新北师大版八年级上学期数学期末测试题二
北师大版八年级上册数学期末解答题专项训练及答案二

北师大版八年级上册数学期末解答题专项训练及答案二、解答题19.(每小题4分,共8分)计算:-20.(每小题4分,共8分)解下列方程组:(1)430210x yx y-=⎧⎨-=-⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩21.(本题8分)九年级甲、乙两名同学期末考试的成绩(单位:分)如下:根据表格中的数据,回答下列问题:(1)甲的总分为522分,则甲的平均成绩是__________分,乙的总分为520分,________的成绩好一些. (填“甲”或者“乙”)(2)经过计算知22=7.67=5.89S S甲乙,. 你认为__________不偏科;(填“甲”或者“乙”)(3)中招录取时,历史和体育科目的权重是0.3,其它科成绩权重是1,请问谁的成绩更好一些?请说明理由.22.(本题8分)如图,在正方形网格中,每个小正方形的边长为l,格点三角形(顶点是网格线的交点)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A'B'C';(3)B'的坐标为__________;(4)△ABC的面积为__________.23.(每小题6分,共12分)(1)如图,已知DE∥BC,∠D:∠DBC=2:1,∠1=∠2.求∠DEB 的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的。
在探索中,有人曾利用过如图所示的图形,其中,ABCD是长方形(AD∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=1∠ACB吗?324.(本题10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.25.(本题12分)上周六上午8点,小颖同爸爸妈妈一起从济南出发回青岛看望姥姥,途中他们在一个服务区休息了0.5小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟后,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?26.(本题12分)如图,一次函数y=-x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数32y x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.解答题(21题8分,22,25题每题9分,23,24题每题7分,其余每题10分,共60分)21.(1)计算:24×13-4×18×(1-2)0+32.(2)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10.22.如图,在正方形网格中,每个小正方形的边长为1,△ABC 的顶点A ,C 的坐标分别为A (-4,5),C (-1,3).(1)请在网格平面内作出平面直角坐标系(不写作法);(2)请作出△ABC 关于y 轴对称的△A ′B ′C ′(A ,B ,C 的对应点分别为A ′,B ′,C ′); (3)分别写出点A ′,B ′,C ′的坐标.23.如图,CF 是∠ACB 的平分线,CG 是△ABC 的外角∠ACE 的平分线,FG ∥BC ,且FG 交CG 于点G .已知∠A =40°,∠B =60°,求∠FGC 与∠FCG 的度数.24.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?25.如图,一辆小汽车在一条限速70 km/h的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A的正前方60 m处的C点,过了5 s后,测得小汽车所在的B点与车速检测仪A之间的距离为100 m.(1)求B,C间的距离.(2)这辆小汽车超速了吗?请说明理由.26.张明、王成两名同学对自己八年级10次数学测试成绩(成绩均为整数,且个位数为0)进行统计,统计结果如图所示.(1)根据图中提供的数据填写下表:(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是__________; (3)结合以上数据,请你分析,张明和王成两名同学谁的成绩更稳定.27.如图,在平面直角坐标系中,直线y =-x +6与x 轴和y 轴分别交于点B 和点C ,与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动. (1)求点B 和点C 的坐标. (2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 面积的14若存在,求出此时点M的坐标;若不存在,请说明理由.解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.(1)计算:(5-1)(5+1)-⎝ ⎛⎭⎪⎫-13-2+|1-2|-(π-2)0+8.(2)解方程组:20.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)点B′的坐标为__________;(4)△ABC的面积为________.21.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1 800元,该店的商品按原价的几折销售?22.如图,∠1=∠2,∠BAE=∠BDE,EA平分∠BEF.(1)求证:AB∥DE.(2)BD平分∠EBC吗?为什么?23.甲、乙两名队员参加射击训练,成绩分别被制成如下两个统计图:根据以上信息,整理分析数据如上表:(1)写出表格中a,b,c的值.(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为________千米/时.(2)求线段DE所表示的y与x之间的函数表达式.(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),直线AB 与y 轴的交点为C ,动点M 在线段OA 和射线AC 上运动. (1)求直线AB 对应的函数表达式. (2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 面积的14若存在,求出此时 点M 的坐标;若不存在,说明理由.参考答案 解答题19.(每小题4分,共8分)计算:(1)334 (2)26 20.(每小题4分,共8分)解下列方程组:(1)⎩⎨⎧==1010y x (2)⎩⎨⎧==46y x21.(1)87;甲. ……2分(2)乙 ……4分(3)甲:75+93+85+84×0.3+95+90×0.3=400.2(分) ……5分乙:85+85+91+85×0.3+89+85×0.3=401(分) ……6分400.2<401答:乙的成绩更好一些. ……8分 22. 解:(1)如图所示:……2分 (2)如图所示:……4分 (3)B ′(2,1);……6分 (4)4.……8分 23.(1)解:∵ DE ∥BC∴ ∠D +∠DBC =180°∵ ∠D : ∠DBC=2 : 1∴ ∠D =2∠DBC∴ 2∠DBC+∠DBC =180°即 ∠DBC =60°……4分∵ ∠1=∠2∴ ∠1=∠2=30°∵ DE ∥BC∴ ∠DEB =∠1=30°……6分(2)解:∵AD ∥CB∴∠FCB=∠F ……2分∵∠AGC 是△AGF 的外角,∴∠AGC=∠GAF+∠F=2∠F ……4分又∵∠ACG=∠AGC∠ACB=∠ECB+∠ACG=∠F+2∠F=3∠F=3∠ECB ∴∠ECB=31∠ACB ……6分 24.解:设该市去年外来人数为x 万人,外出旅游的人数为y 万人,由题意得,()()20130%120%226x y x y -=⎧⎪⎨+++=⎪⎩……5分 解得:10080x y =⎧⎨=⎩……7分 则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.……10分25.解:(1)设直线AB 所对应的函数关系式为y=kx+b ,把(0,320)和(2,120)代入y=kx+b 得:3202120b k b =⎧⎨+=⎩,解得:100320kb=-⎧⎨=⎩,∴直线AB所对应的函数关系式为:y=﹣100x+320;……4分(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:2.5120380m nm n+=⎧⎨+=⎩,解得:80320mn=-⎧⎨=⎩,∴直线CD所对应的函数关系式为y=﹣80x+320,……8分当y=0时,x=4,∴小颖一家当天12点到达姥姥家.……12分28.解:(1)∵点P(2,n)在正比例函数y=32x图象上,∴n=32×2=3,∴点P的坐标为(2,3).∵点P(2,3)在一次函数y=﹣x+m的图象上,∴3=﹣2+m,解得:m=5,∴一次函数解析式为y=﹣x+5.∴m的值为5,n的值为3.……4分(2)当x=0时,y=﹣x+5=5,∴点B的坐标为(0,5),∴S△POB=12OB•x P=12×5×2=5.……8分(3)存在.∵S△OBC=12OB•|x C|=S△POB=5,∴x C=﹣2或x C=2(舍去).当x=﹣2时,y=32×(﹣2)=﹣3.∴点C的坐标为(﹣2,﹣3).……12分三、21.解:(1)原式=24×13-4×24×1+42=22-2+42=5 2.(2)整理得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入②,得9+2y =10,解得y =12.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =12. 22.解:(1)平面直角坐标系如图所示.(2)△A ′B ′C ′如图所示.(3)点A ′,B ′,C ′的坐标分别为(4,5),(2,1),(1,3).23.解:∵CF ,CG 分别是∠ACB ,∠ACE 的平分线,∴∠ACF =∠BCF =12∠ACB ,∠ACG =∠ECG =12∠ACE .∴∠ACF +∠ACG =12(∠ACB +∠ACE )=12×180°=90°,即∠FCG =90°.∵∠ACE =∠A +∠B =40°+60°=100°,∴∠GCE =12∠ACE =50°.∵FG ∥BC ,∴∠FGC =∠GCE =50°.24.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.根据题意,得⎩⎨⎧x +y =8,20x +30y =190,解得⎩⎨⎧x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.25.解:(1)在Rt △ABC 中,由AC =60 m ,AB =100 m ,且AB 为斜边,根据勾股定理可得BC =AB 2-AC 2=80 m.即B ,C 间的距离为80 m.(2)这辆小汽车没有超速.理由:因为80÷5=16(m/s),16 m/s =57.6 km/h ,576<70,所以这辆小汽车没有超速.26.解:(1)平均成绩:80;80 中位数:80众数:90 方差:60(2)王成(3)两人平均成绩相同,而张明成绩的方差较小,故张明的成绩更稳定.27.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M 使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2),∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.当点M 在线段OA 上时,如图①,则a =1,此时b =12a =12,∴点M 的坐标是⎝ ⎛⎭⎪⎫1,12.当点M 在射线AC 上时,如图②,a =1时,b =-a +6=5,则点M 1的坐标是(1,5);a =-1时,b =-a +6=7,则点M 2的坐标是(-1,7).综上所述,点M 的坐标是⎝ ⎛⎭⎪⎫1,12或(1,5)或(-1,7). 三、19.解:(1)原式=(5)2-1-1⎝ ⎛⎭⎪⎫-132+2-1-1+22=5-1-9+2-1-1+22=-7+3 2.(2)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入②,得9+2y =10,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12. 20.解:(1)如图所示.(2)如图所示.(3)(2,1) (4)421.解:(1)设跳绳的单价为x 元,毽子的单价为y 元.由题意得⎩⎨⎧30x +60y =720,10x +50y =360,解得⎩⎨⎧x =16,y =4.答:跳绳的单价为16元,毽子的单价为4元.(2)设该店的商品按原价的a 折销售,可得(100×16+100×4)×a 10=1 800,解得a =9.答:该店的商品按原价的9折销售.22.(1)证明:∵∠2与∠ABE 是对顶角,∴∠2=∠ABE .∵∠1=∠2,∴∠1=∠ABE .∴AB ∥DE .(2)解:BD 平分∠EBC .理由如下:∵AB ∥DE ,∴∠AED +∠BAE =180°,∠BEF =∠EBC .∵∠BAE =∠BDE ,∴∠AED +∠BDE =180°.∴AE ∥BD .∴∠AEB =∠DBE .∵EA 平分∠BEF ,∴∠AEB =12∠BEF .∴∠DBE =12∠EBC .∴BD 平分∠EBC .23.解:(1)a =7,b =7.5,c =4.2.(2)从平均成绩看,甲、乙两人的平均成绩相等,均为7环;从中位数看,甲成绩的中位数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参赛,可选择乙参赛,因为乙获得较好成绩的可能性更大.24.解:(1)80(2)休息后按原速继续前进,行驶的时间为(240-80)÷80=2(小时),∴点E 的坐标为(3.5,240).设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则⎩⎨⎧1.5k +b =80,3.5k +b =240,解得⎩⎨⎧k =80,b =-40, ∴线段DE 所表示的y 与x 之间的函数表达式为y =80x -40.(3)不能.理由如下:接到通知后,若汽车仍按原速行驶,则全程所需时间为290÷80+0.5=4.125(小时),12时-8时=4小时,4.125>4.故接到通知后,汽车仍按原速行驶不能准时到达.25.解:(1)设直线AB 对应的函数表达式是y =kx +b .根据题意,得⎩⎨⎧4k +b =2,6k +b =0,解得⎩⎨⎧k =-1,b =6,则直线AB 对应的函数表达式是y =-x +6.(2)在y =-x +6中,令x =0,解得y =6,∴C 点的坐标为(0,6).∴S △OAC =12×6×4=12.(3)存在.设直线OA 对应的函数表达式是y =mx ,则4m =2,解得m =12.∴直线OA 对应的函数表达式是y =12x .当点M 在第一象限时,∵△OMC 的面积是△OAC 面积的14,∴点M 的横坐标是14×4=1.在y =12x 中,当x =1时,y =12,则点M 的坐标是⎝ ⎛⎭⎪⎫1,12; 在y =-x +6中,当x =1时,y =5,则点M 的坐标是(1,5). 当点M 在第二象限时,易知点M 的横坐标是-1.在y =-x +6中,当x =-1时,y =7,则点M 的坐标是(-1,7).综上所述,点M 的坐标是⎝ ⎛⎭⎪⎫1,12或(1,5)或(-1,7).。
北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。
) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。
2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。
)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。
最新北师大版数学八年级上册期末试卷(含答案)

最新北师大版数学八年级上册期末试卷(含答案)最新北师大版数学八年级上册期末试卷(含答案)说明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟。
一、选择题(本大题共6小题;每小题3分;共18分)1.16的平方根是A。
2B。
4C。
±2D。
±42.P1 (x1.y1);P2 (x2.y2)是正比例函数y=-x图象上的两点;下列判断中,正确的是A。
y1.y2B。
y1 < y2C。
当x1 < x2时,y1 < y2D。
当x1.y23.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71;1.85;1.85;1.95;2.10;2.31;则这组数据的众数是A。
1.71B。
1.85C。
1.90D。
2.314.下列长度的各组线段能组成一个直角三角形的是A。
4cm;6cm;11cmB。
4cm;5cm;1cmC。
3cm;4cm;5cmD。
2cm;3cm;6cm5.如图AB=AC,则数轴上点C所表示的数为A。
5+1B。
5-1C。
-5+1D。
-5-16.XXX去距县城28千米的旅游点游玩,先乘车,后步行。
全程共用了1小时。
已知汽车速度为每小时36千米,步行的速度每小时4千米,则XXX乘车路程和步行路程分别是A。
26千米,2千米B。
27千米,1千米C。
25千米,3千米D。
24千米,4千米二、填空题(本大题共8小题;每小题3分;共24分)7.计算:8-2=6.8.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为(l,2)。
9.若a<1,则(a-1)-1=1-a。
10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为1.48米。
11.若一次函数y=2x+6与y=kx图象的交点到x轴的距离为2,则k的值为4.12.若关于x,y的方程组2x-y=mx+my=n的解是(x。
北师大版数学八年级上学期《期末测试卷》及答案

(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.
2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

期末测试卷(满分120分,时间90分钟)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.4 的算术平方根是( )A.2B.-2C.±2 D .±22.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A.4 B.8 C.16 D.643.在实数 ―15,3―27,π2,16,8,中,无理数的个数为( )A.1B.2C.3D.44.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)5.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. y=2x+4 B. y=3x--1 C. y=-3x+1 D. y=-2x+46.估算 24+3的值是( )A.在5与6之间B.在6与7 之间C.在7 与8之间D.在8 与9之间7.如图,将直尺与含 30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30° B.40° C.50° D.60°8.小明家1至 6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( ) A.众数是6 B.中位数是5 C.平均数是5 D.方差是 439.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( )10.下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形 D .12是最简二次根式11.关于x,y 的方程组 {x +my =0,x +y =3的解是 {x =1y =,其中y 的值被盖住了.不过仍能求出m ,则m 的值是( )A .―12 B. 12 C .―14 D .1412.如图,正方形网格中的△ABC,若每个小方格边长都为1,则 △ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上答案都不对二、填空题(本大题共6小题,每小题4分,共24分.本题要求把正确结果填在规定的横线上,不需要解答过程)13.若点 M(a,-1)与点 N(2,b)关于y 轴对称,则a+b 的值是 .14.若关于x ,y 的二元一次方程组 {x +y =3k ,x ―y =k 的解也是二元一次方程 x +2y =8的解,则 k 的值为15.已知一组数据1,2,3,5,x ,它的平均数是3,则这组数据的方差是 .16.写出“全等三角形的面积相等”的逆命题 .17.如图,Rt△OA ₀A ₁ 在平面直角坐标系内, ∠OA₀A₁=90°,∠A₀OA₁=30°,以 OA₁为直角边向外作Rt△OA ₁A ₂,使 ∠OA₁A₂=90°,∠A₁OA₂=30°,,以OA ₂为直角边向外作 Rt △OA₂A₃,使 ∠OA₂A₃=90°, ∠A₂OA₃=30°,,按此方法进行下去,得到 RtOA 3A 4,RtOA 4A 5,⋯,RtOA 2017A 2018,若点 A₀(1,0),则 点 A ₂₀₁₈的横坐标为 .18.如图,在 △ABC 中, AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是 ∠ABC 的平分线, DE‖AB ,若 BE = 5cm ,CE=3c m,则 △CDE 的周长是 .三、解答题(本大题共8小题,满分60分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算: (1)48―27+13; (2)8+182―(32―1)220.(6分)若a,b为实数,且b=a2―1+1―a2+aa+1,求―a+b―3的值.21.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点 E 在直线DF 上,点 B 在直线AC 上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF( ),∴∠1=∠DGF(等量代换),∴∥ ( ),∴∠3+∠=180°(),又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴∥ ( ),∴∠A=∠F( ).22.(8分)解方程组:(1){2x+5y=30,2x―5y=―10;(2){3x―y=5, x+2y=11.23.(8分)如图,一条直线分别与直线 BE、直线CE、直线 CF、直线 BF 相交于点A,G,D,H且∠1=∠2,∠B=∠C.(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.24.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.(8分))某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费 1 510 元.普通间/(元/人/天)豪华间/(元/人/天)贵宾间/(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各租了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?26.(8分)如图,在平面直角坐标系中,过点 B(6,0)的直线AB 与直线OA 相交于点A(4,2),动点 M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点 M的坐标.期末测试卷1. A2. B3. B4. D5. D6. C7. C8. B9. C 10. B11. A 12. B 13.-3 14.2 15.2 16.面积相等的三角形全等 17.―220173102918.13 cm 19.解(1)原式 =433;(2).原式 =62―14.20.解因为a,b 为实数,且 a ²―1≥0,1―a ²≥0,所以 a ²―1= 1―a ²=0.所以a=±1.又因为a+1≠0,所以a=1.代入原式,得 b =12,所以 ―a +b ―3=―3.21.解∵∠1=∠2(已知),∠2=∠DGF(对顶角相等),∴∠1=∠DGF(等量代换),∴BD ∥C E(同位角相等,两直线平行),∴∠3+∠C=180°(两直线平行,同旁内角互补).又∵∠3=∠4(已知),∴∠4+∠C =180°(等量代换),∴DF ∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解(1){x=5,4,(2,y ₁=3,23.解 (1)CE‖BF ,AB‖CD .理由:∵∠1=∠2, ∴CE‖FB , ∴∠C =∠BFD . ∵∠B =∠C , ∴∠B =∠BFD ,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.24.解 (1)x g =(83+79+90)÷3=84, x 2=(85+80+75)÷3=80,x y 3=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)由该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,则甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3.故乙将被录取.25.解(1)设三人间普通客房租了x 间,双人间普通客房租了y 间.根据题意得{3x +2y =50,50×50%×3x +70×50%×2y =1510,解得 {x =8,y =13.因此,三人间普通客房租了8间,双人间普通客房租了13间.(2)(50-x)根据题意得:y=25x+35(50-x),即y=-10x+1750.(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.26.解(1)设直线AB 的解析式是y=kx+b,根据题意得: {4k +b =2,6k +b =0,解得: {k =―1,b =6.则直线的解析式是:y=-x+6.(2)在y=-x+6 中,令x=0,解得:y=6,S AAC =12×6×4=12.(3)设OA 的解析式是y=mx,则4m=2,解得: m =12,则直线的解析式是: y =12x ,∵当△OMC 的面积是△OAC 的面积的 14时,∴M 的横坐标是 14×4=1,在 y =12x 中,当x=1时, y =12,则M 的坐标是 (1,12);在y=-x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是: M 1(1,12)或M ₂(1,5).。
北师大版数学八年级上学期《期末检测试题》含答案解析

故选D.
[点睛]此题主要考查三角形的角度求解,解题的关键是熟知三角形的外角定理与等腰三角形的性质.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
故选:C.
[点睛]本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.
2.下列实数是无理数的是()
A. B. C. D.0.1010010001
[答案]C
[解析]
[分析]
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
9.下列命题是真命题的是()
A.如果 ,那么
B.0的平方根是0
C.如果 与 是内错角,那么
D.三角形 一个外角等于它的两个内角之和
10.如图,在△ 中, 为 边上一点,以点 为圆心, 为半径画弧,交 的延长线于点 ,连接 .若 , ,则 的度数为()
A. B. C. D.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
新北师大版八年级数学上册期末试卷及答案【完美版】

新北师大版八年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、B6、A7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、30°或150°.3、3m≤.4、(-4,2)或(-4,3)5、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、22mm-+1.3、±34、略5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
北师大版初二级上册期末考试数学试卷含答案(共3套)

O DC AB D CBA北师大版八年级上学期期末考试数学试卷含答案一、选择题:1.下列各式中,运算正确的是( ) A .632a a a ÷=B .325()a a =C.= D=2.点(35)p ,-关于y 轴对称的点的坐标为( )A . (3,5)--B . (5,3)C .(3,5)-D . (3,5) 3.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y> 4.一个多边形的内角和是720︒,则这个多边形的边数为()A .4B .5C .6D .75.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形B .矩形C .正三角形D .平行四边形6. 如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的边长BC 的长是( ) A .2B .4C.D. (6题图) 7.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )A .210<<m B .021<<-m C .0<m D .21>m 8.如图,下列条件不能使四边形ABCD 一定是平行四边形的是( )A .//AB CD AB =CD B .//AD BC //AB CD C .//AD BC B D ∠=∠ D. //AD BC AB =CD(图1)9.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处10.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②GDH GHD ∠=∠; ③CDGDHGE SS =四边形; ④图中只有8个等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末测试题(一)
一、选择题
1.以下列各组线段为边作三角形,不能构成直角三角形的是( ) A.2,3,4 B.1,2, 3 C.5,12,13 D.9,40,41 2.在(
)
2
-
,38, 0, 9, π,-0.333…,5, 3.1415,
0.010010001……(相邻两个1之间逐渐增加1个0)中,无理数有( ) A.1个 B.2个 C .3个 D.4个
3.在平面直角坐标系中,点P (-1,l )关于x 轴的对称点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知函数23
(1)m y m x
-=+是正比例函数,且图像在第二、四象限内,则m 的值是( )
A .2
B .2-
C .2±
D .1
2
-
5.下列各组数值是二元一次方程43=-y x 的解的是( )
(A )⎩⎨
⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=2
1y x (D )⎩⎨⎧-==14
y x
6.某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是( )
A.90,85
B.30,85
C.30,90
D.40,82
7.在平面直角坐标系中,已知一次函数b kx y +=的图象大
致如图所示,则下列结论正的是( ) (A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, b <0. 二、填空题:(每小题3分,共24分)
1、点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关 于原点的对称点2P 的坐标是
2、如果某公司一销售人员的个人月收入与其每月的销
售量成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收
入是 元。
3、已知一个样本:1,3,5,x ,2,它的平均数为3,则这个样本的方差是 .
4、如果03)4(2=-+-+y x y x ,那么y x -2的值为
5.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)
和工作时间x (时)之间的函数关系式是
6. 如图,△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,若∠A=60°,则∠BPC=
7、如图,在平面直角坐标系中,把直线x y 3=沿y 轴向下平移后得到直线AB ,如果点N (m ,n )是直线AB 上的一点,且3m -n =2,那么直线AB 的函数表达式为
8、如图,点B 、C 分别在两条直线2y x =和y kx =上,点A 、D 是x 轴上两点,已知四边形ABCD 是正方形,则k 值为 . 三、(共52分)
1、(6分)解方程组⎪⎩
⎪
⎨⎧-==-+136
)1(2y x y x 2、 化简:311548412712-++
x
3.(本题8分) 某厂的甲、乙两个小组共同生产某种产品,若甲组先生产1天,然后两组
又各生产5天,则两组产量一样多;若甲组先生产了300个产品,然后两组又各生产了4天,则乙组比甲组多生产100个产品;甲、乙两组每天各生产多少个产品?
4.(本题6分) 已知:如图5,在△ABC 中,AD 平分外角∠EAC ,∠B=∠C .
求证:AD ∥BC 。
5.(10分)如图,在平面直角坐标系中,一次函数5+=kx y 的图象经过点 A (1,4),点B 是一次函数5+=kx y 的图象与正比例函数x y 3
2
=的图象的交点。
(1)求点B 的坐标。
(2)求△AOB 的面积。
6、(10分)某商场代销甲、乙两种商品,其中甲种商品的进价为120元/件,售件为130元/件,乙种商品的进价为100元/件,售件为150元/件。
(1)若商场用36000元购进这两种商品,销售完后可获得利润6000元,则该商场购进甲、乙两种商品各多少件?
(2)若商场要购进这两种商品共200件,设购进甲种商品x件,销售后获得的利润为y元,试写出利润y(元)与x(件)函数关系式(不要求写出自变量x 的取值范围);并指出购进甲种商品件数x逐渐增加时,利润y是增加还是减少?。