劈棱镜的材料制成,能够将左眼和右眼的图像分别传递到观察者的眼睛中。
接下来,图像数据会通过电子信号传递给显示屏。
同传统2D 显示不同,3D显示需要两个图像,一个是左眼图像,一个是右眼图像。
因此,显示屏会在同一时间将两个图像显示出来,每个图像占据屏幕的一半。
当观察者戴上特殊的眼镜,比如红蓝或偏振眼镜时,左眼只能看到屏幕上的左图像,右眼只能看到右图像。
这种眼镜会过滤掉相应眼睛不应看到的图像,确保每只眼睛只能接收到特定的图像。
这时,观察者的大脑会将两只眼睛接收到的图像进行组合,并确定物体在空间中的位置。
由于左眼和右眼接收到的图像略有差异,大脑会根据这种差异来感知物体的深度和距离。
总结起来,3D显示的原理就是通过将左眼和右眼的图像分离并在观察者的眼睛分别显示,利用人眼和大脑的合作来产生立体效果。
这种技术使得观众能够感受到物体的立体感,提供更加逼真、沉浸的视觉体验。
光电显示技术结构及原理

光电显示技术结构及原理光电显示技术是一种通过将电子信号转化为能够产生可见光的光信号的技术,从而实现图像显示的方式。
在光电显示技术中,常见的有液晶显示技术、有机发光二极管(OLED)技术等。
本文将介绍液晶显示技术和OLED技术的结构和原理。
液晶显示技术是目前应用最广泛的显示技术之一、其主要结构包括背光源模块、光学模块和显示模块三个主要部分。
首先是背光源模块。
背光源模块一般采用冷阴极管荧光灯或者LED作为光源。
该模块的作用是提供背景光,使得显示器能够显示出有色图像。
LED背光源由LCD显示器的发光二极管(LED)组成,它具有高亮度、低功耗和长寿命等特点。
其次是光学模块。
光学模块主要由聚光器、扩散片、棱镜和驱动模块等组成。
它的作用是对通过背光源发出的光进行调节和分配,以保证光线均匀且准确地穿过液晶显示屏并能够形成可视图像。
聚光器和扩散片可以用来调整光线的亮度和均匀性,而棱镜可以保证光线在整个显示屏上均匀分布。
最后是显示模块。
显示模块是液晶显示技术的核心部分,主要由液晶屏、色彩滤光器和驱动电路组成。
液晶屏是由两片玻璃板组成的,中间填充有液晶材料。
液晶材料是一种能够通过电场作用来控制光的传播方向的物质。
当电场施加在液晶屏上时,液晶分子会发生排列变化,从而改变光通过液晶屏的方向和旋转角度,以实现图像的显示。
色彩滤光器能够对通过液晶屏的光进行着色,以实现彩色图像的显示。
驱动电路则负责向液晶屏施加电场的信号,以控制液晶分子的排列方式。
OLED技术是一种新型的显示技术,具有更高的亮度、更快的反应速度和更广的可视角度。
OLED显示器的结构主要由有机发光二极管和驱动电路组成。
有机发光二极管是一种能够根据电流通过发光的电子元件。
它由一层导电的有机材料(如聚合物)和一层电子致密的材料(如有机染料)组合而成。
当电流通过有机发光二极管时,有机材料会发挥导电的作用,而电子致密的材料则会发光。
不同的有机材料和电子致密材料的组合可以产生不同颜色的光,从而实现彩色图像的显示。
光电专业有哪些课程设计

光电专业有哪些课程设计一、课程目标知识目标:1. 让学生了解光电专业的基本课程设置,掌握各门课程的核心知识内容。
2. 使学生掌握光电专业的基本原理,如光学、电磁学、半导体物理等,并理解这些原理在实际应用中的重要性。
3. 帮助学生了解光电领域的前沿动态和发展趋势,培养他们对专业知识的深入理解和探索精神。
技能目标:1. 培养学生运用所学知识分析和解决实际光电工程问题的能力。
2. 通过课程设计项目,提高学生的实验操作技能、数据分析和处理能力。
3. 培养学生的团队协作和沟通能力,提高他们在项目实践中的问题解决效率。
情感态度价值观目标:1. 激发学生对光电专业的兴趣和热情,培养他们积极向上的学习态度。
2. 引导学生认识到光电技术在国家经济发展和国防建设中的重要作用,增强他们的社会责任感和使命感。
3. 通过课程学习,培养学生严谨求实的科学态度,提高他们的创新意识和实践能力。
课程性质:本课程为光电专业的基础理论课程,旨在帮助学生全面了解光电领域的基本知识和发展动态。
学生特点:学生具备一定的物理基础和数学基础,但对光电专业了解有限,需要系统地引导和培养。
教学要求:结合学生特点,采用理论教学与实践操作相结合的方式,注重培养学生的实际应用能力和创新能力。
通过分解课程目标为具体的学习成果,使学生在课程结束后能够达到预定的知识、技能和情感态度价值观目标。
二、教学内容本课程教学内容主要包括以下几部分:1. 光电专业概述:介绍光电专业的背景、发展历程、研究内容及应用领域。
2. 基础理论知识:- 光学原理:光的传播、反射、折射、干涉、衍射等基本现象和定律。
- 电磁学理论:电磁场理论、麦克斯韦方程组、电磁波传播等。
- 半导体物理:半导体材料的基本性质、PN结、光生伏特效应等。
3. 光电技术与应用:- 光电器件:如光源、光探测器、光开关等。
- 光通信技术:光纤通信、无线光通信、光网络等。
- 光电显示技术:液晶显示、有机发光二极管显示等。
光电显示技术

光电显示技术1. 简介光电显示技术是一种将电子信息转化为光信息,并将其显示在屏幕上的技术。
它是现代科技领域中一个非常重要的技术方向,广泛应用于计算机、电视、手机等各种电子设备中。
随着科技的不断进步,光电显示技术也在不断发展。
不同的光电显示技术有着各自独特的特点和应用场景。
本文将介绍几种常见的光电显示技术,并对其原理、优缺点以及应用领域进行分析。
2. 液晶显示技术(LCD)液晶显示技术(Liquid Crystal Display,LCD)是目前应用最广泛的光电显示技术之一。
它利用液晶分子的光学特性,通过改变液晶分子的排列状态来控制光的透过与阻挡,从而实现图像的显示。
液晶显示技术具有以下优点:•能耗低:液晶显示器只需要消耗较小的能量来显示图像,可以大大节省电力。
•可视角度大:液晶显示器可以实现较大的可视角度,图像在不同角度下都能保持清晰。
•显示效果好:液晶显示器可以实现高分辨率、高对比度的图像显示。
然而,液晶显示技术也存在一些不足之处:•响应速度较慢:液晶分子的排列状态改变需要一定的时间,导致液晶显示器的响应速度较慢。
•视角限制:虽然可视角度较大,但是在观看角度大于某个特定角度时,图像的亮度会下降。
•无法完全实现真实的黑色:液晶显示器在显示黑色时会有一定的透光现象,无法实现完全的黑色显示。
3. 有机发光二极管技术(OLED)有机发光二极管技术(Organic Light Emitting Diode,OLED)是一种基于有机材料的光电显示技术。
OLED可以通过正向电流激发有机材料发光,并将其显示在屏幕上。
OLED显示技术具有以下优点:•色彩鲜艳:由于有机材料的发光特性,OLED显示器能够实现更鲜艳、更逼真的色彩显示。
•发光面板薄:OLED显示器可以制作得非常薄,适用于需要轻薄设计的产品。
•视角较大:OLED显示器在各个角度下都能够保持亮度和色彩的一致性。
然而,OLED显示技术也存在一些挑战:•易损性:有机材料相对较脆弱,容易受到机械损伤。
三维显示技术概念

三维显示技术概念
三维显示技术概念
随着科技的快速发展,人们对于图像的需求也越来越高。
三维显示技
术应运而生,为人们呈现了更为真实的图像效果。
三维显示技术是一
种将平面图像以立体形式呈现的技术,这种技术不仅可以在娱乐方面
得到应用,还广泛应用于医疗、工业等各个领域。
三维显示技术的核心是如何将平面图像转变为立体图像。
这种技术可
以通过使用3D建模软件或者相机的三维成像来实现。
然后,通过将左右两张视角稍微不同的图像投射到分别对应的左右眼睛上,让人类视
觉产生错觉,从而呈现出立体图像效果。
三维显示技术不仅拥有更加丰富的图像效果,还可以帮助人们更好地
获取信息。
比如,在医疗领域,三维显示技术可以将人体呈现为立体
模型,医生们可以通过对这些模型的观察诊断病情、进行手术规划等。
在工业领域,三维显示技术可以用来帮助制作样品,也可以用来进行
物流规划等。
在娱乐领域,三维显示技术则是带给人们更加真实的视
觉效果,使得观看电影、玩游戏等成为更加美好的体验。
三维显示技术发展至今已经取得了一系列重大成果,比如可以实现全息立体图像、曲面折射立体图像等。
这种技术的发展已经不再局限于制造立体眼镜,我们已经可以看到越来越多采用裸眼3D显示技术的电视、电影等产品,而随着技术的不断进步,我们相信未来三维显示技术将会有更加广泛的应用场景。
总之,三维显示技术的出现使得人们的视觉体验更加真实且丰富,也为人类在诊断、规划等方面提供了更好的帮助。
相信在不久的将来,三维显示技术将会越来越成熟,为人们带来更加惊喜的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视觉因素-光角&视角
光角
视角
立体视觉的形成
具有深度感的图像,形成立体感
二、3D显示技术分类 3D显示 非全息 辅助设备
色分法
全息
裸眼式
视察挡板法
裸眼式
透镜全息法
反射全息法 全像全息法 体积全息法
透镜阵列法
光分法 时分法 微镜投影法 微位相差板法 指向光源法
3D显示分类
3D显示技术原理
体显示技术
• 这类技术会使人眼产生矛盾的晶状体焦距调节和 视线汇聚调节,长时间观看会产生视觉疲劳。
体显示技术
原理
• 此种技术是在物理上显示了三个维度,能在空间 中产生真正的3D效果。成像物体就像在空间中真实 存在,观察者能看到科幻电影中一般“悬浮”在半 空中的3D透视图像。 • 从数字图像处理技术来说,平面图像对应了二维 数组,每个元素被称为像素;而三维图像对应三维 数组,每个元素被称为体素。体显示技术正是在空 间中表现了这个三维数组。
全息技术
原理
• 全息技术是利用光波的干涉和衍射原理记录并再 现物体的真实感的一种成像技术。 • 全息技术再现的图像立体感强,具有真实的视觉 效应。除用光波产生全息图外,现在已发展到可用 计算机产生全息图,然而需要的计算量极其巨大。 • 全息术应该是3D显示的终极解决方案,但目前还 有很多技术问题有待解决,短期内难有成熟产品量 产。
快门式3D眼镜
HMD 头盔式显示器
快门式
显示器效果
快门式显示效果图
眼镜效果
视差屏障式
显示器同时播放左、右眼影像像素交叉,再由 显示器表面贴附具栅栏结构的屏障片(Barrier)限制 光的行进路线,观赏者于左、右眼影像画素光线集 中之设定区域达到立体视觉感受。
视差屏障式合成图
视差屏障式
光屏障式3D技术的实现方法是使用一个开关液晶屏、偏振膜和高 分子液晶层,利用液晶层和偏振膜制造出一系列方向为90°的垂直条纹。 这些条纹宽几十微米,通过它们的光就形成了垂直的细条栅模式,称之 为“视差障壁”。而该技术正是利用了安置在背光模块及LCD面板间的视 差障壁,在立体显示模式下,应该由左眼看到的图像显示在液晶屏上时, 不透明的条纹会遮挡右眼;同理,应该由右眼看到的图像显示在液晶屏 上时,不透明的条纹会遮挡左眼,通过将左眼和右眼的可视画面分开, 使观者看到3D影像。
透射式全息显示图像
一种最基本的全息显示图像。记录时利用相干光照射物体,物 体表面的反射光和散射光到达记录干板后形成物光波;同时引入另一 束参考光波(平面光波或球面光波)照射记录干板。对记录干板曝光 后便可获得干涉图形,即全息显示图像。再现时,利用与参考光波相 同的光波照射记录干板,人眼在透射光中观看全息板,便可在板后原 物处观看到与原物完全相同的再现虚像。
偏光式
光分法显示图解
圆偏振 光的形 成
3D图 像的 形成
采用交错偏光片的 3D 液晶电视
偏光片眼镜
IMAX3D影片? IMAX(即Image Maximum的缩写)是一种能够放映比传统胶片更大和更 高解像度的电影放映系统。画面高亮度、高清晰。 3D是画面立体,同时在银幕上投射出两组独立的影像:一组给左眼看, 一组给右眼看。观众戴上特制的3D偏光镜把看到的影像合并。
色差式
常见问题解析:
画面闪烁
画面重影 缺色
色差式3D画面用裸眼观看时的效果
偏光式
(光分法)
将左右眼欲看到影像以奇/偶列形成显示影像, 再由显示器表面贴附”微相位差(Micro-Retarder)” 转为互相垂直的偏极光,观赏者透过偏光式眼镜达 到立体视觉感受。
ห้องสมุดไป่ตู้
偏光式
光:
自然光
偏振光
3D显示技术
3D Display
内容
什么是3D显示技术 3D显示技术的分类 3D显示技术的原理
3D显示技术的发展
一、什么是3D显示技术?
3D – 3 Dimension 即三维立体,是相对于2D 平面的一个概念。我们人类所生存的世界就是 一个三维的空间,我们在现实世界中观察到的 物体也都具有三个维度:高度、宽度和深度。 我们早已习惯了3D 的世界,然而由于技术发 展的局限性,在电影、广播电视以及印刷等媒 体世界中,我们被局限在了二维世界。
通过光线遮挡的方式来产生视差从而实现立体效果
优点:与既有的LCD液晶工艺兼容,因此在量产性和成本上较具优势 缺点:画面亮度低,分辨率会随着显示器在同一时间播出影像的增加 呈反比降低
视差屏障式显示终端
型号
3D技术
SY3DAP47
狭缝光栅式高亮屏裸眼 多视点显示技术
4— 6 米
最佳观看距离
3D视图
8/9 全高清(1920×1080 RGB-Pixel)
基于运动扫描的体三维显示
螺旋面片上的像素运动情况即等价于像素沿轴向在两个相 距360/N的水平面间作竖直移动,因此体素大小可以近似均等
基于运动扫描的体三维显示
基于LED阵列平板旋转的三维显示 优点:结构简单 缺点:清晰度受限;平板旋转屏三维体素的空间分布不均匀,
基于运动扫描的体三维显示
Felix 3D 系统 基于螺旋屏加激光扫描 优点:不需要复杂的转向光学部件 缺点:激光扫描器的速度有限,显示容量受限
各方法的优劣
色分法: 格 疲劳。 光分法: 但 方向的光。 时分法: 较 实现3维简易,对视场和景深无严
的限制。但易引起眼 部的
宽视域、大景深,成像质量优异, 头部倾斜是无法过滤掉另一 丞相优异,但眼镜由液晶构成成本
高。 视察挡板法: 无需其他辅助设备,能2D\3D切换, 但有效像素低,光源被遮挡, 亮度低。 透镜阵列法: 画面明亮,观看简便,但对屏面与柱
反射式全息显示图像
将物体置于全息板的右侧,相干点光源从左方照射全息 板。将直接照射至全息板平面上的光作为参考光;而将 透过全息板(未经处理过的全息板是透明的)的光射向 物体,再由物体反射回全息板的光作为物光,两束光干 涉后便形成全息显示图像。由于记录时物光与参考光分 别从全息板两侧入射,故全息板上的干涉条纹层大致与 全息板平面平行。再现时,利用光源从左方照射全息板, 全息板中的各条纹层宛如镜面一样对再现光产生出反射, 在反射光中观看全息板便可在原物处观看到再现的图像。
3D显示的特点
• • 立体逼真:3D 影像与现实生活中习惯的场景达成一致,更加逼真; 临场感强:3D 影像的立体感、景深,让观者产生身临其境的感觉;
•
强烈视觉冲击:可以利用3D 影像特点制造各种强烈的视觉冲击,如体 育比赛直播、演唱会现场直播,以及各种宏大的电影场景;
3D显示技术
3D显示技术就是利用一系列的光学方法 使人左右眼产生视差从而接受到不同的 画面,在大脑形成3D(3Dimensions) 立体效果的技术。
偏光式 —
投影屏幕
以2台偏光投影机(偏光角度互相垂直)于相同投影 幕上同时播放左、右视角画面,观看者藉由左、右眼 偏光角度互相垂直偏光式眼镜观看达到立体视觉。
偏光式
圆偏振光:线偏光片加上相位差膜(Retarder Film), 使得光线因相位差膜而产生旋转角度的圆偏极光; 因而圆偏光组成要素为偏光片加上相位差膜;偏光 片+1/4波长相位差膜(Quarter Wave Retarder) = 左旋或右旋圆偏光片
700cd/m²(3D图像:
自然分辨率 自然亮度
视差屏障式显示器
柱状透镜式
在显示器前面板镶上一块柱透镜板组成裸眼立体显示的光学 系统,像素的光线通过柱透镜的折射,把视差图像投射到人 的左、右眼,经视觉中枢的立体融合获得立体感。柱透镜板 由细长的半圆柱透镜紧密排列构成。左右眼视图分别位于奇 列和偶列像素上,形成视图分区。
立体图相对技术
色差式
采用互补色色彩将图形或物体显示在平 面图片上,观视者通过光学滤色镜对图片进 行双眼同时观视,即可展现其图形成物体的 立体形态。
色差式
滤色原理
互补色眼镜
色分法成像的图
色分法的 互补色眼镜
色差式
特点:
不需要改动硬件设备,眼镜设备简单,成本低, 无需维护 。
两只眼睛能看到的颜色不同,画面颜色损失严重, 而且亮度降低 ,画面过滤不全引起“鬼影”而使得 观看效果大大降低 。 应用于家庭观赏和入门尝试3D的产品 。
基于运动扫描的体三维显示
Perspecta 3D 系统 采用柱面轴心旋转外加空间投影的结构 优点:旋转结构简单,能显示近10亿个体象素 缺点:为了解决平面屏带来的体素重叠死区,引入了复杂精密的光学中 继转向器件,增加了系统的制备难度和生产成本。
体显示技术
静态层叠式体三维显示
体积式显示器
DepthCube 3D 系统 利用DLP投影,在层叠胆甾液晶屏幕上显像 优点:避免了运动扫描方式固有的亮度和旋转问题 缺点:观看角度受限,成本较高。
人眼3D视觉原理
3D显示生理
• 如果要实现真正的3D,就需要两眼同时看到一个画面的不同位置。比 如,举起一个手指,只用一只眼睛看,那么它是平面的,只有两只眼 睛同时看,它才是立体的。
3D显示需求
左眼看到左眼影像 左右眼看到不同 视角的影像 右眼看到右眼影像
大脑融合成具有 深度的3D影像
视觉因素-视差
全像式原理结构图
全像式成像图片
上图是一对从车的左右侧面采取的图像。
体显示技术
德州仪器(Texas Instrument, TI)提出体积式显示器。主要是利用 一个快速旋转的圆盘,配合由底下投影的雷射光源,由雷射光源 投射到快速旋转的旋转面时,会产生散射的效应,以扫描空间中 的每一点。
体积式原理图
人双眼能同时看相 同一方向,但是眼 间距仍有约60mm, 所以不能完全瞄上 一条直线,在一定 的范围内双眼看到 的图像会产生一定 的差异。