二阶带通滤波器的设计原理

二阶带通滤波器的设计原理
二阶带通滤波器的设计原理

实验二:Multisim仿真——带通滤波器的设计

一.实验目的

采用Multisim软件来设计带通滤波器电路,计算带通滤波器参数并对其仿真进行分析。

二.实验原理及计算:

2.1二阶有源滤波器数学模型如下:

采用节点法来计算其输出函数

◆在节点1 有:

U1?Ui Y1+U1?Uo Y4+U1?U2Y3+U1Y2=0①

◆在节点2 有:

U2?U1Y3+U2?Uo Y5=0②

由虚短得到U2=0,代入②式得:U1=?Y5

Y3

Uo③

将③代入①有:

G s=Uo

Ui

=

?Y1Y3

Y5Y1+Y2+Y3+Y4+Y3Y4

又因为Y1=1R 1

,Y2=

1R 1

,Y1=

1R 2

,Y3=sC3,Y4=sC4,Y5=

1R 5

得到:

G s =

?

s R 1C 4

S 2+R 5 sC 3+sC 4 s +sC 3sC 4R 5(R 1+R 2)

与二阶滤波器相应的标准表达式

11)(11

)(20

2

02++=

+?+=O O O

O O

S Q S S Q A S Q S S Q

A S A ωωωωωω

比较可得:

Go =1

R 5

1+C 3

ω0= 1R 5C 3C 4(1R 1+1

R 2

) Q =

R 5(1

R 1

+

1R 2)

C 4

+

C 3

以上只有三个方程,却有5个未知数。可令C3=C4=C ,联立以上几个方程可得:

R1=Q

R2=Q

2Q 2?Go ω0C

R5=2Q

ω0C

2.2 在我们systemview试验一中有两个滤波器

现计算第一个滤波器的参数:中心频率为60khz,通频带为60khz。

由ω0=2π?60?e3,Q=1.2,Go=1,得:

R1=3.18k?,R2=1.69k?,R5=6.37k?。

三.根据计算的参数在Multisim中搭建实验电路,完成仿真。

3.1 根据所计算的第一个带通滤波器的参数所得实验电路图如下:

采用一个交流电源作为输入,通过扫频仪观察响应的幅频特性。得到所设计的滤波器幅频特性图像:

带通带阻数字滤波器

以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半%即,f1,f3,fs1,fsh,的值小于Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs);

[bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h)); figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱

二阶有源带通滤波器的设计

设计任务书 一、设计目的 掌握二阶压控电压源有源滤波器的设计与测试方法 二、设计要求和技术指标 带通滤波器:通带增益 up A 2;中心频率:0f =1kHz ;品质因数Q=0.707.要求设计电路具有元件少、增益稳定、幅频响应好等特点。 2、设计内容及步骤 (1)写出电路的传递函数,正确计算电路元件参数,选择器件,根据所选器件画出电路原理图,并用multisim 进行仿真。 (2)安装、调试有源滤波电路。 (3)设计实验方案,完成滤波器的滤波性能测试。 (4)画出完整电路图,写出设计总结报告。 三、实验报告要求 1、写出设计报告,包括设计原理、设计电路、选择电路元器件参数、multisim 仿真结论。 2、组装和调试设计的电路检验该电路是否满足设计指标。若不满足,改变电路参数值,使其满足设计题目要求。 3、测量电路的幅频特性曲线。 4、写出实验总结报告。

前言 随着计算机技术的发展,模拟电子技术已经成为一门应用范围极广,具有较强实践性的技术基础课程。电子电路分析与设计的方法也发生了重大的变革,为了培养学生的动手能力,更好的将理论与实践结合起来,以适应电子技术飞速的发展形势,我们必须通过对本次课程设计的理解,从而进一步提高我们的实际动手能力。 滤波器在日常生活中非常重要,运用非常广泛,在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的滤波器。随着集成电路的迅速发展,用集成电路可很方便地构成各种滤波器。用集成电路实现的滤波器与其他滤波器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 滤波器在电路实验和设备检测中具有十分广泛的用途。现在我们通过对滤波器器的原理以及结构设计一个带通滤波器。我们通过对电路的分析,参数的确定选择出一种最合适本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。 RC有源滤波器设计 1.1总方案设计 1.1.1方案框图 图1.1.1 RC有源滤波总框图

带通滤波器的设计

目录 一.设计概述 二.设计任务及要求 2.1 设计任务 2.2 设计要求 三.设计方案 3.1设计结构 3.2元件参数的理论推导 3.3仿真电路构建 3.4仿真电路分析四.所用器件 五.实验结果 5.1 实验数据记录 5.2 实验数据分析六.实验总结 6.1 遇到的主要问题 6.2 解决问题的措施 6.3 实验反思与收获 附图 参考文献

一.设计概述 根据允许的通过的频率范围,可以将滤波器分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器4种。其中,带通滤波器是指允许某一频率范围内的频率分量通过,其他范围的频率分量衰减到极低水平的滤波器。 在滤波器中,信号能够通过的范围成为通频带或通带,信号受到很大衰减或完全被抑制的频率范围成为阻带,通带和阻带之间的界限称为截止频率。对于一个理想的带通滤波器,通带范围内则完全平坦,对传输信号基本没有增益的衰减作用,其次,通带之外的所有频率均能被完全衰减掉,通带和阻带之间存在一定的过渡带。 在带通滤波器的实际设计过程中,主要参数包括中心频率f0,频带宽度BW,上限截止频率fH和下限截止频率fL。一般情况下,为使滤波器在任意频段都具有良好的频率分辨能力,可采用固定带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率选择能力越高。但为了覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多场合,固定带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化,其中,参考信号是由信号发生器提供的。上述可便中心频率的固定带宽带通滤波器,经常用于滤波和扫描跟踪滤波应用中。 二.设计任务及要求 1)设计任务 带通滤波器的设计方案有很多,本实验将采用高通滤波器和低通滤波器级联的设计方案实现一个带通滤波器,通过多级反馈,减少干扰信号对滤波器的影响。为了检测滤波电路的通带特性,设计一个带宽检测电路,通过发光二极管的亮灭近似检测电路的带宽范围。 设计要求 2)设计要求 (1)性能指标要求 1.输入信号:有效值为1V的电压信号。 2.输出信号中心频率f0通过开关切换,分别为500Hz 1.5KHz 3KHz 10KHz 误差10%。 3.带通滤波器带宽BW

matlab程序之——滤波器(带通-带阻)教学内容

m a t l a b程序之——滤波器(带通-带阻)

matlab程序之——滤波器(带通,带阻) 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半 %即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h));

figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱 %当style=1时,还可以多输入2个可选参数 %可选输入参数是用来控制需要查看的频率段的 %第一个是需要查看的频率段起点 %第二个是需要查看的频率段的终点 %其他style不具备可选输入参数,如果输入发生位置错误 nfft= 2^nextpow2(length(y));%找出大于y的个数的最大的2的指数值(自动进算最佳FFT步长nfft) %nfft=1024;%人为设置FFT的步长nfft y=y-mean(y);%去除直流分量 y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布 y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。

二阶带通滤波器课程设计.

一、制作一个1000Hz 的正弦波产生电路: 图1.1 正弦波产生电路 1.1 RC 桥式振荡电路 RC 桥式振荡电路如图(1.1)所示。这个电路由两部分组成,即放大电路和选频网络。其中,R1、C1和R2、C2为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。R3、W R 及R4组成负反馈网络,调节W R 可改变负反馈的反馈系数,从而调节放大的电压增益,使电压增益满足振荡的幅度条件。RC 串并联网络与负反馈中的R3、W R 刚好组成一个四臂电桥,电桥的对角线顶点接到放大器A1的两个输入端,桥式振荡电路的名称即由此得来。 分析RC 串并联网络的选频特性,根椐正弦波振荡电路的振幅平衡条件,选择合适的放大指标,构成一个完整的振荡电路。 1.2 振荡电路的传递函数 由图(1.1)有 1111 Z R sC =+,2 2222 1Z 1R R C sC =+=2221R sC R + 其中,1Z 、2Z 分别为图1.1中RC 串、并联网络的阻值。 得到输入与输出的传递函数: F ν(s)= 21 2 1212221121()1 sR C R R C C s R C R C R C s ++++ =12 21122111212 11111()s R C s s R C R C R C R R C C ++++ (1.1) 由式(1.1)得 21212 R R 1 C C =ω 2 1210R R 1 C C = ?ω

取1R =2R =16k Ω,12C C ==0.01μF ,则有 1.3 振荡电路分析 就实际的频率而言,可用s j ω=替换,在0ωω=时,经RC 选频网络传输到运放同相端的电压与1o U 同相,这样,放大电路和由Z1和Z2组成的反馈网络刚好形成正反馈系统,可以满足相位平衡条件。 12 2 11221212 ()12v j C R F j j C R j C R C C R R ωωωωω= ++- (1.2) 令2 12101R R C C = ω,且R R R C C C ====2121,,则式(1.2)变为 ) (31 )(00ω ωωωω-+= j j F v (1.3) 由此可得RC 串并联选频网络的幅频响应 2 002)( 31ω ωωω-+= V F (1.4) 相频响应 3 )( arctan 0ω ωωω?--=f (1.5) 由此可知,当 2 12101R R C C = =ωω,或CR f f π21 0= = 时,幅频响应的幅度为最大,即 而相频响应的相位角为零,即 这说明,当2 12101R R C C = =ωω时,输出的电压的幅度最大(当输入电压的幅 度一定,而频率可调时),并且输出电压时输入电压的1/3,同时输出电压与输入

带通滤波电路设计

带通滤波电路设计一.设计要求 (1)信号通过频率范围 f 在100 Hz至10 kHz之间; (2)滤波电路在 1 kHz 电路的幅频衰减应当在 的幅频响应必须在± 1 kHz 时值的± 3 dB 1 dB 范围内,而在 范围内; 100 Hz至10 kHz滤波 (3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。 二.电路组成原理 由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较, 不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。 V I V O 低通高通 图( 1) 1 W H低通截止角频率 R1C1 1 W L高通截止角频率 R2C2 必须满足W L

│A│ O │A│ O │A│ O 低通 W w H 高通 W w L 带通 W W w L H 图( 2) 三.电路方案的选择 参照教材 10.3.3 有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

基于matlab的带通、带阻滤波器设计实例

基于matlab的带通、带阻滤波器设计实例 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半%即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h)); figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100;

二阶压控型低通滤波器设计

二阶压控型低通滤波器设计 1. 设计要求 设计一个二阶压控型低通滤波器,要求通带增益为2,截止频率为2KHz ,可以选择0.01uF 电容器,阻值尽量接近实际计算值,电路设计完后,画出频率响应曲线,并采用Multisim 软件进行仿真分析。 2. 设计目的 (1) 进一步掌握滤波器电路的工作原理和参数计算。 (2) 熟练使用Multisim 进行简单的电路设计和仿真。 3. 问题分析与参量计算 3.1 问题的简单分析 二阶压控型低通LPF 电路基本原理图可参照教材P345页(如下) 而题目中已经给出了电容的值,故我们所要做的只是确定电阻阻值以及进行电路合理的相关改善。 实验所选取的运放器是a741,实验是在Multisim 环境仿真完成的。 3.2 计算电路相关参数 (1) 低通滤波器在通带将内电容视为开路,给电路引入负反馈从而满足“虚短”、“虚断”,通带增益 3412up R A R =+ =,则34R R =,取34R R == 10k Ω。 (2) 传递函数:为方便计算,取1212,R R R C C C ====,由“虚短”、“虚断”及叠 加定理,得()() ()()() ()()()677776/1()()[()]0up p p p i U s A U s U s U s sCR U s U s U s U s U s U s sC R R ==+-----= 得到传递函数:62()1()()1(3)()u up i up U s A s A U s A sCR sCR ==+-+ 令s j ω=,取012f RC π=,2f ωπ=,2 001(3)()up u up A A f f j A f f ?=+-- (3) 当f 为截止频率时,200|1(3)()|2up f f j A f f +--=,令0f x f =,则得方程 4210x x --=,解得x ,因为2f kHz =,取0.01C F μ=可解得10.1224R k ≈Ω电阻,由于实际试验中难以的到10.1224k Ω的电阻,故实际试验中用10k Ω的电阻代替之 (4)入10,1p V mv f kHz ==的信号源 最终得到的电路图: 3.3二阶压控电压源低通滤波器(LPF )的幅频特性 Q=13-Aup =13-2 =1 ,所以Q=1的曲线即为此二阶压控电压源低通滤波器(LPF )的幅频特性。

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

二阶带通滤波器课程设计

目录 1 课程设计的目的与作用 (1) 2 设计任务及所用multisim软件环境介绍 (1) 2.1 设计任务 (1) 2.2 Multisim软件环境介绍 (1) 3 电路模型的建立 (2) 4 理论分析及计算 (3) 5 仿真结果分析 (4) 6 设计总结和体会 (4) 7 参考文献 (5)

1 课程设计的目的与作用 目的:根据设计任务完成对二阶带通滤波器的设计,进一步加强对模拟电子技术的理解。了解二阶带通滤波器的工作原理,掌握对二阶带通滤波器频率特性的测试方法。 带通滤波器:其作用是允许某一段频带范围内的信号通过,而将此频带以外的信号阻断。常用于抗干扰设备中,以便接收某一段频带范围内的有效信号,而消除高频段和低频段的干扰和噪声。 2 设计任务及所用multisim软件环境介绍 2.1 设计任务 学会使用Multisim10软件设计二阶带通滤波器的电路,使学生初步了解和掌握二阶带通滤波器的设计、调试过程及其频率特性的测试方法,能进一步巩固课堂上学到的理论知识,了解带通滤波器的工作原理。 2.2 Multisim软件环境介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim 提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

带通滤波器工作原理与带通滤波器原理图详解

带通滤波器工作原理与带通滤波器原理图详解 带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。 带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 工作原理 一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中

带通滤波器设计

LC椭圆函数带通滤波器设计 要求带通滤波器,在15kHz~ZOkHz的频率范围内,衰减最大变化1dB,低于14.06kHz和高于23kHz频率范围,最小衰减为50dB,Rs=RL=10kΩ。 ③运行Filter Solutions程序。点击“阻带频率”输人框,在“通带波纹(dB)”内输人0.18,在“通带频率”内输人1,在“阻带频率”内输人1.456,选中“频率单位-弧度”逻辑框。在“源阻抗”和“负载阻抗”内输人1。 ④点击“确定阶数”控制钮打开第二个面板。在“阻带衰减(dB)”内输人50,点击“设置最小阶数”按钮并点击“关闭”,主控制面板上形式出“6阶”,选中“偶次阶模式”逻辑框。 ⑤点击“电路”按钮。Filter s。lutions提供了两个电路图。选择“无源滤波器1”,如图1(a)所示。 ⑥这个滤波器必须变换为中心频率ω0=1的归一化带通滤波器。带通滤波器的Q 值为: 把所有的电感量和电容值都乘以Qbp°然后用电感并联每一个电容、用电容串联每一个电感使其谐振频率为ω0=1,该网络被变换为带通滤波器。使用的谐振元仵是原元件值的倒数,如图1(b)所示。 ⑦按照图1的方式转换Ⅱ型支路。

变换后的滤波器见图1(c)。在原理图下标出了以rad/s为单位的谐振频率。 ⑧用中心频率fo=17.32kHz和阻抗10kΩ对滤波器进行去归一化以完成设计。将所有的电感乘以Z/FSF,所有的电容除以z×FSF,其中z=104, FSF=2πfe=1.0882×105。最终的滤波器见图1(d)。图1(c)中的归一化谐振频率直接乘以几何中心频率fo=17.32kHz即可得到谐振频率。频率响应见图1(e)。

带通滤波器设计步骤

带通滤波器设计步骤 1、根据需求选择合适的低通滤波器原型 2、把带通滤波器带宽作为低通滤波器的截止频率,根据抑制点的频率距离带通滤波器中心频点距离的两倍作为需要抑制的频率,换算抑制频率与截止频率的比值,得出m 的值,然后根据m 值选择低通滤波器的原型参数值。 滤波器的时域特性 任何信号通过滤波器都会产生时延。Bessel filter 是特殊的滤波器在于对于通带内的所有频率而言,引入的时延都是恒定的。这就意味着相对于输入,输出信号的相位变化与工作的频率是成比例的。而其他类型的滤波器(如Butterworth, Chebyshev,inverse Chebyshev,and Causer )在输出信号中引入的相位变化与频率不成比例。相位随频率变化的速率称之为群延迟(group delay )。群延迟随滤波器级数的增加而增加。 模拟滤波器的归一化 归一化的滤波器是通带截止频率为w=1radian/s, 也就是1/2πHz 或约0.159Hz 。这主要是因为电抗元件在1弧度的时候,描述比较简单,XL=L, XC=1/C ,计算也可以大大简化。归一化的无源滤波器的特征阻抗为1欧姆。归一化的理由就是简化计算。 Bessel filter 特征:通带平坦,阻带具有微小的起伏。阻带的衰减相对缓慢,直到原理截止频率高次谐波点的地方。原理截止频率点的衰减具有的经验公式为n*6dB/octave ,其中,n 表示滤波器的阶数,octave 表示是频率的加倍。例如,3阶滤波器,将有18dB/octave 的衰减变化。正是由于在截止频率的缓慢变化,使得它有较好的时域响应。 Bessel 响应的本质截止频率是在与能够给出1s 延迟的点,这个点依赖于滤波器的阶数。 逆切比雪夫LPF 原型参数计算公式(Inverse Chebyshev filter parameters calculate equiations ) ) (cosh )(cosh 11Ω=--Cn n 其中 1101.0-=A Cn , A 为抑制频率点的衰减值,以dB 为单位;Ω为抑制频率与截止频率的比值 例:假设LPF 的3dB 截止频率为10Hz,在15Hz 的频点需要抑制20dB,则有: 95.91020*1.0==Cn ;Ω=15/10=1.5 1.39624.0988.2) 5.1(cosh )95.9(cosh 11===--n ,因此,滤波器的阶数至少应该为4

基于matlab的FIR低通高通带通带阻滤波器设计

基于matlab的FIR低通-高通-带通-带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期:

北京师范大学 课程设计报告 课程名称: DSP 设计名称:FIR 低通、高通带通和带阻数字滤波器的设计姓名: 学号: 班级: 指导教师: 起止日期: 课程设计任务书

学生班级: 学生姓名: 学号: 设计名称: FIR 低通、高通带通和带阻数字滤波器的设计 起止日期: 指导教师: 设计目标: 1、采用Kaiser 窗设计一个低通FIR 滤波器 要求: 采样频率为8kHz ; 通带:0Hz~1kHz ,带内波动小于5%; 阻带:1.5kHz ,带内最小衰减:Rs=40dB 。 2、采用hamming 窗设计一个高通FIR 滤波器 要求: 通带截至频率wp=rad π6.0, 阻带截止频率ws=rad π4.0, 通带最大衰减dB p 25.0=α,阻带最小衰减dB s 50=α 3、采用hamming 设计一个带通滤波器 低端阻带截止频率 wls = 0.2*pi ; 低端通带截止频率 wlp = 0.35*pi ; 高端通带截止频率 whp = 0.65*pi ; 高端阻带截止频率 whs = 0.8*pi ; 4、采用Hamming 窗设计一个带阻FIR 滤波器 要求: 通带:0.35pi~0.65pi ,带内最小衰减Rs=50dB ; 阻带:0~0.2pi 和0.8pi~pi ,带内最大衰减:Rp=1dB 。

FIR 低通、高通带通和带阻数字滤波器的设计 一、 设计目的和意义 1、熟练掌握使用窗函数的设计滤波器的方法,学会设计低通、带通、带阻滤波器。 2、通过对滤波器的设计,了解几种窗函数的性能,学会针对不同的指标选择不同的窗函数。 二、 设计原理 一般,设计线性相位FIR 数字滤波器采用窗函数法或频率抽样法,本设计采用窗函数法,分别采用海明窗和凯泽窗设计带通、带阻和低通。 如果所希望的滤波器的理想频率响应函数为)(jw d e H ,如理想的低通,由信号系统的知识知道,在时域系统的冲击响应h d (n)将是无限长的,如图2、图3所示。 H d (w) -w c w c 图2 图3 若时域响应是无限长的,则不可能实现,因此需要对其截断,即设计一个FIR 滤波器频率响应∑-=-=1 0)()(N n jwn jw e n h e H 来逼近)(jw d e H ,即用一个窗函数w(n)来 截断h d (n),如式3所示: )()()(n w n h n h d = (式1)。 最简单的截断方法是矩形窗,实际操作中,直接取h d (n)的主要数据即可。 )(n h 作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数为: ∑-=-=1 0)()(N n jwn jw e n h e H (式2) 令jw e z =,则 ∑-=-=1 0)()(N n n z n h z H (式3), 式中,N 为所选窗函数)(n w 的长度。

二阶带通滤波器设计

物理学院课程设计任务书 专业:学生姓名:学号:学生班级:题目:二阶带通滤波器的设计 指导教师姓名及职称张晓培 电子线路课程设计 题目: 有源带通滤波器 作者姓名:覃万晴 学号:

学院:机械与船舶海洋工程学院 专业:过程控制自动化 指导教师姓名:张晓培 2016年10月1日 二阶带通滤波器的设计 一、设计要求和意义 1)实验要求:中心频率为1KHZ 2)设计意义:近几年随着冶金、化工、纺织机构等工业使用的各种非线性用电设备而产生的大量的高次谐波,已导致电网上网正常波形发生严重畸变,影响到供电系统的电能质量和用户用电设备的安全经济运行。 3)随着生产技术方式的变化,生产力确实得到较大提高,可同时也受到方方面面的限制。如当人们做出了具体的制度设计需要付诸实践进行试验,试验过程中不可避免地会受到一些偶然随即因素的干扰,为评价新方案的效果,需排除这些随即因素的影响,即需要一个滤波器。经滤波以后对新方案的效果进行检验。 4)有源滤波器一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 5)利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 6)若将低通滤波器和高通滤波器串联,并使低通滤波器的通带截止频率fp2大于高通滤波器的通带截止频率fp1,则频率在fp1

二阶带通滤波器的设计原理

实验二:Multisim仿真——带通滤波器的设计 一.实验目的 采用Multisim软件来设计带通滤波器电路,计算带通滤波器参数并对其仿真进行分析。 二.实验原理及计算: 2.1二阶有源滤波器数学模型如下: 采用节点法来计算其输出函数 ◆在节点1 有: U1?Ui Y1+U1?Uo Y4+U1?U2Y3+U1Y2=0① ◆在节点2 有: U2?U1Y3+U2?Uo Y5=0② 由虚短得到U2=0,代入②式得:U1=?Y5 Y3 Uo③ 将③代入①有: G s=Uo Ui = ?Y1Y3 Y5Y1+Y2+Y3+Y4+Y3Y4

又因为Y1=1R 1 ,Y2= 1R 1 ,Y1= 1R 2 ,Y3=sC3,Y4=sC4,Y5= 1R 5 得到: G s = ? s R 1C 4 S 2+R 5 sC 3+sC 4 s +sC 3sC 4R 5(R 1+R 2) 与二阶滤波器相应的标准表达式 11)(11 )(20 2 02++= +?+=O O O O O S Q S S Q A S Q S S Q A S A ωωωωωω 比较可得: Go =1 R 5 1+C 3 ω0= 1R 5C 3C 4(1R 1+1 R 2 ) Q = R 5(1 R 1 + 1R 2) C 4 + C 3 以上只有三个方程,却有5个未知数。可令C3=C4=C ,联立以上几个方程可得: R1=Q R2=Q 2Q 2?Go ω0C R5=2Q ω0C

2.2 在我们systemview试验一中有两个滤波器 现计算第一个滤波器的参数:中心频率为60khz,通频带为60khz。 由ω0=2π?60?e3,Q=1.2,Go=1,得: R1=3.18k?,R2=1.69k?,R5=6.37k?。 三.根据计算的参数在Multisim中搭建实验电路,完成仿真。 3.1 根据所计算的第一个带通滤波器的参数所得实验电路图如下: 采用一个交流电源作为输入,通过扫频仪观察响应的幅频特性。得到所设计的滤波器幅频特性图像:

带通滤波器设计实验报告

电子系统设计实践 报告 实验项目带通功率放大器设计学校宁波大学科技学院 学院理工学院 班级12自动化2班 姓名woniudtk 学号12******** 指导老师李宏 时间2014-12-4

一、设计课题 设计并制作能输出0.5W功率的语音放大电路。该电路由带通滤波器和功率放大器构成。 二、设计要求 (1)电路采用不超过12V单(或双)电源供电; (2)带通滤波器:通带为300Hz~3.4kHz,滤波器阶数不限;增益为20dB; (3)最大输出额定功率不小于0.5W,失真度<10%(示波器观察无明显失真);负载(喇叭)额定阻抗为8?。 (4)功率放大器增益为26dB。 (5)功率放大部分允许采用集成功放电路。 三、电路测试要求 (1)测量滤波器的频率响应特性,给出上、下限截止频率、通带的增益; (2)在示波器观察无明显失真情况下,测量最大输出功率 (3)测量功率放大器的电压增益(负载:8?喇叭;信号频率:1kHz); 四、电路原理与设计制作过程 4.1 电路原理 带通功率放大器的原理图如下图1所示。电路有两部分构成,分别为带通滤波器和功率放大器。 图1 滤波器电路的设计选用LM358双运放设计电路。LM358是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。高输入阻抗使得运放的输入电流比较小,有利于增大放大电路对前级电路的索取信号的能力。在信号的输入的同时会不可避免的掺杂着噪声和温漂而影响信号的放大,因此高共模抑制比、低温漂的作用尤为重要。 带通滤波器的设计是由上限截止频率为3400HZ的低通滤波器和下限截止频率为300HZ 的高通滤波器级联而成,因此,设计该电路由低通滤波器和高通滤波器组合成二阶带通滤波器(巴特沃斯响应)。 功率放大电路运用LM386功放,该功放是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 4.2电路设计制作 4.2.1带通滤波电路设计 (1)根据设计要求,通带频率为300HZ~2.4KHZ,滤波器阶数不限,增益为 20dB,所以采取二阶高通和二阶低通联级的设计方案,选择低通放大十倍。高通不放大。

带通滤波器

有源模拟带通滤波器的设计 时间:2009-08-2110:51:10来源:电子科技作者:张亚黄克平 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 1滤波器的结构及分类 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。 文中结合实例,介绍了设计一个工作在低频段的二阶有源模拟带通滤波器应该注意的一些问题。 2二阶有源模拟带通滤波器的设计 2.1基本参数的设定 二阶有源模拟带通滤波器电路,如图1所示。图中R1、C2组成低通网络,R3、C1组成高通网络,A、Ra、Rb组成了同相比例放大电路,三者共同组成了具有放大作用的二阶有源模拟带通滤波器,以下均简称为二阶带通滤波器。 根据图l可导出带通滤波器的传递函数为

令s=jω,代入式(4),可得带通滤波器的频率响应特性为 波器的通频带宽度为BW0.7=ω0/(2πQ)=f0/Q,显然Q值越高,则通频带越窄。

相关文档
最新文档