二阶有源带通滤波器介绍
二阶有源带通滤波器设计说明

.专业整理 .摘要在学习《模拟电子技术基础》的基础上,针对课程设计要求,设计一个通带为 0.833KHz 、中心频率为 5KHz 、品质因素为 6、最大增益为 2 的带通滤波器,选择有源滤波器的快速设计法为设计方案,计算出该方案需要的电阻、电容、运算放大器参数,通过 Multisim 软件仿真和电路板的制作,对所选的方案进行调试,验证方案的正确性,并将实际设计的滤波器与仿真得到的滤波器进行比较,分析误差产生的原因。
关键字:带通;滤波器;快速设计法; Multisim 仿真;调试;分析误差.专业整理 .目录引言 (3)1.设计任务及要求 (3)2.方案选择 (3)3.二阶有源带通滤波器理论设计 (4)3.1 简介 (4)3.2 工作原理 (4).专业整理 .3.3 传递函数及性能参数 (5)3.4 器件参数的选取 (6)3.5 Multisim仿真及仿真数据处理 (6)4.电路板的制作 (8)4.1 原理图和 PCB 图的绘制 (8)4.2 电路板制作过程 (9)5.电路板的调试 (10)5.1 调试的仪器 (10)5.2 调试过程及结果 (10)5.3 调试所遇到的问题 (13)5.4 调试误差分析 (13)6.结论 (13)谢辞 (15)参考文献 (16)附录·················17·····················引言本论文主要讨论信号的处理电路,其中一种电路称为模拟滤波器,模拟滤波器的主要功能是传送输入信号中有用的频率成分,衰减或抑制无用的频率成分,本文主要研究由电阻、电容和运算放大器组成的有源带通滤波电路,其原理是通过对电容、电阻参数的配置,使得模拟滤波器对频率在通带内的频率分量呈现很小的阻抗,而对频带外的频率分量呈现很大的阻抗,这样当负载电流信号通过该模拟带通滤波器的时候就可以把通带内的信号提取出来,把通带外的信号去除。
二阶带通滤波器中心频率和固有频率

《深入理解二阶带通滤波器:中心频率和固有频率的探讨》在探讨二阶带通滤波器的中心频率和固有频率之前,让我们先了解二阶带通滤波器的基本原理和应用。
二阶带通滤波器是一种常见的电子滤波器,它可以通过选择适当的电路元件和参数来实现对特定频率范围内信号的增强,并对其他频率的信号进行抑制。
在讨论中心频率和固有频率之前,我们需要先了解滤波器中的一些基础知识。
1. 二阶带通滤波器的基本原理二阶带通滤波器是由一个高通滤波器和一个低通滤波器级联构成的。
它的传递函数可以表示为:H(s) = k * (s^2) / (s^2 + (s/Q) + 1)其中,s是复频域变量,k是系统增益,Q是品质因数。
二阶带通滤波器可以在选择合适的参数后实现对特定频率范围内信号的增强,是一种非常常用的滤波器。
2. 中心频率的概念中心频率是指带通滤波器增益最大的频率点,也是滤波器响应曲线的中心位置。
在二阶带通滤波器中,中心频率通常由下式计算得出:fc = 1 / (2 * π * √(L * C))其中,fc表示中心频率,L表示电感值,C表示电容值。
中心频率决定了滤波器对特定频率范围内信号的响应程度,是设计带通滤波器时需要考虑的重要参数。
3. 固有频率的意义固有频率是指带通滤波器自身的振荡频率,也是在没有外部输入信号作用时,滤波器自由振荡的频率。
在二阶带通滤波器中,固有频率可以用下式表示:f0 = 1 / (2 * π * √(L * C))与中心频率类似,固有频率也与电感值和电容值有关。
固有频率可以反映出滤波器自身的特性,是分析滤波器稳定性和振荡特性的重要参数。
4. 理论与实际应用在实际应用中,中心频率和固有频率是设计二阶带通滤波器时需要重点考虑的参数。
通过合理选择电感值和电容值,可以实现对特定频率范围内信号的增强,同时保持滤波器的稳定性和响应速度。
在设计滤波器时,需要根据实际需求去调整中心频率和固有频率,以实现最佳的滤波效果。
总结回顾通过以上的讨论,我们对二阶带通滤波器的中心频率和固有频率有了更深入的了解。
二阶有源高通滤波器原理

二阶有源高通滤波器原理在电子电路中,滤波器是一种能够选择性地通过或者抑制特定频率信号的电路。
而有源高通滤波器则是一种常见的滤波器类型,用于将高频信号通过而抑制低频信号。
本文将介绍二阶有源高通滤波器的原理和工作方式。
1. 基本原理二阶有源高通滤波器通常由运算放大器、电容和电阻构成。
在这种滤波器中,运算放大器起到放大和相位移的作用,电容和电阻则构成滤波器的频率选择网络。
通过合适的设计,可以实现对特定频率以下信号的抑制,而对特定频率以上信号的通过。
2. 滤波器架构二阶有源高通滤波器的典型架构包括两个电容和两个电阻元件。
其中,电容和电阻的数值可以根据需要进行选择,以确定滤波器的截止频率和增益。
运算放大器的正负输入端分别连接这两个电容和两个电阻元件,输出端则连接到负反馈路径。
这样的架构可以实现对低频信号的衰减和对高频信号的放大。
3. 工作原理二阶有源高通滤波器的工作原理基于运算放大器的反馈机制。
当输入信号经过滤波器后,输出信号的幅度和相位将根据滤波器的频率响应而发生变化。
通过合理设置电容和电阻的数值,可以确定滤波器的截止频率和斜率,从而实现对特定频率信号的处理。
4. 频率响应二阶有源高通滤波器的频率响应通常呈现出一定的斜率,在截止频率处实现对低频信号的抑制。
随着频率的增加,滤波器对信号的放大倍率也会相应增加。
这种特性使得有源高通滤波器在许多应用中得到广泛应用,如音频处理、通信系统等方面。
5. 应用领域二阶有源高通滤波器在电子电路中有着广泛的应用。
比如在音频处理中,可以用于消除低频噪声或者实现声音效果;在通信系统中,可以用于滤除直流偏置或者实现信号调制。
由于其结构简单、性能稳定,因此在实际应用中得到了广泛的应用和认可。
综上所述,二阶有源高通滤波器作为一种常见的滤波器类型,在电子电路设计中扮演着重要的角色。
通过合理设计滤波器的参数,可以实现对特定频率信号的处理,满足不同应用场景的需求。
希望通过本文的介绍,读者能对二阶有源高通滤波器的原理和应用有更深入的理解。
熟悉二阶有源滤波器的基本原理

电路的测试和验证
01
设置不同的输入信号,观察输出信号的变化,验证滤波器的性 能。
02
使用频谱分析仪等工具,对滤波器的频率响应进行测试和验证。
比较理论计算和实际测试结果,分析误差原因,进一步优化滤
03
波器设计。
05 二阶有源滤波器的应用和 发展趋势
应用领域和实例
音频处理
二阶有源滤波器在音频处理领域中广泛应用,用于改善音质、消除噪音和调整音色。例如,在音频编辑和混音中,通 过使用二阶有源滤波器来调整低频和高频的平衡,以达到所需的音效。
展望
未来,随着新材料、新工艺和新技术 的不断涌现,二阶有源滤波器有望在 性能、稳定性和可靠性等方面得到进 一步优化和提高。同时,随着应用领 域的不断拓展和深化,二阶有源滤波 器将在更多领域发挥重要作用,为人 们的生活和工作带来更多便利和创新 。
THANKS FOR WATCHING
感谢您的观看
电感
选择适当感值的电感,以实现滤波 器的性能要求。
03
02
电容
选择适当容值的电容,以实现滤波 器的性能要求。
运算放大器
选择适当性能的运算放大器,以实 现滤波器的性能要求。
04
电路的搭建和调试
根据电路原理图,搭建二阶有源滤波器电路。
连接电源和输入输出端口,确保电路正常工作。
使用示波器和信号发生器等工具,对电路进行调试,调整元件参数,优化滤波器性 能。
对二阶有源滤波器的评价和展望
优点
不足
二阶有源滤波器具有较高的灵活性和 可调性,能够实现多种滤波功能,如 低通、高通、带通、带阻等。此外, 它还具有较小的体积和较低的成本, 适用于各种小型化和集成化的应用场 景。
然而,二阶有源滤波器也存在一些不 足之处,如稳定性问题、温度漂移现 象以及较大的功耗等。这些问题在一 定程度上限制了其在某些领域的应用 和发展。
multisim仿真教程 二阶带通滤波器ppt

•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月10 日星期 四上午 2时21 分57秒0 2:21:57 20.12.1 0
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月上午 2时21 分20.12. 1002:2 1December 10, 2020
•
3、越是没有本领的就越加自命不凡。 20.12.1 002:21: 5702:2 1Dec-20 10-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 02:21:5 702:21: 5702:2 1Thursday, December 10, 2020
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 020.12. 1002:2 1:5702: 21:57D ecembe r 10, 2020
则有
A(S)
S2
AO
1 Q
S O
0
Q
S
2 0
AO
1 Q
S
0
( S )2 1 S
O
Q O
1
(3.6.2)
式(3.6.2)为二阶带通滤波器传递函数的典型
表达式。其中ω0为中心角频率。
3.6.2二阶有源带通滤波器特性分析
一个二阶有源带通滤波器电路如图3.6.1所示。 启动仿真,点击波特图仪,可以看见二阶有源 带通滤波器的幅频特性如图3.6.2所示。
•
8、业余生活要有意义,不要越轨。20 20年12 月10日 星期四 2时21 分57秒0 2:21:57 10 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。上午 2时21 分57秒 上午2时 21分02 :21:572 0.12.10
二阶带通滤波器的设计

二阶带通滤波器的设计二阶带通滤波器是一种滤波器,可以使特定频率范围内的信号通过,而将其他频率的信号抑制。
它通常由一个高通滤波器和一个低通滤波器级联组成。
在设计二阶带通滤波器时,需要确定滤波器的通带范围、通带增益、截止频率以及滤波器的类型等参数。
首先,我们需要确定滤波器的通带范围。
带通滤波器可以通过选择适当的通带上下限来实现。
通带上限和下限确定了滤波器在哪个频率范围内起作用。
例如,我们可以选择通带范围为500Hz到2kHz。
然后,确定滤波器的通带增益。
通带增益指的是滤波器在通带范围内的增益情况。
通常,滤波器的通带增益为0dB,表示不对信号进行增益或衰减。
但也可以根据实际需求,设置通带增益为正值或负值。
接下来,我们需要确定滤波器的截止频率。
截止频率是指信号衰减到一定程度的频率。
在带通滤波器中,我们需要选择低通滤波器和高通滤波器的截止频率。
低通滤波器的截止频率应高于通带上限,而高通滤波器的截止频率应低于通带下限。
一般来说,截止频率的选择应根据信号频谱分布和带宽要求来确定。
在选择截止频率之后,我们需要确定滤波器的类型。
常用的二阶带通滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
它们在滤波器的通频带宽、衰减特性和相位响应等方面有不同的性能。
根据具体情况选择最适合的滤波器类型。
一旦确定了以上参数,我们可以开始设计二阶带通滤波器。
设计的主要步骤包括:1.设计低通滤波器:利用所选的滤波器类型,设计一个低通滤波器,其截止频率为所选的通带下限。
2.设计高通滤波器:同样地,利用所选的滤波器类型,设计一个高通滤波器,其截止频率为所选的通带上限。
3.级联滤波器:将低通滤波器和高通滤波器按级联方式连接,形成二阶带通滤波器。
4.调整参数:根据实际应用需求,调整滤波器的参数,如增益、截止频率等。
5.仿真和测试:利用计算机软件或硬件进行滤波器的仿真和测试,检查其频率响应和相位响应等性能是否满足要求。
总结起来,设计二阶带通滤波器需要确定滤波器的通带范围、通带增益、截止频率和滤波器类型等参数。
二阶带通滤波的标准形式

二阶带通滤波的标准形式二阶带通滤波器是一种常用的信号处理工具,可以用于滤除不需要的频率成分,保留感兴趣的频率范围。
它的标准形式是一种常见的表示方式,可以方便地描述滤波器的特性和参数。
二阶带通滤波器的标准形式可以表示为:H(s) = K * (s^2 + ω0/Q * s + ω0^2) / (s^2 + ω0/Q * s + ω0^2)其中,H(s)是滤波器的传递函数,s是复频域变量,K是增益系数,ω0是中心频率,Q是品质因数。
在这个标准形式中,分子和分母都是二次多项式,分别表示滤波器的分子传递函数和分母传递函数。
通过调整K、ω0和Q的值,可以实现不同的滤波器特性。
K是增益系数,用于调整滤波器的增益。
通过改变K的值,可以增强或减弱滤波器的输出信号。
ω0是中心频率,决定了滤波器的中心频率位置。
通过调整ω0的值,可以改变滤波器的中心频率,从而选择需要保留的频率范围。
Q是品质因数,决定了滤波器的带宽。
Q的值越大,滤波器的带宽越窄,选择的频率范围越小;Q的值越小,滤波器的带宽越宽,选择的频率范围越大。
通过调整这三个参数的值,可以实现不同的滤波器特性。
例如,当K=1、ω0=1000Hz、Q=0.5时,滤波器可以实现一个中心频率为1000Hz,带宽为2000Hz的带通滤波器。
二阶带通滤波器的标准形式在信号处理领域得到了广泛的应用。
它可以用于音频处理、图像处理、通信系统等领域。
通过调整滤波器的参数,可以实现不同的滤波效果,满足不同应用的需求。
总之,二阶带通滤波器的标准形式是一种常见的表示方式,可以方便地描述滤波器的特性和参数。
通过调整增益系数、中心频率和品质因数的值,可以实现不同的滤波器特性,满足不同应用的需求。
在信号处理领域,二阶带通滤波器被广泛应用于音频处理、图像处理、通信系统等领域。
二阶带通有源滤波器总结

低频实训课程总结题目:二阶带通有源滤波器学院:xxxx专业:xxxx学号:xxxx姓名: xxx指导教师: xxxXxxx年 xx 月<<低频电子线路实训>>课程总结专业:xxxx 学号:xxxx 姓名:xxx 一、设计电路原理图及工作原理32674+12V74112J21 2J139KR112KR2R424KR524K123J3C210nFC110nFR313KR323K图1设计电路原理图工作原理:由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。
低通滤波器是用来通过低频信号,衰减或抑制高频信号,二、电路仿真及结果1、仿真软件简要介绍Multisim是Interactive Image Technologies (Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力2、仿真电路图图2 仿真电路图3、仿真内容和结果1、测量零点漂移。
将万用表XMM1设置为直流DC ,截图并记录万用表XMM1的 输出端直流电压值V os ,即零点漂移大小。
如图所示::2、寻找输出电压最大值。
调节信号源XFG1频率为 1.8f kHz =,幅度为500i V mVpp =,增大或减小信号的频率,使输出电压为最大值(从XMM1读数可知),此时信号源XFG1的频率为滤波器的中心频率oo f 。
截图并记下此时XMM1的读数,即为输出电压最大值max o V ,再截图并记下此时XMM2的值,即输入电压i V ,可计算增益max u o i A V V =。
输出电压最大值max o V 为:输入电压i V 为:增益max u o i A V V =1.993、测量上限频率H f 和下限频率L f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015第二学期北京工业大学电子技术课程设计报告题目二阶有源带通滤波器专业电子信息工程学号 ********姓名 XX指导教师 XXXX电源滤波器是由电容、电感和电路组成的滤波电路。
滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。
滤波器在通信技术、测量技术、控制系统等领域有着广泛的应用。
由有源器件和电阻、电容构成的滤波器称为RC 有源滤波器。
滤波器的分类很多,根据滤波器对信号频率选择通过的区域,可分为低通、高通、带通和带阻等四种滤波器;按使用的滤波元件不同,可分为LC 滤波器、RC 滤波器、RLC 滤波器;有源滤波器还分为一阶、二阶和高阶滤波器,阶数越高,滤波电路幅频特性过渡带内曲线越陡,形状越接近理想。
本实验设计了二阶RC 有源带通滤波器,并利用Multisim12.0 对实验进行仿真演示,列出了具体的分析与设计方法。
English abstractThe power filter is composed of capacitor, inductor and circuit filter circuit. The filter can be outside the power line frequency specific frequency or the frequency of frequency were effectively filter, a specific frequency power signal, or remove a specific frequency power 1signals. Filter in communication technology, measurement technology, control systems and other fields have a wide range of applications. A filter called RC active filter, which is composed of an active device and a resistor and a capacitor. The classification of the filter, according to filter the signal frequency selection through a region can be divided into low pass, high pass, band pass and band stop and other four kinds of filter; according to the different use of the filter element can be divided into LC filters, RC filter and RLC filter; active power filter is first order, second order and higher order filter, the higher order, filter circuit amplitude frequency characteristic transition zone curve is steeper, the shape is more close to the ideal.In this experiment, the two order RC active band pass filter is designed, and the Multisim12.0 is used to carry out the simulation demonstration, and the specific analysis and design method are listed.1.模拟电路部分设计 (1)1.1设计任务与要求 (1)1.2方案比较与确定 (2)1. 2. 1方案比较 (2)1. 2. 2元器件及设计图比较 (3)1.2.3方案确定 (4)1.3整体电路设计 (4)1. 3. 1总体方案介绍 (4)1. 3. 2整体电路设计原理 (4)1. 3. 3软件仿真与测试分析 (4)1.3 .4硬件仿真与测试分析 (9)2. 电子技术课程设计总结 (10)参考文献: (11)附录351.绪论数字电子技术课程设计是数字电子技术课程的实践教学环节,是对学生学习数字电子技术的综合训练。
学生根据某一课题技术指标或逻辑功能的要求,独立进行电路设计,工程估算,实验测试与调整,制作(在实验板上)电子产品和写出总结报告。
通过这一电路综合性设计训练,要达到深化所学的理论知识,培养综合运用所学知识的能力,掌握一般电路的分析方法,增强独立分析与解决问题的能力。
通过这一综合训练培养学生严肃认真的工作态度和科学作风,为今后从事电子电路设计和研制电子产品打下初步基础。
一般方法和步骤是选择总体方案,设计单元电路,选择元器件,计算参数,审图,实验(包括修改测试性能)。
画出总体电路图。
本课程的实际设计选题和具体的电子系统安装调试完全放开,可以同学自带或相关导师的有关课题子项目。
经过课程设计,学生将大大地扩大电子技术的知识面,极大地提高电子技术的设计能力和应用能力。
1.模拟电路部分设计1.1设计任务与要求二阶有源带通滤波器的设计、仿真与性能实测。
电子线路课程设计是模拟、数字电子技术课程的实践性教学环节,是对学生学习电子技术的综合性训练。
这种训练是通过学生独立完成某一个或两个课题的软、硬件设计,电路的装配、调试与测试,课题功能的实现,设计报告的撰写等任务,使学生能够综合运用电子技术课程中所学到的理论知识与实践相结合,独立完成课程设计。
要求学生学会查阅文献资料和手册,了解常用电子器件的类型和特性,并掌握合理选用的原则;熟悉计算机辅助设计的方法,对电子电路进行软、硬件设计和仿真,培养综合设计的能力;掌握常用电子仪器的使用方法和电子电路的安装与调试技能,提高学生的动手能力,综合实践能力,独立分析和解决实际问题的能力。
并同时培养学生严肃认真的工作作风和严谨的科学态度。
具体任务:二阶有源带通滤波器的设计、仿真与性能实测。
* 基本内容:根据基本要求完成设计。
包括电路形式、元器件参数。
进行上机仿真得出幅频特性、相频特性。
给出曲线和表格的数据表达方式。
写出设计说明书。
* 提高内容:前面提到的其它特性仿真。
在指定电路板上,用指定型号的运放器(LM358/LM358/LM741),按指定的外部引线方式搭接电路供自己调试和实际测评。
电路形式,元件参数和内部接线方式不限。
*测试评价内容:中心频率fo=10KHz,以最接近1KHz为最佳。
3db带宽不小于400Hz带内平整度小于1db矩形系数K=幅度降至0.707的带宽与0.1处带宽之比。
* 测试条件:通带内电路信号不失真。
外加测试信号源内阻50欧姆。
电路输出负载10K欧姆。
单电源供电12伏。
1.2方案比较与确定1. 2. 1方案比较方案一:无源带通滤波器无源带通滤波器原理图如图2-1-1所示图1-2-1无源带通滤波器方框图方案二:压控电压源二阶带通滤波器压控电压源二阶带通滤波器电路系统框图如图3-2-2所示。
输入信号经低通电路、高通电路过滤后,再经放大器放大输出。
图1-2-2 有源二阶带通滤波器1. 2. 2元器件及设计图比较在模拟实验中,实验室常用的运算放大器有以下几种:LM324、LM358、LM741。
下面对这其中两种放大器的特性进行比较。
方案一:LM741LM741是高增益运算放大器,提供输出短路保护和闭锁自由运作。
这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。
{1}图1-2-5双电源LM741仿真图高通滤波输出信号方案二:LM358LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
图1-2-4双电源LM358仿真图1. 2. 3方案确定就实验题目要求来看,压控电压源二阶带通滤波器的衰减速率可以满足题目要求,并且比简单二阶带通滤波器在中心频率上电压放大倍数要优越,而且其硬件电路不是很复杂,有利于在实验室的试验箱上操作,故我们选择LM741压控电压源二阶带通滤波器作为最终方案。
1.3整体电路设计1. 3. 1总体方案介绍压控电压源二阶带通滤波器电路系统框图如图1-3-1所示。
输入信号经低通电路、高通电路过滤后,再经放大器放大输出。
图1-3-1压控电压源二阶带通滤波器电路系统框图1. 3. 2整体电路设计原理典型的二阶带通滤波电路及其幅频特性曲线如图1-3-2所示。
图1-3-2 二阶带通滤波器及其幅频特性它的传递函数为(式1-1)中心角频率为:(式1-2)通带带宽为:(式1-3)其中,(式1-4)根据题目要求,分别带入算式中得出可满足题目要求的电阻及电容值。
最终确定的硬件电路电阻电容值如下:Rf=RF=4.7k;C1=C2=0.01uF;R1=2.0K;R2=2.0K;R3=2.4K;负载RL应题目要求设为4.7K。
1. 3. 3软件仿真与测试分析仿真采用multisim软件,双电源压控电压源二阶带通滤波器电路图如图1-3-3所示。
仿真结果如图1-3-4,1-3-5,1-3-6,1-3-7所示。
图1-3-3双电源压控电压源二阶带通滤波器电路仿真当输入频率在10KHz附近时:图1-3-4当输入频率远大于10KHz时:图1-3-5幅度:图1-3-6交流分析:图1-3-7实物图,如下列图所示1.如图1-3-8所示为中心频率频率为10kHZ,所用信号发生器型号为EE1641B1 所用模拟电路实验箱型号为SAC-MS3,所用示波器型号为YB4320A,示波器图像如图1-3-9所示,模拟电路实验箱电路图如图1-3-10所示图1-3-8图1-3-91-3-10如图1-3-11所示Ui=11.2V U0=7.2V,fL1=2.977kHz,fH1=21.15kHz,所用信号发生器型号为EE1641B1 所用模拟电路实验箱型号为SAC-MS3。
图1-3-11如图1-3-11所示Ui=11.2V U0=7.2V,L2=195.9kHz,fH2=0.24kHz,所用信号发生器型号为EE1641B1 所用模拟电路实验箱型号为SAC-MS3。