材料腐蚀的分类
腐蚀的分类

简介:1 腐蚀的分类及特点1.1 点蚀点蚀又称坑蚀和小孔腐蚀。
点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。
点蚀经唱法生在表面有钝化膜或保护膜的金属上。
由于金属材料中存在缺陷、杂质和溶质等的不...1 腐蚀的分类及特点1.1 点蚀点蚀又称坑蚀和小孔腐蚀。
点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。
点蚀经唱法生在表面有钝化膜或保护膜的金属上。
由于金属材料中存在缺陷、杂质和溶质等的不均一性,当介质中含有某些活性阴离子(如Cl -)时,这些活性阴离子首先被吸附在金属表面某些点上,从而使金属表面钝化膜发生破坏。
一旦这层钝化膜被破坏又缺乏自钝化能力时,金属表面就发生腐蚀。
这是因为在金属表面缺陷处易漏出机体金属,使其呈活化状态,而钝化膜处仍为钝态,这样就形成了活性—钝性腐蚀电池,由于阳极面积比阴极面积小得多,阳极电流密度很大,所以腐蚀往深处发展,金属表面很快就被腐蚀成小孔,这种现象被称为点蚀。
在石油、化工的腐蚀失效类型统计中,点蚀约占20%〜25%。
流动不畅的含活性阴离子的介质中容易形成活性阴离子的积聚和浓缩的条件,促使点蚀的生成。
粗糙的表面比光滑的表面更容易发生点蚀。
PH 值降低、温度升高都会增加点蚀的倾向。
氧化性金属离子(如Fe3+、Cu2+、Hg2+等)能促进点蚀的产生。
但某些含氧阴离子(如氢氧化物、铬酸盐、硝酸盐和硫酸盐等)能防止点蚀。
点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。
点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。
1.2 缝隙腐蚀在电解液中,金属与金属或金属与非金属表面之间构成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞,形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为缝隙腐蚀。
缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、缠绕与金属重叠处,它可以在不同的金属和不同的腐蚀介质中出现,从而给生产设备的正常运行造成严重障碍,甚至发生破坏事故。
材料腐蚀与防护

材料腐蚀与防护材料腐蚀是破坏金属与其他材料性能的主要因素之一。
本文将探讨材料腐蚀的原因、分类、对工业生产的影响,并介绍几种常见的防腐方法。
一、材料腐蚀的原因材料腐蚀是由于材料表面与外界介质(气体、液体、固体)相互作用而导致的一种破坏现象。
其中氧化、腐蚀、电化学腐蚀是主要原因。
氧化是指金属在空气中或其他氧化性气体中与氧反应形成金属氧化物,导致表面氧化腐蚀。
而腐蚀是指金属或合金在特定条件下受化学或电化学作用而变质或溶解的过程。
电化学腐蚀是指在电解质溶液中,金属表面上生成一些电化学反应,使金属表面腐蚀。
二、材料腐蚀的分类根据腐蚀原因,材料腐蚀可分为物理腐蚀和化学腐蚀两类。
物理腐蚀指在材料表面受到机械力作用或磨损导致的表面损害。
化学腐蚀是指金属在特定环境中受到化学作用而发生的腐蚀现象。
化学腐蚀又可以细分为氧化腐蚀、酸性腐蚀、碱性腐蚀等。
三、材料腐蚀对工业生产的影响材料腐蚀会降低材料的强度、硬度、耐磨性、韧性等性能,导致设备的损坏和寿命缩短。
在工业生产中,材料腐蚀不仅会造成设备的停工维修,增加维修成本,还会对产品质量造成影响,进而影响企业的经济效益。
四、常见的防腐方法为了延长材料的使用寿命,减少材料腐蚀带来的负面影响,工程界广泛采用各种防腐技术。
常见的防腐方法包括防护涂层、阳极保护、防腐合金材料等。
防腐涂层是在金属表面形成一层保护膜,隔绝金属表面与外界介质的直接接触,起到防腐护材料的作用。
阳极保护则是靠金属阳极的电化学性质来保护金属表面,使金属不易腐蚀。
防腐合金材料则是在金属表面镀一层稳定、耐腐蚀的合金,增加材料的耐蚀性。
结语材料腐蚀是工业生产中不可忽视的问题,对材料的选择和处理,以及采取有效的防腐措施至关重要。
只有有效地控制材料腐蚀,才能确保设备的正常运行,延长设备的使用寿命,提高工业生产的效率和质量。
希望本文对您了解材料腐蚀及防护方法有所帮助。
腐蚀的基本类型

腐蚀的基本类型论文导读:而引起的变质和破坏统称为腐蚀。
材料腐蚀的现象和机理比较复杂。
腐蚀控制技术涉及面广。
腐蚀控制,免费论文,腐蚀的基本类型。
关键词:腐蚀,材料腐蚀,腐蚀控制一般而言,金属、混凝土、木材等材料受周围环境介质的影响而发生的化学、电化学和物理等反应,而引起的变质和破坏统称为腐蚀,其中也包括上述因素与机械因素、生物因素等的共同作用。
金属腐蚀的主要对象,其中尤以钢铁的腐蚀最为常见,危害、损害性极大。
一、腐蚀的概念及分类(一)腐蚀的概念腐蚀是材料与其环境间的物理化学作用引起材料本身性质的变化,如铁的生锈是金属腐蚀的普遍形式,又如氢氧化钠破坏肌肉和植物纤维。
材料的腐蚀是包括材料本身和环境介质两者在内的一个具有反应作用的体系,腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。
材料包括金属和非金属材料,如碳钢及其合金、有色金属、塑料、混凝土和木材等,在一个腐蚀系统中,对材料行为起决定性作用的是化学成分、组织结构和表面形态。
材料的周围环境介质包括与其接触的气体、液体和固体以及周围环境条件,如温度、压力、速度、光照、辐射、生物条件等。
这个作用包括化学的、电化学的、机械的、生物的以及物理的作用。
采用科学的方法防止或者控制腐蚀的危害作用的工程,称为腐蚀工程。
(二)材料腐蚀的分类及特征材料腐蚀的现象和机理比较复杂,材料腐蚀的分类方法也有许多,根据不同的起因、机理和破坏形式而有各种方法。
以下介绍几种常用的分类方法。
1.按腐蚀机理分类通常材料腐蚀按照腐蚀机理可以分为金属化学腐蚀、金属电化学腐蚀、结晶腐蚀、物理化学复合腐蚀。
(1)化学腐蚀:是指金属表面与非电解质直接发生纯化学反应而引起的破坏、其特点是在反应过程中没有电流产生。
如铝在四氯化碳、三氯甲烷或乙醇中的腐蚀,镁或钛在甲醇中的腐蚀、物理化学复合腐蚀。
(2)电化学腐蚀:是指金属表面与离子导电的介质发生化学反应而产生的破坏。
在反应过程中有电流产生,腐蚀金属表面上存在着阴极和阳极。
金属材料的腐蚀类型

金属材料的腐蚀类型一、引言金属材料是工业生产中常用的材料之一,但在使用过程中,金属材料会受到腐蚀的影响。
腐蚀是指金属与周围环境发生化学反应,导致金属表面失去原有的性质和功能。
本文将介绍金属材料的腐蚀类型及其特点。
二、金属材料的腐蚀类型1. 统一腐蚀统一腐蚀是指金属表面均匀地被化学反应侵蚀所致的现象。
统一腐蚀通常是由于金属与氧气、水等物质发生反应而引起的。
在统一腐蚀过程中,金属表面会逐渐失去光泽,并形成氧化物或其他化合物。
2. 局部腐蚀局部腐蚀是指金属表面只有局部区域被侵袭所致的现象。
局部区域受到侵袭后,周围区域仍能保持原有性质和功能。
局部区域的大小和形状不定,可以是点状、线状或面状。
3. 穿孔型腐蚀穿孔型腐蚀是指金属表面出现孔洞或凹陷所致的现象。
穿孔型腐蚀通常发生在金属表面存在缺陷的地方,如气泡、夹杂等。
4. 底部腐蚀底部腐蚀是指金属材料在液体中长时间浸泡后,底部出现侵蚀所致的现象。
底部腐蚀通常发生在容器、管道等设备的底部。
5. 焊缝区域腐蚀焊缝区域是指金属材料在焊接过程中形成的接头处。
焊接过程中,由于温度变化和热应力等因素的影响,焊缝区域容易受到侵袭而引起局部腐蚀。
三、不同类型金属材料的主要腐蚀类型1. 铁系金属铁系金属主要包括铁、钢和铸铁等。
这些材料主要受到统一和局部两种类型的侵袭。
统一侵袭通常是由于氧化反应引起的,而局部侵袭则可以由多种因素引起,如酸雨、盐雾、微生物等。
2. 铝合金铝合金主要受到局部腐蚀的影响,尤其是在海水中容易发生孔洞型腐蚀。
此外,铝合金还容易受到氧化反应的影响而发生统一侵袭。
3. 铜合金铜合金主要受到统一侵袭的影响。
在大气中,铜合金会逐渐形成绿色锈层。
此外,在含有硫化物的环境中,铜合金容易发生孔洞型腐蚀。
4. 镁合金镁合金主要受到局部和统一两种类型的侵袭。
在水中或潮湿环境中,镁合金容易发生局部孔洞型腐蚀;而在含有氯离子和硫酸根离子的环境中,镁合金则容易发生统一侵袭。
四、结论总之,不同类型的金属材料会受到不同类型的腐蚀影响。
材料腐蚀的种类、危害及解决办法

材料腐蚀的种类、危害及解决方法康昆勇腐蚀是指材料受周围环境的作用,发生有害的化学变化、电化学变化或物理变化而失去其固有性能的过程。
通常环境介质对材料有各种不同的作用,其中有多种作用可导致材料遭受破坏,但只有满足以下两个条件,才称为腐蚀作用:①材料受介质作用的部分发生状态变化,转变成新相。
②在材料遭受破坏过程中,整个腐蚀体系的自由能降低。
材料腐蚀发生在材料外表。
按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。
前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。
按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。
均匀腐蚀指材料外表各处腐蚀破坏深度差异很小,没有特别严重的部位,也没有特别轻微的部分。
局部腐蚀是材料外表的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。
选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。
按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等。
金属材料以及由它们制成的结构物,在自然环境中或者在工况条件下,由于与其所处环境介质发生化学或者电化学作用而引起的变质和破坏,这种现象称为腐蚀,其中也包括上述因素与力学因素或者生物因素的共同作用。
某些物理作用例如金属材料在某些液态金属中的物理溶解现象也可以归入金属腐蚀范畴。
一般而言,生锈专指钢铁和铁基合金而言,它们在氧和水的作用下形成了主要由含水氧化铁组成的腐蚀产物铁锈。
有色金属及其合金可以发生腐蚀但并不生锈,而是形成与铁锈相似的腐蚀产物,如铜和铜合金外表的铜绿,偶尔也被人称作铜锈。
由于金属和合金遭受腐蚀后又回复到了矿石的化合物状态,所以金属腐蚀也可以说是冶炼过程的逆过程。
上述定义不仅适用于金属材料,也可以广义地适用于塑料、陶瓷、混凝土和木材等非金属材料。
例如,涂料和橡胶由于阳光或者化学物质的作用引起变质,炼钢炉衬的熔化以及一种金属被另一种金属熔融液态金属腐蚀,这些过程的结果都属于材料腐蚀,这是一种广义的定义。
腐蚀的分类及防范措施

腐蚀的分类及防范措施腐蚀的分类1、大气腐蚀在大气中,由于氧的作用,雨水的作用,腐蚀性物质的作用,裸露的设备、管线、阀、泵及其他设施会产生严重腐蚀,甚至有些化工厂因为螺栓、阀等锈死,诱发事故的发生。
因此,设备、管线、阀、泵及其设施等,需要选择合适的材料及涂覆防腐涂层予以保护。
2、全面腐蚀在腐蚀介质及一定温度、压力下,会发生金属表面或大面积均匀的腐蚀,如果腐蚀裕度控制在0.05~0.5mm/a、<0.05mm/a,金属材料耐蚀等级分别为良好、优良。
对于这种腐蚀,应根据介质及温度、压力等选择合适的耐腐蚀材料,或接触介质的内表面涂覆涂层,或加入缓蚀剂。
3、电偶腐蚀电偶腐蚀是化工容器、设备中常见的一种腐蚀,它是由于两种不同金属在溶液中直接接触,因其电极电位不同构成腐蚀电池,使电极电位较负的金属发生溶解腐蚀。
为减轻这种双金属腐蚀,应选择电偶序列相近的金属材料。
4、缝隙腐蚀在装置设备的管道连接处、衬板、垫片等处的金属与金属,金属与非金属间及金属涂层破损时,金属与涂层间所构成的窄缝在电解液中会造成缝隙腐蚀。
防止办法:a.采用合适的抗缝隙腐蚀材料;b.采用合理的设计方案,如尽量减小缝隙、死角、腐蚀液(介质)的积存,法兰配合严密,垫片适宜等;c.采用电化学保护;d.采用缓蚀剂等。
5、孔蚀由于金属表面露头、错位、介质不均匀等,腐蚀介质会集中在金属表面个别小点上形成深度较大的腐蚀。
防止孔蚀的方法有:a.减少溶液中氯离子浓度,或加入有抑制孔蚀作用的阴离子;b.减少溶液中氧化性离子,如Fe3+、Cu2+、Hg2+;降低溶液温度;c.采用阴极保护;d.采用点蚀合金。
6、其他工艺设备在一定条件下会产生晶间腐蚀,拉应力作用下的应力腐蚀破裂,在高温、高压下的氢腐蚀(使钢组织发生化学变化),在交变应力作用下的腐蚀疲劳等。
腐蚀的后果电镀生产过程中使用的氰化物、强碱、强酸等,将对上述装置的内表层进行腐蚀,特别是其金属部分。
这种腐蚀破坏作用又不易被察觉,其危险性很大,一旦装置被腐蚀破坏,腐蚀物质就会往外泄漏,将导致后果严重的事故发生。
材料的腐蚀与防护整理

1.三种常见的失效破坏形式:腐蚀、断裂和磨损。
2.材料腐蚀的定义:材料受环境介质的化学、电化学和/或物理作用的破坏的现象。
3.腐蚀的分类:(1)按腐蚀环境分类:干燥气体腐蚀、电解液中的腐蚀、非电解液中的腐蚀、熔融金属的腐蚀。
(2)按腐蚀机理分类:化学腐蚀、电化学腐蚀。
(3)按腐蚀形态分类:全面腐蚀、局部腐蚀、应力作用下的腐蚀断裂。
4.均匀腐蚀程度的评定方法:重量法、深度法、电流密度表征法。
5.电化学腐蚀定义:指金属材料和电解质接触时,由于腐蚀电池作用而引起的金属材料腐蚀破坏。
无论是发生化学腐蚀还是电化学腐蚀,都会使金属元素的价态升高而被氧化。
6.负极:电极电位较低的电极;正极:电极电位较高的电极; 阳极:发生氧化反应的电极;阴极:发生还原反应的电极。
7.腐蚀电池的定义:只能导致金属材料破坏而不能对外做有用功的短路原电池称为腐蚀原电池或腐蚀电池。
8.腐蚀电池的组成部分:阴极、阳极、电解质溶液和连接阴极阳极的电子导体。
两种金属直接接触也能组成腐蚀电池。
9.腐蚀电池的工作历程:(1)阳极过程。
(2)阴极过程。
(去极化过程)(3)电荷的传递。
10.电化学腐蚀的次生过程一次产物:腐蚀过程中,阳极反应和阴极反应的直接产物。
腐蚀的次生过程:随着腐蚀的不断进行,电极表面附近一次产物的浓度不断增加,阳极区附近金属离子的浓度增高,阴极区由于H+放电和水中溶解氧的还原而使pH值升高,溶液中产生了浓度梯度,一次产物发生扩散,阴、阳极过程中的一次产物在扩散过程中相遇并生成难溶化合物的过程。
二次产物(次生产物):难溶性产物。
例如,铁和铜在NaCl溶液组成的腐蚀电池就会发生次生反应,生成次生产物沉淀。
(1)阳极过程Fe→Fe2++2e (2)阴极过程½O2+H2O+2e→2OH- (3) 次生过程当pH>5.5,Fe2+与OH-相遇时就会发生次生级反应,形成氢氧化亚铁沉淀物。
即Fe2++2OH-→ Fe(OH)2↓11.金属电化学腐蚀的自发倾向除了可以用吉布斯自由能△G判据外,更为方便的是采用电极电位或标准电极电位来判断。
八大腐蚀类型

八大腐蚀类型腐蚀是指金属或其他材料在特定环境中受到化学或电化学作用而逐渐损坏的过程。
腐蚀不仅会降低材料的强度和耐久性,还可能导致设备故障和安全事故。
了解不同的腐蚀类型对于预防和控制腐蚀至关重要。
本文将介绍八大腐蚀类型,并探讨其特点和防治方法。
1. 电化学腐蚀电化学腐蚀是最常见的腐蚀类型之一。
它是由于金属与电解质溶液中的化学反应而引起的。
在电化学腐蚀中,金属表面的阳极和阴极区域形成,形成电池。
阳极区域发生氧化反应,而阴极区域发生还原反应。
防治电化学腐蚀的方法包括使用阴极保护、涂层保护和合适的材料选择。
2. 空气腐蚀空气腐蚀是由于金属与空气中的氧气和湿气发生反应而引起的。
常见的空气腐蚀类型包括氧化腐蚀和水蒸气腐蚀。
氧化腐蚀是金属与氧气反应形成氧化物的过程,而水蒸气腐蚀是金属与湿气反应形成氢氧化物的过程。
防治空气腐蚀的方法包括使用防腐涂层、控制湿度和氧气浓度。
3. 酸性腐蚀酸性腐蚀是由于金属与酸性溶液接触而引起的。
酸性腐蚀可以分为酸性溶液直接腐蚀和酸性气体腐蚀两种类型。
酸性溶液直接腐蚀是酸性溶液中的氢离子与金属表面发生反应,而酸性气体腐蚀是酸性气体与金属表面发生反应。
防治酸性腐蚀的方法包括使用耐酸材料、控制酸性溶液的浓度和温度。
4. 碱性腐蚀碱性腐蚀是由于金属与碱性溶液接触而引起的。
碱性腐蚀可以分为碱性溶液直接腐蚀和碱性气体腐蚀两种类型。
碱性溶液直接腐蚀是碱性溶液中的氢氧根离子与金属表面发生反应,而碱性气体腐蚀是碱性气体与金属表面发生反应。
防治碱性腐蚀的方法包括使用耐碱材料、控制碱性溶液的浓度和温度。
5. 微生物腐蚀微生物腐蚀是由微生物对金属表面进行代谢活动而引起的。
微生物腐蚀可以分为微生物菌膜腐蚀和微生物产生的酸性物质腐蚀两种类型。
微生物菌膜腐蚀是微生物在金属表面形成菌膜,并通过代谢活动产生酸性物质进行腐蚀。
防治微生物腐蚀的方法包括使用抗菌剂、控制温度和湿度。
6. 应力腐蚀应力腐蚀是由于金属在受到应力的同时与腐蚀介质接触而引起的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 全面腐蚀速度测定 对于金属腐蚀,人们最关心的是腐蚀速度。全面腐蚀速度也称均匀腐蚀速度,常用的
表示方法有重量法和深度法。 重量法是用试样在腐蚀前后重量的变化(单位面积、Байду номын сангаас位时间内的失重或增重)表示
腐蚀速度的方法。用重量法表示腐蚀速度很难直观知道腐蚀深度,如制造农药的反应釜的 腐蚀速度用腐蚀深度表示就非常方便。这种方法适合密度不同的金属,可用下式计算:
其中 B 为按深度计算的腐蚀速度,mm/a;V 为按重量计算的腐蚀速度,g/m2·h;ρ为 金属材料的密度,g/cm3。
1.3 全面腐蚀
1.3.1 全面腐蚀概念 全面腐蚀是常见的一种腐蚀。全面腐蚀是指整个金属表面均发生腐蚀,它可以是均匀
的也可以是不均匀的。钢铁构件在大气、海水及稀的还原性介质中的腐蚀一般属于全面腐 蚀。
全面腐蚀一般属于微观电池腐蚀。通常所说的铁生锈或钢失泽,镍的“发雾”现象以 及金属的高温氧化均属于全面腐蚀。
金属氧化时的化学反应可以表示成: Me(s)+O2(g)→MeO2(g)
对该式来说:
可知,只要知道温度 T 时的标准自由能变化值,即可得到该温度下的金属氧化物分解 压,然后将其与给定条件下的环境氧分压比较就可判断金属氧化反应式的反应方向。
在一个干净的金属表面上,金属氧化反应的最初步骤是气体在金属表面上吸附。随着 反应的进行,氧溶解在金属中,进而在金属表面形成氧化物薄膜或独立的氧化物核。在这
1.2. 金属的电化学腐蚀
1.2.1 电化学腐蚀概念
把大小相等的 Zn 片和 Cu 片同时置入盛有稀硫酸的同一容器里,并用导线通过毫安表 联接起来。毫安表的指针立即偏转,表明有电流通过。物理学规定,电流方向是从电位高 (正极)的一端沿导线流向电位低(负极)的一端。电流方向是从 Cu 片流向 Zn 片,而电 子流动方向则相反,在腐蚀学里,通常规定电位较低的电极为阳极,电位较高的电极为阴 极。因此在该原电池中将发生如下电化学反应:
金属一旦形成氧化膜,氧化过程的继续进行将取决于两个因素: (1)界面反应速度,包括金属-氧化膜界面及气体-氧化膜界面上的反应速度。 (2)参加反应的物质通过氧化膜的扩散速度。当氧化膜很薄时,反应物质扩散的驱 动力是膜内部存在的电位差;当膜较厚时,将由膜内的浓度梯度引起迁移扩散。 由此可见,这两个因素实际上控制了进一步的氧化速度。在氧化初期,氧化控制因素 是界面反应速度,随着氧化膜的增厚,扩散过程起着愈来愈重要的作用,成为继续氧化的 速度控制因素。
阳极反应: Zn→Zn2++2e 阴极反应: 2H+ +2e→H2 电池总反应: Zn+2H+→Zn2+ H2 类似于这样,按两个半反应路径进行的腐蚀过程就是电化学腐蚀过程。两个半反应分 别称为电极反应。腐蚀电池与原电池的区别仅在于:原电池是能够把化学能转变为电能, 做出有用功的装置,而腐蚀电池是只能导致金属破坏而不能对外做有用功的短路电池。
一阶段,氧化物的形成与金属表面取向、晶体缺陷、杂质以及试样制备条件等因素有很大 关系。当连续的氧化膜覆盖在金属表面上时,氧化膜就将金属与气体分离开来,要使反应 继续下去,必须通过中性原子或电子、离子在氧化膜中的固态扩散(迁移)来实现。在这 些情况下,迁移过程与金属-氧化膜及气体-氧化膜的相界反应有关。若通过金属阳离子迁 移将导致气体-氧化膜界面上膜增厚,而通过氧阴离子迁移则导致金属-氧化膜界面上膜增 厚。
1.2.2 电化学腐蚀机理
腐蚀电池工作的基本过程如下: (1)阳极过程:金属溶解,以离子形式迁移到溶液中同时把当量电子留在金属上。 (2)电流通路:电流在阳极和阴极间的流动是通过电子导体和离了导体来实现的,
电子通过电子导体(金属)从阳极迁移到阴极,溶液中的阳离子从阳极区移向阴极区,阴 离子从阴极区向阳极区移动。
从广义上看,金属的氧化应包括硫化、卤化、氮化、碳化,液态金属腐蚀,混合气体 氧化,水蒸气加速氧化,热腐蚀等高温氧化现象;从狭义上看,金属的高温氧化仅仅指金 属(合金)与环境中的氧在高温条件下形成氧化物的过程。
1.1.2 高温氧化腐蚀机理
研究金属高温氧化时,首先应讨论在给定条件下,金属与氧相互作用能否自发地进行 或者能发生氧化反应的条件是什么,这些问题可通过热力学基本定律做出判断。
1.1 金属的高温氧化腐蚀
1.1.1 高温氧化腐蚀概念 在大多数条件下,使用金属相对于其周围的气态都是热不稳定的。根据气体成分和反
应条件不同,将反应生成氧化物、硫化物、碳化物和氮化物等,或者生成这些反应产物的 混合物。在室温或较低温干燥的空气中,这种不稳定性对许多金属来说没有太多的影响。 因为反应速度很低。但是随着温度的上升,反应速度急剧增加。这种在高温条件下,金属 与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温 腐蚀。
材料腐蚀类别与相应机理
材料腐蚀的分类
金属和它所处的环境介质之间发生化学、电化学或物理作用,引起金属的变质和破坏, 称为金属腐蚀。腐蚀现象是十分普遍的。从热力学的观点出发,除了极少数贵金属 Au、Pt 等外,一般材料发生腐蚀都是一个自发过程。金属很少是由于单纯机械因素(如拉、压、 冲击、疲劳、断裂和磨损等)或其他物理因素(如热能、光能等)引起破坏的,绝大多数 金属的破坏都与其周围环境的腐蚀因素有关。