相关性分析回归分析
简要说明相关分析与回归分析的区别

相关分析与回归分析的区别和联系
一、回归分析和相关分析主要区别是:
1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;
2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x 可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;
3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制.
二、回归分析与相关分析的联系:
1、回归分析和相关分析都是研究变量间关系的统计学课题。
2、在专业上研究上:
有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关分析和回归分析。
3、从研究的目的来说:
若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析.
三、扩展资料:
1、相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法。
例如,人的身高和体重之间;空气中的相对湿度与降雨量之间的相关关系都是相关分析研究的问题。
2、回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
相关性与回归分析

相关性与回归分析在我们的日常生活和各种科学研究中,经常会遇到需要分析两个或多个变量之间关系的情况。
这时候,相关性与回归分析就成为了非常有用的工具。
它们能够帮助我们理解变量之间的相互影响,预测未来的趋势,以及为决策提供有力的依据。
让我们先来聊聊相关性。
相关性主要是用来衡量两个变量之间线性关系的紧密程度。
比如说,我们想知道一个人的身高和体重之间有没有关系,或者学习时间和考试成绩之间是不是存在关联。
相关性分析会给出一个数值,这个数值通常在-1 到 1 之间。
如果相关性数值接近 1,那就表示两个变量之间存在很强的正相关关系,也就是说,一个变量增加,另一个变量也会随之增加。
相反,如果相关性数值接近-1,就是很强的负相关关系,一个变量增加,另一个变量会减少。
而当相关性数值接近 0 时,则表示两个变量之间几乎没有线性关系。
举个例子,我们发现气温和冰淇淋销量之间存在正相关关系。
天气越热,人们购买冰淇淋的数量往往就越多。
但是要注意,相关性并不意味着因果关系。
虽然气温和冰淇淋销量高度相关,但气温升高并不是导致人们购买冰淇淋的唯一原因,可能还有其他因素,比如人们的消费习惯、促销活动等。
接下来,我们再深入了解一下回归分析。
回归分析实际上是在相关性分析的基础上更进一步,它不仅能够告诉我们变量之间的关系强度,还能建立一个数学模型来预测一个变量的值,基于另一个或多个变量的值。
比如说,我们通过收集数据,发现房子的面积和价格之间存在一定的关系。
然后,我们可以使用回归分析建立一个方程,比如“价格= a×面积+b”,其中 a 和 b 是通过数据分析计算出来的系数。
这样,当我们知道一个房子的面积时,就可以用这个方程来预测它大概的价格。
回归分析有很多种类型,常见的有线性回归和非线性回归。
线性回归假设变量之间的关系是直线的,就像我们刚才提到的房子面积和价格的例子。
但在很多实际情况中,变量之间的关系并不是直线,而是曲线,这时候就需要用到非线性回归。
相关性分析和回归分析

相关性分析和回归分析相关性分析和回归分析是统计学中两种常见的统计工具,它们可以帮助我们更好地理解数据并从中提取出有用的信息。
相关性分析是研究两个或以上变量之间相互关系的一种方法,它确定两个变量之间的线性关系,试图推断其变量对其他变量的影响程度。
相关性分析通常分为两类,即变量间的相关性分析和单变量的相关性分析,它们通常使用皮尔森积矩关系来描述变量之间的关系。
回归分析是一种用于确定变量之间相互影响关系的统计分析方法,它可以用来预测变量的变化趋势,并以最小平方和误差度量结果的实际准确性。
回归分析通过构建预测模型来预测未来的结果,并通过残差分析来检测模型的准确性。
相关性分析和回归分析都是统计学中常用的分析方法,它们可以帮助我们更好地理解数据,并应用更多的知识进行数据分析。
首先,我们需要对数据进行观察,分析数据的规律。
为了进行有效的分析,必须了解数据变量之间的相关性,并正确记录变量值。
其次,我们需要使用相关性分析来确定数据变量之间的关系,并确定变量之间存在的线性关系。
接下来,要使用回归分析来建立模型,以预测未来的变量值。
最后,我们可以分析统计检验结果并进行总结,以指导下一步操作。
相关性分析和回归分析也可以用来评估两个或多个变量的影响,以支持业务决策。
在衡量两个或多个变量之间的关系时,可以利用将变量的数值表示成皮尔森积矩关系来评估彼此之间的函数关系。
回归分析也可以用来估算模型的精确性,可以用来评估模型的准确性并决定其可信度。
为此,我们只需要对模型的预测结果与实际观察值进行比较,并计算在模型上受误差影响的准确性。
总的来说,相关性分析和回归分析是统计学中重要的统计工具,它们可以有效地帮助研究人员更好地理解数据,并从中获得有用的信息。
它们可以用来监测数据变量之间的关系,并评估业务问题的潜在影响。
它们还可以用来估算模型的准确性和可信度,以便用于业务策略制定。
简述数学中的回归分析与相关性检验

简述数学中的回归分析与相关性检验回归分析和相关性检验是数学中常用的两种统计方法,用于研究变量之间的关系和进行预测分析。
本文将简要介绍回归分析和相关性检验的基本概念和应用。
一、回归分析回归分析是一种用于研究自变量和因变量之间关系的统计方法。
它通过建立一个数学模型,来描述自变量对因变量的影响程度和趋势。
回归分析常用于预测和解释变量之间的关系,同时还可以用于控制其他因素对因变量的影响。
在回归分析中,自变量通常是独立变量,而因变量是被解释或预测的变量。
回归分析的基本原理是找到最佳拟合的直线或曲线,使得因变量的观测值与预测值之间的误差最小。
常见的回归分析方法包括线性回归、多元回归、非线性回归等。
线性回归是最常见的回归分析方法之一,它假设自变量和因变量之间存在线性关系。
线性回归模型可以表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。
通过最小二乘法可以估计出回归系数的值,进而进行预测和推断。
多元回归是一种包含多个自变量的回归分析方法。
它可以用于研究多个自变量对因变量的影响,并控制其他因素的影响。
多元回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中X1、X2、...、Xn表示多个自变量。
非线性回归是一种用于研究非线性关系的回归分析方法。
它通过拟合非线性函数来描述自变量和因变量之间的关系。
非线性回归模型的形式可以根据具体问题进行选择,例如指数模型、对数模型、幂函数模型等。
回归分析广泛应用于各个领域,例如经济学、社会学、医学等。
它可以帮助研究人员理解变量之间的关系,预测未来趋势,以及进行决策和政策制定。
二、相关性检验相关性检验是一种用于判断两个变量之间关系强度和方向的统计方法。
它可以帮助研究人员确定变量之间是否存在相关性,以及相关性的程度。
常用的相关性检验方法包括皮尔逊相关系数、斯皮尔曼相关系数等。
皮尔逊相关系数用于度量两个连续变量之间的线性相关性,取值范围在-1到1之间。
回归分析与相关性分析的基本原理与应用

回归分析与相关性分析的基本原理与应用数据分析是现代社会中非常重要的一个领域,在各个行业和领域中都有广泛的应用。
而回归分析和相关性分析是数据分析中经常使用的两种方法,本文将探讨回归分析和相关性分析的基本原理和应用。
一、回归分析的基本原理与应用回归分析是用来研究变量之间关系的一种统计方法,主要用于预测一个变量(因变量)与其他变量(自变量)之间的关系。
具体来说,回归分析可以帮助我们确定自变量对因变量的影响程度以及预测因变量的取值。
回归分析的基本原理是基于线性回归模型,即通过建立一个线性方程来描述因变量和自变量之间的关系。
简单线性回归模型的表达式为:Y = α + βX + ε,其中Y表示因变量,X表示自变量,α和β为回归系数,ε为误差项。
在应用回归分析时,我们需要确定自变量与因变量之间的关系强度以及回归系数的显著性。
这可以通过计算相关系数、拟合优度等统计指标来实现。
此外,回归分析还可以通过预测因变量的取值来进行决策和规划,例如销量预测、市场需求预测等。
二、相关性分析的基本原理与应用相关性分析是用来研究变量之间线性相关关系的一种统计方法,主要用于衡量变量之间的相关性程度。
相关性分析可以帮助我们理解变量之间的相互关系,以及在研究和预测中的应用。
相关系数是用来衡量两个变量之间相关性的指标,最常用的是皮尔逊相关系数。
皮尔逊相关系数的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。
通过计算相关系数可以判断两个变量之间是否存在线性关系,以及线性关系的强弱程度。
在应用相关性分析时,我们可以利用相关系数来进行综合评价和比较。
例如,在市场研究中,我们可以通过相关性分析来确定产品特性与客户购买意愿之间的关系,以指导产品开发和市场推广策略。
三、回归分析与相关性分析的比较回归分析和相关性分析都是研究变量之间关系的统计方法,但它们在方法和应用上存在一些区别。
首先,回归分析主要关注自变量对因变量的影响程度和预测,而相关性分析主要关注变量之间的相关程度。
相关分析和回归分析

相关分析和回归分析相关分析和回归分析是统计学中最基础的两种分析方法,它们都用于研究数据变量之间的关系。
因为它们都是研究两个变量之间关系的,所以它们常常会被混淆起来,但它们其实在原理上是不同的,有不同的应用场景。
一、相关分析相关分析是一种简单的统计分析,用来检验不同变量之间是否存在相互关系。
它可以通过计算出变量之间的相关系数,来判断变量之间是线性关系还是非线性关系。
另外,它还可以度量两个变量的线性关系的相关程度,用来度量不同变量之间的关系强度。
相关分析的应用非常广泛,它可以帮助研究者了解数据之间的关系,也可以用来预测数据的变化趋势。
比如,可以用相关分析来研究一个地区的薪水水平和就业水平之间的关系,用来预测未来就业水平和薪资水平会有怎样的变化趋势。
二、回归分析回归分析是一种统计分析,用以研究两个变量之间的数量关系,并建立起变量之间的数量模型。
它用于预测和分析数据,从而探索数据之间的关系。
比如,从客户收入、购买频率等多个因素来建立一个回归模型,从而预测客户的未来购买意愿。
回归分析也是一种非常有用的统计方法,它可以用来研究数据之间的关系,并预测数据未来的变化趋势。
另外,它还可以用来预测特定变量的值,比如预测未来股市的涨跌情况。
总结以上就是相关分析和回归分析的基本内容介绍。
相关分析用于研究数据变量之间的关系,可以帮助研究者了解数据之间的关系,并预测数据的变化趋势;而回归分析是一种统计分析,用以研究两个变量之间的数量关系,可以用来预测特定变量的值,也可以研究数据之间的关系,并预测数据未来的变化趋势。
相关分析和回归分析可以说是统计学中最基础的两种分析方法,它们都具有重要的应用价值,广泛用于各种数据分析工作。
统计学中的相关性和回归分析

统计学中的相关性和回归分析统计学中,相关性和回归分析是两个重要的概念和方法。
它们旨在揭示变量之间的关系,并可以用来预测和解释观察结果。
本文将介绍相关性和回归分析的基本原理、应用及其在实践中的意义。
一、相关性分析相关性是指一组变量之间的关联程度。
相关性分析可以帮助我们理解变量之间的关系,以及这种关系的强度和方向。
常用的相关性指标有皮尔逊相关系数、斯皮尔曼相关系数和判定系数等。
皮尔逊相关系数是最常见的衡量变量之间线性关系的指标。
它的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关。
例如,在研究身高和体重之间的关系时,如果相关系数为0.8,则说明身高和体重呈现较强的正相关。
斯皮尔曼相关系数则不要求变量呈现线性关系,而是通过对变量的序列进行排序,从而找到它们之间的关联程度。
它的取值也在-1到1之间,含义与皮尔逊相关系数类似。
判定系数是用于衡量回归模型的拟合程度的指标。
它表示被解释变量的方差中可由回归模型解释的部分所占的比例。
判定系数的取值范围在0到1之间,越接近1表示模型对数据的拟合越好。
二、回归分析回归分析是一种用于建立变量之间关系的统计方法。
它通过建立一个数学模型来解释和预测依赖变量和自变量之间的关系。
回归模型可以是线性的,也可以是非线性的。
线性回归是最常见的回归分析方法之一。
它假设自变量和因变量之间存在着线性关系,并通过最小二乘法来估计模型中的参数。
线性回归模型通常表示为y = β0 + β1x1 + β2x2 + ... + βnxn,其中y为因变量,x1、x2等为自变量,β0、β1等为模型的参数。
非线性回归则适用于自变量和因变量之间存在非线性关系的情况。
非线性回归模型可以是多项式回归、指数回归、对数回归等。
回归分析在实践中有广泛的应用。
例如,在市场营销中,回归分析可以用来预测销售量与广告投入之间的关系;在医学研究中,回归分析可以用来探究疾病发展与遗传因素之间的联系。
相关性分析及回归分析

相关性分析及回归分析相关性分析和回归分析是统计学中常用的两种方法,用于研究变量之间的关系。
相关性分析可以帮助我们了解变量之间的关联程度,而回归分析则可以帮助我们预测一个变量对另一个变量的影响程度。
在本文中,我将介绍相关性分析和回归分析的基本概念和方法,并且提供一些实际应用的例子。
相关性分析是一种衡量两个变量之间关系强度和方向的统计分析方法。
它可以告诉我们两个变量是正相关、负相关还是没有相关性。
相关系数是衡量相关性的一个指标,常用的有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个连续变量之间的关系,它的取值范围从-1到1,正值表示正相关,负值表示负相关,而0表示没有相关性。
斯皮尔曼相关系数适用于两个顺序变量之间的关系,它的取值范围也是-1到1,含义和皮尔逊相关系数类似。
回归分析是一种建立一个或多个自变量与因变量之间关系的统计模型的方法。
回归模型可以用于预测一个变量对另一个变量的影响程度,并且可以检验自变量的显著性。
在回归分析中,自变量可以是连续变量或者分类变量,而因变量必须是连续变量。
回归模型的基本形式是y = b0 +b1x1 + b2x2 + … + bnxn + ε,其中y代表因变量,x1, x2, …, xn代表自变量,b0, b1, b2, …, bn代表回归系数,ε代表误差项。
一个例子可以更好地说明相关性分析和回归分析的应用。
假设我们想了解一个人的身高和体重之间的关系。
首先我们可以使用相关性分析来衡量身高和体重之间的相关性。
收集一组数据包括人们的身高和体重,然后使用皮尔逊相关系数计算它们之间的相关性。
如果相关系数是正值且接近1,则表示身高和体重呈强正相关;如果相关系数是负值且接近-1,则表示身高和体重呈强负相关;如果相关系数接近0,则表示身高和体重之间没有明显的相关性。
接下来,我们可以使用回归分析来构建一个预测一个人的体重的回归模型。
我们可以将身高作为自变量,体重作为因变量,然后拟合一个回归方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题的提出
发现变量之间的统计关系,并且 用此规律来帮助我们进行决策才 是统计实践的最终目的。 一般来说,统计可以根据目前所 拥有的信息(数据)来建立人们 所关心的变量和其他有关变量的 关系。这种关系一般称为模型 (model)。
问题的提出
假如用Y表示感兴趣的变量,用X表示其 他可能与Y有关的变量(X也可能是若干 变量组成的向量)。则所需要的是建立 一个函数关系Y=f(X)。 这里Y称为因变量或响应变量 (dependent variable, response variable),而X称为自变 量,也称为解释变量或协变量
问题的提出
对于现实世界,不仅要知其然,而且 要知其所以然。顾客对商品和服务的 反映对于企业是至关重要的,但是仅 仅有满意顾客的比例是不够的;商家 希望了解什么是影响顾客观点的因素, 及这些因素如何起作用。 类似地,学校不能仅仅知道大学英语 四级的通过率,而且想知道什么变量 影响通过率,以及如何影响。
80
70
60
但对于具体个人来说,大约有一半的学生的 40 高一平均成绩比初三时下降,而另一半没有 40 50 60 70 80 90 100 110 变化或有进步
初三 成绩
一 绩 高 成
50
问题的提出
目前的问题是怎么判断这两 个变量是否相关、如何相关 及如何度量相关? 能否以初三成绩为自变量, 高一成绩为因变量来建立一 个回归模型以描述这样的关 系,或用于预测。
定量变量的线性回归分析
对例1中的两个变量的数据进行线性回归,就 是要找到一条直线来适当地代表图1中的那些 点的趋势。 首先需要确定选择这条直线的标准。这里介绍 最小二乘回归(least squares regression)。古 汉语“二乘”是平方的意思。 这就是寻找一条直线,使得所有点到该直线的 豎直距离的平方和最小。用数据寻找一条直线 的过程也叫做拟合(fit)一条直线。
(independent variable, explanatory variable, covariate) 。建立这种关系的过程就叫做
回归(regression)。
问题的提出
一旦建立了回归模型,除了对变量的 关系有了进一步的定量理解之外,还 可以利用该模型(函数)通过自变量 对因变量做预测(prediction)。 这里所说的预测,是用已知的自变量 的值通过模型对未知的因变量值进行 估计;它并不一定涉及时间先后。 先看几个后面还要讨论的数值例子。
Sig. .000a
a. Predictors: (Constant), j3 b. Dependent Variable: s1
定量变量的线性回归分析
和刚才简单的回归模型类似,一般的有k 个(定量)自变量x1, x2…, xk的对因变量 y的线性回归模型为(称为多元回归)
y 0 1 x1 2 x2 k xk e
(b)
-1
0
1
2
-2
-3
-2
-1 x
0
1
2
-2
-2
-1 x
0
1
2
负线性相关
2 1 y 0
(c)
相关但非线性相关
(d)
y 4 0 2
-3
-2
-1
-2
-1
0 x
1
2
6
8
-2
-1
0 x
1
2
3
定量变量的相关
但如何在数量上描述相关呢?下面引进几种 对相关程度的度量。 Pearson 相 关 系 数 ( Pearson’s correlation coefficient)又叫相关系数或线性相关系数。 它一般用字母r表示。它是由两个变量的样本 取值得到,这是一个描述线性相关强度的量, 取值于-1和1之间。当两个变量有很强的线性 相关时,相关系数接近于1(正相关)或-1 (负相关),而当两个变量不那么线性相关 时,相关系数就接近0。
定量变量的线性回归分析
此外,计算机还计算了一个在零假设下有 F分布的检验统计量,它是用来检验回归 拟合好坏的(零假设是因变量和自变量没 有关系)。
Model Summary Adjusted R Square .625 Std. Error of the Estimate 7.22091 Model 1 R .795a R Square .632
3
家庭 收入
家庭 收入
问题的提出
到底学生在高一的家庭收入对成 绩有影响吗?是什么样的影响? 是否可以取初三成绩(这是定量 变量)或(和)家庭收入(定性 变量)为自变量,而取高一成绩 为因变量,来建立一个描述这些 变量之间关系的回归模型呢?
问题的提出
例2 这是200个不同年龄和性别的人对某 项服务产品的认可的数据(logi.txt)。 这里年龄是连续变量,性别是有男和女 (分别用1和0表示)两个水平的定性变 量,而变量观点则为包含认可(用1表 示)和不认可(用0表示)两个水平的 定性变量(见下页数据)。 想要知道的是年龄和性别对观点有没有 影响,有什么样的影响,以及能否用统 计模型表示出这个关系。
定量变量的相关
人们可能会问,上面的三种对相关 的度量都是在其值接近1或-1时相关, 而接近于0时不相关。到底如何才 能够称为“接近”呢? 这很难一概而论。但在计算机输出 中都有和这些相关度量相应的检验 和p-值;因此可以根据这些结果来 判断是否相关(见下面例1的继续)。
定量变量的相关
例1(继续)得到初三和高一成绩的 Pearson相关系数,Kendall t 相关系 数 和 Spearman 秩 相 关 系 数 分 别 为 0.795, 0.595和0.758。 这三个统计量相关的检验(零假设均 为不相关)全部显著,p-值都是0.000。 注意这种0.000的表示并不表示这些 p-值恰好等于零,只是小数点前三位 是0而已。
a. Predictors: (Constant), j3
ANOVAb Sum of Squares Regression Residual Total 4307.206 2502.794 6810.000
Model 1
df 1 48 49
Mean Square 4307.206 52.142源自F 82.606问题的提出
该数据中,除了初三和高一的成 绩之外,还有一个定性变量(没 有出现在上面的散点图中)。它 是学生在高一时的家庭收入状况; 它有三个水平:低、中、高,分 别在数据中用1、2、3表示。
为研究家庭收入情况对学生成绩变 化的影响,下面点出两个盒形图, 左边一个是不同收入群体的高一成 绩的盒形图,右边一个是不同收入 群体的高一和初三成绩之差的盒形 图。
年龄
性 别 ( 0:女 , 1:男 )
定量变量的相关
如果两个定量变量没有关系,就 谈不上建立模型或进行回归。但 怎样才能发现两个变量有没有关 系呢? 最简单的直观办法就是画出它们 的散点图。下面是四组数据的散 点图;每一组数据表示了两个变 量x和y的样本。
(a)
不相关
y
正线性相关
y -1 0 1 2
110 100 90 80 70 60 30 20
一 绩 初 成 之 高 成 与 三 绩 差
10
0
-10
•可以看出收入高低对高一成绩稍有影响,但 不如收入对成绩的变化(高一和初三成绩之 差)的影响那么明显。
50 40 30
39 25
一 绩 高 成
-20
-30
N=
11
27
12
N=
11
27
12
1
2
3
1
2
第三讲
相关分析、回归分析
客观事物之间的关系
函数关系:指两事物之间的一种一一对应的 关系,如商品的销售额和销售量之间的关 系。 相关关系(统计关系):指两事物之间的一 种非一一对应的关系,例如家庭收入和支 出、子女身高和父母身高之间的关系等。 相关关系又分为线性相关和非线性相关。 相关分析和回归分析都是分析客观事物之间 相关关系的数量分析方法。
H0 : 1 0 H1 : 1 0
计算机输出也给出了这个检验:t检验 统计量为9.089,而p-值为0.000。
定量变量的线性回归分析
除了对的检验之外,还有一个说明自变量解 释因变量变化百分比的度量,叫做决定系数 (coefficient of determination,也叫测定系 数或可决系数),用R2表示。 对于例1,R2=0.632;这说明这里的自变量可 以大约解释63%的因变量的变化。R2越接近1, 回归就越成功。由于R2 有当变量数目增加而 增大的缺点,人们对其进行修改;有一修正 的R2(adjusted R square)。
定量变量的相关
Spearman 秩相关系数(Spearman rank correlation coefficient 或Spearman’s r) 它和Pearson相关系数定义有些类似,只 不过在定义中把点的坐标换成各自样本 的秩(即样本点大小的“座次”)。 Spearman相关系数也是取值在-1和1之间, 也有类似的解释。通过它也可以进行不 依赖于总体分布的非参数检验。
70 J3
80
90
100
定量变量的线性回归分析 这个直线实际上是对所假设的下 面线性回归模型的估计(这里的e 是随机误差):
y 0 1 x e
我们得到的截距和斜率(26.444和 0.651)是对0和1的估计。
定量变量的线性回归分析
由于不同的样本产生不同的估计,所 以估计量是个随机变量,它们也有分 布,也可以用由他们构造检验统计量 来检验 0 和 1 是不是显著。拿回归主 要关心的来说,假设检验问题是