大温差条件下碳纤维混凝土无约束变形试验

合集下载

碳纤维混凝土板的力学性能与受力性能研究

碳纤维混凝土板的力学性能与受力性能研究

碳纤维混凝土板的力学性能与受力性能研究一、研究背景碳纤维混凝土是一种新型的复合材料,由于其具有高强度、高韧性、耐腐蚀等特性,被广泛应用于航空、航天、汽车、建筑等领域。

其中,碳纤维混凝土板作为一种重要的结构材料,在建筑领域中的使用也越来越多。

因此,对碳纤维混凝土板的力学性能和受力性能进行研究,有助于提高其应用效果,推动其在建筑领域的应用。

二、碳纤维混凝土板的力学性能研究1. 强度测试采用拉伸试验和压缩试验测试碳纤维混凝土板的强度,得出其抗拉强度和抗压强度。

实验结果表明,碳纤维混凝土板的抗拉强度和抗压强度均较高,远高于传统混凝土材料。

2. 弹性模量测试采用弯曲试验测试碳纤维混凝土板的弹性模量,得出其在弹性阶段的变形特性。

实验结果表明,碳纤维混凝土板的弹性模量较高,具有较好的弹性恢复性能。

3. 断裂韧性测试采用缺口梁试验测试碳纤维混凝土板的断裂韧性,得出其在破坏前吸收的能量量。

实验结果表明,碳纤维混凝土板的断裂韧性较高,具有良好的抗裂性能。

三、碳纤维混凝土板的受力性能研究1. 拉伸受力性能通过拉伸试验研究碳纤维混凝土板的拉伸受力性能,了解其在受拉力下的破坏机制和应力分布情况。

2. 压缩受力性能通过压缩试验研究碳纤维混凝土板的压缩受力性能,了解其在受压力下的破坏机制和应力分布情况。

3. 弯曲受力性能通过弯曲试验研究碳纤维混凝土板的弯曲受力性能,了解其在受弯曲力下的破坏机制和应力分布情况。

4. 剪切受力性能通过剪切试验研究碳纤维混凝土板的剪切受力性能,了解其在受剪切力下的破坏机制和应力分布情况。

四、碳纤维混凝土板的应用前景碳纤维混凝土板具有优异的力学性能和受力性能,可广泛应用于建筑领域。

在建筑结构中,碳纤维混凝土板可用于承载板、墙板、楼板等,能提高结构的整体强度和稳定性。

此外,在特殊环境下,如海洋、化工等领域中,碳纤维混凝土板也具有广阔的应用前景。

五、结论通过对碳纤维混凝土板的力学性能和受力性能进行研究,得出其具有高强度、高韧性、优异的弹性恢复性能和抗裂性能等特性。

碳纤维、钢纤维混凝土低周抗压疲劳特性的试验研究的开题报告

碳纤维、钢纤维混凝土低周抗压疲劳特性的试验研究的开题报告

碳纤维、钢纤维混凝土低周抗压疲劳特性的试验研究的开题报告一、研究背景与意义随着建筑业的快速发展,对混凝土材料的性能要求也越来越高。

混凝土在实际使用过程中通常会遭受到多种不同形式的荷载作用,例如静载、动载、环境荷载等。

其中,低周往复荷载是一种重要的荷载形式,会对混凝土结构的安全性和耐久性产生较大的影响。

因此,研究混凝土低周抗压疲劳特性是十分必要的。

钢纤维和碳纤维是两种被广泛应用于混凝土中的材料。

钢纤维混凝土具有良好的抗疲劳性能,但存在先软化后硬化的特点,同时钢纤维易产生锈蚀,影响混凝土的耐久性。

碳纤维混凝土具有较高的强度和刚度,且不容易生锈,但碳纤维断裂时会在混凝土中留下大量裂纹,容易让混凝土发生剥落。

因此,本研究将钢纤维和碳纤维两种材料进行混合,以期在保证混凝土性能的同时提高其抗疲劳能力以及延长其使用寿命。

二、研究内容和方法本研究旨在探究钢纤维和碳纤维混凝土的低周抗压疲劳特性,具体包括以下研究内容:1. 通过混凝土抗压强度试验、疲劳试验和微观结构观察等方法,分别研究钢纤维、碳纤维和钢纤维、碳纤维混合的混凝土抗压强度、疲劳特性以及裂缝扩展规律。

2. 对试验结果进行分析、比较和归纳,探究碳纤维、钢纤维混凝土的疲劳特性及优缺点。

3. 基于试验数据和分析结果,构建碳纤维、钢纤维混凝土低周抗压疲劳性能适用的理论模型,为工程应用提供参考。

三、预期成果通过本研究,预计可以得到以下成果:1. 碳纤维、钢纤维混凝土的低周抗压疲劳特性的实验数据。

2. 对钢纤维、碳纤维和钢、碳纤维混合的混凝土的抗压强度、疲劳特性及裂缝扩展规律进行研究和分析。

3. 构建碳纤维、钢纤维混凝土低周抗压疲劳性能适用的理论模型,为相关工程领域的应用提供科学依据。

四、研究计划1. 第一阶段(1-3周):综合查询文献资料,理解碳纤维、钢纤维混凝土低周抗压疲劳特性的基本范畴和理论。

2. 第二阶段(3-5周):研发清洁工艺,制备试验所需混凝土试件,以及钢纤维和碳纤维混合物料。

(精选文档)混凝土结构碳纤维加固规范

(精选文档)混凝土结构碳纤维加固规范

混凝土结构碳纤维加固规范(本文由:上海鼎峰加固工程整理)利用高强非金属纤维类材料,如碳纤维、玻璃纤维等对结构进行加固的方法,具有耐久性好,施工简便,不加大截面,不增加荷载,外形美观等优点,已成功用于多种结构的抗震、抗弯和抗剪加固。

但是,碳纤维加固方法也有其适用范围,本文通过几个工程实例,分析用碳纤维加固钢筋混凝土结构的特点及其适用性。

1、碳纤维用于抗震加固试验研究表明,用碳纤维材料包裹钢筋混凝土柱,使纤维方向与柱轴线相垂直,可以有效提高柱的延性和承载力,增加其抗震耗能能力[1]。

另外,剪力墙作为主要抗侧力构件,其破坏形态不外乎受弯延性破坏(中高剪力墙)或受剪脆性破坏(低剪力墙)。

将碳纤维用于加固剪力墙,只要方法适当,也可显著提高其延性和承载力。

因此,钢筋混凝土结构的抗震加固是碳纤维材料应用的一个有效领域。

但应指出,用碳纤维对柱或剪力墙进行加固时,由于碳纤维本身属预柔性材料,通过结构胶与被加固结构粘结,这就要求被加固结构混凝土须满足一定的强度要求,才有可能发挥碳纤维的加固效果。

以下以实际工程为例说明碳纤维加固钢筋混凝土柱并改善抗震性能的方法。

1.1工程概况和加固方案某多层钢筋混凝土框架结构,施工验收时发现有9根框架柱混凝土强度不能满足设计要求,致使轴压比过大,无法满足轴压比限值所需的延性要求,对此确定采用碳纤维布对柱进行包裹的加固方案。

其理由一方面是碳纤维的包裹对柱混凝土产生环箍作用,可在一定程度上提高混凝土的轴心抗压强度;另一方面,碳纤维对柱的横向约束作用还可显著提高柱在水平荷载下的延性,满足轴压比的延性要求。

加固材料采用美国赫氏单向碳纤维布环氧复合材料。

通过对承载力和延性的计算,对强度较低的3根柱采用沿整个柱高范围包裹3层碳纤维布的方案,对其他6根柱采用沿整个柱高度范围内包裹2层碳纤维布的方案。

1.2加固承载力和延性分析经碳纤维加固后,可以显著提高框架柱的抗剪承载力和延性。

原结构为800㎜×800㎜框架柱,层高3.6m。

碳纤维增强水泥基复合材料的研究

碳纤维增强水泥基复合材料的研究

碳纤维增强水泥基复合材料的研究要:水泥混凝土材料以其抗压强度高,施工方便等优点在人类建筑史上发挥了重要作用,但由于其功能单一,脆性自重大,抗拉强度和抗弯强度低等缺点,在特殊领域中的用途受到了很大限制.碳纤维具有高弹性,高模量,比重耐腐蚀,对人宙无害等优异性能被视为许多材料的优良增强体.将其加入到水泥基体中,制成碳纤维增强水泥基材料(CFRC),不仅可改善水泥自身力学性能的缺陷,使其具有高强度,高模量,高韧性,更重要的是把普通的水筑材料变成了具有自感知内部温度,应力和损伤及一系列电磁屏蔽性能的功能材料..枣词:碳纤维;水泥基;复合材料~tract:Cementconcretematerialshaveplayedallimportantroleinhun]an’sconstructionhistoiT)ritshig hCOIllpres—strengthandeasyoperationduringconstruction.However,itsapplicationinsomespecialfieldisgreatlyr estrictedowlslgISsinglefunction,brittleneSS,heavyself-weight,poorstrengthagainsttensionandbending.Carbonfib ersareregardedasdreinforcementfbrnlanymaterialsduetotheirhighelastic ity,highmodulus,lessdensity,resistancetOco rrosion,and]llessnesstohunlallbeingsanddomesticalmnals.Carbon—fiber—reinforcedcement—basedcompos ites(CFRC)thatareievedbyaddingcarbon6bersintocelllentexhibithighflexuralstrength,hightensilestrength,highflexur altoughnesshightensileductility.Thusnot0I]lythenaechalficalpropertiesofcementareimproved.butfimctionalm aterialsCFRCobtainedthatareabletOsensetheinteriortemperature,stressanddanaageaswellastoshieldoffelectroma gneticwaves./words:Carbonfibers;Cementmatrix;Composites目分类号:TQ172.7文献标识码:A文章编号:1003—8965(2007)05—0005—05刖吾)世纪60年代以来,碳纤维作为新一代复合l补强纤维,以其高强度比,高模量比,低密)(光吸收率,抗腐蚀,耐烧蚀,抗疲劳,耐热冲皂导热性能好,传热系数小,膨胀系数小和自:优异性能而在航天,航空,航海,建筑,轻工.中获得了广泛的应用.将碳纤维加入到水泥p即制成碳纤维增强水泥基复合材料:),也称纤维增强混凝土【1.在水泥基体中强碳纤维是提高水泥复合材料抗裂,抗渗,度和弹性模量,控制裂纹发展,提高耐强碱性,增强变形能力的重要措施.此外,碳纤维还具有震动阻尼特性,可吸收震动波,使防地震能力和抗弯强度提高十几倍位一.更为可贵的是,碳纤维具有导电性,将其加入到水泥基体中可赋于其智能性,极大地扩大了它的应用范围.CFRC复合材料在承受载荷时表面不产生龟裂,其抗拉强度和抗弯强度,断裂韧性比不增强的高几倍到十几倍,其冲击韧性也相当可观.短切碳纤维增强水泥所用碳纤维的长度一般为3~6mm,直径为7-20m,抗拉强度范围在0.5~0.8GPa.普通水泥的强度通常为11.76MPa,若按重量掺入15%的碳纤维,其强度可达到245MPa:若掺入量为20%时,强度可高达548.8MPa.此外,与普通混凝土相比,CFRC具有5L水泥与混凝土质轻,强度高,流动性好,扩散性强,成型后表面质量高等优点,将其用作隔墙时,重量比普通混凝土制作的隔墙薄1/2—1/3,重量减轻1/2—1/3.因此, CFRCI”1能的研究近年来发展迅猛.2CFRC的性能特点及应用2.1CFRC的制备CFRC的制备一般由混料,成型,养护3步组成.利用分散剂将碳纤维预先分散开来,再与水泥,砂子,石子,外加剂等均匀混合,然后采用浇注法,挤出法,压制法,压制脱水法或振动法之一使混合料成型,成型后的试件放入到水或养护箱中养护,干后即成CFRC复合材料,通常有水泥砂浆和水泥混凝土两种类型,后者更具有实用I’*--.-.制备CFRC 过程中,如何使碳纤维均匀分散到水泥基体中,是决定CFRC复合材料性能好坏的关键.常用的拌合方法有两种:干拌法和湿拌法.前一种方法是先将碳纤维和水泥混合搅拌均匀后,再加入砂子,水和其他外加剂;后一种方法是将碳纤维预先分散在部分水中,再与水泥,砂子,硅灰和外加剂混合搅拌.搅拌工艺也十分讲究,一般采用间歇式自动控制搅拌仪.碳纤维水泥浆体的理想搅拌工艺为先拌制水泥和碳纤维,再加入拌合水或先将碳纤维在溶有分散剂的水中分散后加入水泥搅拌30秒钟,最后加入标准砂再继续搅拌.碳纤维在制备好的CFRC试件中呈三维乱向分布,由于受纤维排列方式和长度的影响,短切碳纤维的增强效果不如单轴连续纤维和两维乱向分散的短纤维增强效果.2.2力学性能水泥是脆性材料,但只要加入3vo1%的碳纤维就可以完全改变它的脆断特性,其模量可提高2倍,强度增加5倍.如果定向加入,则加入12.3vo1%的中强碳纤维便可使水泥的强度从5MPa提高到185MPa,抗弯强度也可达到130MPac2|4~5]o赵稼祥旧认为,用碳纤维增强水泥可以使抗拉强度和抗弯强度提高5~10倍,韧性与延伸率提高20~30倍,结构质量减轻1/2.郭全贵等人利用单丝拔出试验测定了CFRC复合材料的界6面结合力,认为高强度和高模量碳纤维的加入,有效阻止了裂纹的扩展,在复合材料受载时,基体通过界面将载荷传递给碳纤维,从而使碳纤维成为载荷的主要承载者,由于纤维的拔出或断裂吸收了大量的能量,所以复合材料的抗拉强度,抗弯性能,韧性等力学性能均得到了显着改善.2.3压敏性1989年美国的DDL.Chung研究小组首先发现,在水泥基体中掺入短切碳纤维,可使其具有自感知内部应力,应变和损伤程度的功能吲.随着压应力的变化,CFRC电阻率发生变化的现象称做压敏性,CFRC的主要特性就是压敏性和温敏性.当CFRC试件两端有温差时,会在此两端产生电压差,其冷端为负极,热端为正极,这便是所谓的热电效应.另一方面,当对CFRC施加电场时,会在混凝土中产生热效应,引起所谓的电热效应,这两种效应都是由碳纤维混凝土中空穴性电导运动所致.通过电阻率的变化可以测定CFRC中安全,损伤和失效3个工作阶段.由于CFRC既具有热电效应,又具有电热效应,因此把它”植入”混凝土结构时,可对混凝土结构进行温度分布自诊断,根据诊断结果实现混凝土结构的温度自适应.当CFRC与电源连通后,导电混凝土产生热量,使路面温度升高,当温度升到0.C以上后,路面上的冰雪就会自动融化成水蒸发流走,从而保障道路畅通和行车安全,国外已将温敏混凝土用于机场道路及桥梁路面的融雪和融冰中【&91o2.4屏蔽效应屏蔽是电磁干扰防护控制的最基本方法之一,其目的一是控制内部辐射区域的电磁场,不使其越出某一区域;二是防止外来的辐射进入某一区域.当外来电磁波遇到屏蔽材料时,就会被吸收,反射和多次反射,电磁波能量的继续传递受到削弱. CFRC复合材料中可形成导电网络,从而可产生屏蔽性能,碳纤维的添加量,长度以及成型方法对CFRC的屏蔽性能均有较大的影响.材料的屏蔽效能SE达到30~60dB的中等屏蔽值时才认为有效.性能良好的电磁屏蔽材料应具有较高的电导率和磁导率.碳纤维对电磁波有较强的反射性,利用水泥与混凝士此特性可将碳纤维复合材料用作薄壁结构吸波材料的背衬.这种材料是雷达波的反射体,特别是在低频下与金属一样反射电磁波..赵福辰等人通过实验发现”I,增加CFRC复合材料中导电碳纤维的长度和含量,可以明显提高屏蔽效果.3影响CFRC性能的主要因素3.1碳纤维掺入量和长度的影响张其颖等人”经过反复试验,确定了目前条件下制备轻质CFRC复合材料的适宜参数为:水泥: 轻骨料(重量)=2:1,水灰比0.65,复合外加剂含量0.5%,碳纤维长度6mm,掺入量3.3%.他的研究表明,外加剂,硅粉及热水养护方法都能促进碳纤维与水泥基体的粘结,更充分地发挥碳纤维的增强作用,提高复合体的强度.CFRC之所以具有良好的力学性能,一方面是因为碳纤维本身具有良好的力学性能,有明显的补强增韧效果;另一方面是合适的操作工艺,使得碳纤维在基体中分散较为均匀,阻断了裂纹的扩展和延伸,最终提高试体的抗折,抗拉,抗压性能.杨元霞等人”.0研究了碳纤维长度和掺量对CFRC导电性的影响,发现当碳纤维掺量(以占水泥质量计)在0~0.8%的范围内增加时,对于碳纤维长度为5mm和10mm的复合材料,其电阻率的变化分为先陡然下降,后缓慢下降,又急剧下降,再趋于平缓4个阶段.当碳纤维掺量相同时,长度为10mm的CFRC试件的电阻率比长度为5mm试件的电阻率要小,且在碳纤维掺量较小时,碳纤维长度对复合材料的电阻率影响较大,碳纤维掺量较大(大干0.6%)时,复合材料电阻率受碳纤维长度的影响变/J,.在水灰比,碳纤维掺量及成型工艺条件一定的情况下,碳纤维长度增大,CFRC导电性增强,但若纤维过长,则易集束成团,难于分散均匀,从而使碳纤维的利用率降低.所以,一般所用碳纤维长度不宜超过10mm.纤维在水泥基体中分散的均匀程度与其长径比有很大关系,一般是长径比越大,即纤维直径不变而纤维长度越大时,在搅拌中越易成球.因此,单纯从有利分散的角度来讲,应是纤维越短越好.同时,碳纤维的掺量对其分散性也有较大的影响.试验发现,在碳纤维和水泥混合搅拌过程中,当碳纤维掺量达到水泥质量的1%时,混合料中便会有明显的纤维团出现,且即使延长搅拌时间,纤维团也不会消失.所以,在一般的拌制工艺中,碳纤维的长度在5mm左右或更大时,碳纤维的最大掺量不宜超过1%.碳纤维的掺量和长度对CFRC的压敏性也有影响,对于5mm长的纤维,掺量为水泥质量的0.4%时压敏性最好,掺量增加或减少都使压敏性变差:对于10mm长的纤维,掺量为0.2%时效果最好,随着纤维掺量增加,压敏性越来越小.3.2碳纤维均匀分散的影响碳纤维直径仅为几个微米,表面光滑且憎水,在水泥基材料中很难均匀分散,这是制备电学能稳定的CFRC机敏材料的一个关键性难题.对于相同配比的CFRC材料,如果纤维分散不均匀,其电导率将产生明显的差异,这极大地限制了CFRC作为机敏材料的应用.提高碳纤维均匀分散的主要方法有两种:一是加入表面活性剂如羟乙基纤维素(HEC)用作分散剂,使自身具有增水性的碳纤维在水溶液中均匀分散;二是加入超细粉如硅灰,粉煤灰等,填充骨料间隙和絮化结构,占据水空间,使砂浆变稀,提高砂浆的和易性.研究表明陧,Ⅷ,HEC是促进碳纤维在水泥浆体中分散的一种有效的表面活性剂,它溶于水后,形成胶状透明液体,可以使碳纤维稳定地悬浮在水溶液中而不集结成束.HEC在降低纤维表面张力的同时,也降低了水泥基体的表面能,因而会在水泥浆体的搅拌过程中引入一定量的气泡.为了降低气泡的含量,制备CFRC试件过程中,添加HEC的同时,还应加入一定剂量的减水剂和消泡剂,这样,才能得到分散性能好,力学性能稳定的CFRC复合材料.图1(a)为短碳纤维均匀分散在水泥基体中时的SEM照片,图1(b)为短碳纤维呈集束状态,即分散不良时的SEM照片.均匀分散有利于改善CFRC的力学性能,反之,团聚会造成基体中存在大量的空隙,降低CFRC的力学性能.图2(a)为碳7(a)碳纤维分散呈良好分散态时(b)碳纤维呈集束态时图1短碳纤维在水泥基体中分散情况的SEM照片纤维均匀分散时,CFRC复合材料的抗压强度与纤维质量分数的关系,显然,抗压强度的提高与纤维质量掺量并不是呈线形增加,当纤维质量分数超过一定值时(0.6%),抗压强度反而逐渐降低.当短碳纤维呈不良分散状态时,抗压强度随纤维质量分数的增加直线下降如图2(b)所示.3.3碳纤维表面处理的影响碳纤维的表面比较光滑,比表面积小,表面能较低,具有活性的表面一般不超过总表面积的10%,呈现憎液性,所以较难与基体有较好的结合. 8凸_岂,_,暖1±】(a碳纤维呈良好分散态时)最大值5rit’’i0.0020.4限60.器《0碳纤维质量掺量(%)国内外已有许多研究人员采用多种方法对碳纤维表面进行了处理.表面处理可归纳为4大类:清除表面杂质:在纤维表面形成微孔或刻蚀槽,从类石墨层面改性成碳状结构以增加表面能;引进具有极性或反应性的官能团;形成和树脂起作用的中间层.DDLChung”日运用臭氧处理法,硅烷处理法等取得了可喜成果.她认为对碳纤维进行表面处理,增加了表面氧浓度,并且将表面氧从C—O型结构变成C=O结构,使纤维和水的接触角降到零,纤维的分散性提高,碳纤维与水泥基体之间的界面结332‘30凸_琶2岛警2624鞲=2220l8-=(b)碳纤维成不良分散态时004图2CFRC的抗压强度与碳纤维质量掺量的关系曲线0嚣I2l620碳纤维质量掺量(%).∞m合增强,最终提高了CFRC的拉伸强度,模量和延展性.同时,臭氧处理不影响纤维本身的形貌,强度及体积电阻.DDL.Chung1161也用30%的双氧水对碳纤维进行了表面处理,以改善碳纤维表面的疏水性,提高碳纤维对水的浸润性.张其颖认为碳纤维表面对水泥浆的润湿性不仅影响纤维与基体的界面粘结强度,还影响纤维在水泥中的分散程度.满华元等人”采用阳极表面处理法对碳纤维进行了处理,处理后的沥青碳纤维可使水泥复合材料比对应基体的力学的重点多集中在CFRC复合材料的力学性能和普通电学性能上,对其智能性,吸波性,Seebeck效应,Peltier效应和Thomson效应及其应用的研究远落后于美国DDL.Chung研究小组;CFRC复合材料屏蔽性能用于防止核辐射和电磁污染的研究还处在萌芽阶段;影响CFRC力学性能,电学性能的各主要成分之间的定量关系还未能精确描述;CFRC复合材料中纤维与基体之间的界面特征对其宏观性能的影响还有待进一步探讨.此外,制备CFRC过程中,除采取控制加料顺序,变换搅拌工艺,加入硅粉,HEC等分散剂促使碳纤维均匀分散外,材料研究工作者仍在寻找最理想的碳纤维分散方法.参考文献…王茂章,贺福.碳纤维的制造,性质及其应用【M】.北京:科学出版社,1984.第1版【2】李克智,王闯,李贺军,石振海.碳纤维增强水泥基复合材料的发展与研究.材料导报,2006,2O(5):85—88 【3】Zeng—QiangShi,D.D.L.Chung,Carbonfiber—re—inforcedconcretefortrafficmonitoringandweighingin motion,CemConcrRes,1999(29):435—439【4】张卫东,徐学燕.智能材料在土木工程健康监测中的应用【J】.石油工程建设,2004(2):9—13【5】邓宗才,钱在兹.碳纤维混凝土在反复荷载下的应力一应变全曲线研究【J】.建筑结构,2002(6):54—56 【6】赵稼祥.碳纤维的发展与应用【J】.纤维复合材料,1996(4):46—50【7】郭全贵,岳秀珍.单丝拔出实验表征碳纤维增强水泥复合材料的界面【J】.纤维复合材料,1995(3):42—46 【8】SihaiWen.DDL.Chung.Enhanc ingtheSeebeck effectincarbonfiber--reinforcedcementbyusingnter—calatedcarbonfibers.CemConcrRes,2000(3O):1295—1298-【9】Zeng—QiangShi,DD.L.Chung,Carbonfiber—re—inforcedconcretefortrafficmonitoringandweighingin motion,CemConcrRes,1999(29):435—439【1O】靳武刚.碳纤维在电磁屏蔽材料中的应用【J】.现代塑料加工应用,2003(1):24—27【11】赵福辰.电磁屏蔽材料的发展现状【J】.材料开发与应用,2001(5):29—33【12】张其颖.碳纤维增强水泥混凝土导电机理的研究【J】.硅酸盐通报,2003(3):22—28【13】杨元霞,刘宝举.碳纤维水泥基复合材料电性能的若干研究.建筑材料学报,2001(2):200—203【14】韩宝国.碳纤维水泥基复合材料压敏性能的研究【D】.哈尔滨:哈尔滨工业大学,2001【15】D.D.L.Chung.Carbonfiberreinforcedcement mortarimprovedbyusingacrylicdispersionasadmix—ture.CemConcrRes,2001(31):1633—1637【16】XuliFu,D.D.L.Chung.Ozonetreatmentofcar- bonfiberforreinforcingcement.Carbon,1998,36(9): 1337—1345【17】满华元,张岩.碳纤维阳极表面处理对CF/MDF水泥复合材料性能影响研究【J】.复合材料学报,1995(2):47—51【18】Jian—guoZhao,Ke-zhiLi,He-junLi,ChuangWang.Theinfluenceofthermafgradientonpyrocarbon depositionincarbon/carboncompositesduringtheCVI process,Carbon,2006(44):786—7919。

碳纤维混凝土的力学性能与应用研究

碳纤维混凝土的力学性能与应用研究

碳纤维混凝土的力学性能与应用研究一、引言碳纤维混凝土是一种新型的高性能混凝土,由于其优良的力学性能,在建筑、桥梁、隧道、地下工程、水利工程等领域得到了广泛的应用。

本文主要对碳纤维混凝土的力学性能及其在工程应用中的研究进行探讨。

二、碳纤维混凝土的组成与制备方法碳纤维混凝土是由水泥、砂、碎石、碳纤维等材料组成的混凝土。

制备方法主要有两种:早期的方法是将碳纤维与混凝土原料混合后浇注成型,现代的方法是先将碳纤维与水泥、砂、碎石等材料进行混合,再加入适量的水进行搅拌成型。

三、碳纤维混凝土的力学性能1.强度:由于碳纤维具有优异的强度和刚度,碳纤维混凝土的强度比传统混凝土高出很多。

研究表明,碳纤维混凝土的抗压强度可以达到100MPa以上。

2.耐久性:碳纤维混凝土在受到长期的水、氧化物、紫外线等环境因素的侵蚀时,其性能仍能保持较好的稳定性。

3.韧性:碳纤维混凝土具有较好的韧性,能够承受较大的变形和裂缝。

4.抗震性:碳纤维混凝土的抗震性能较好,能够在地震等自然灾害中发挥较好的作用。

四、碳纤维混凝土在工程应用中的研究1.建筑领域:碳纤维混凝土可以用于高层建筑、独立墙体、地下室等结构的加固和修补。

2.桥梁领域:碳纤维混凝土可以用于桥梁的加固和修补,提高桥梁的承载能力和耐久性。

3.地铁隧道领域:碳纤维混凝土可以用于地铁隧道的衬砌,提高隧道的耐久性和抗震性。

4.水利工程领域:碳纤维混凝土可以用于水坝、水闸等水利工程的加固和修补,提高水利工程的安全性和稳定性。

五、碳纤维混凝土的未来发展随着科学技术的不断进步,碳纤维混凝土的性能不断提高,其在各领域的应用也将不断扩大。

未来,碳纤维混凝土将成为建筑、桥梁、隧道、水利工程等领域的主流材料之一,为保障人民生命财产安全和促进经济社会发展做出重要贡献。

六、结论碳纤维混凝土具有优异的力学性能和广泛的应用前景,在工程领域得到了广泛的应用。

未来,随着技术的不断发展,碳纤维混凝土的应用前景将更加广阔。

碳纤维混凝土规范

碳纤维混凝土规范

碳纤维片材加固修复混凝土结构技术规程总则 1.0.1 为使采用碳纤维片材加固修复混凝土结构技术做到技术先进、安全适用、经济合理、确保质量,特制定本规程。

1.0.2 本规程适用于房屋和一般构筑物的混凝土结构加固修复设计、施工和验收;铁路工程、公路工程、港口工程和水利水电等工程混凝土结构的加固修复及砌体结构、木结构加固修复中的共性技术问题,可参照本规程的有关规定执行。

1.0.3 采用粘贴碳纤维片材加固修复混凝土结构的设计、施工及验收,除应符合本规程的规定外,尚应遵守国家现行有关标准和规范的规定。

1.0.4 采用粘贴碳纤维片材加固修复的混凝土结构,长期使用环境温度不应高于60℃.对处于特殊环境(腐蚀、放射、高温等)下的混凝土结构采用碳纤维片材进行加固修复时,还应遵守相应的国家现行有关标准和规范的规定,并应采取相应的防护措施。

1.0.5 采用碳纤维片材加固修复混凝土结构前,应按照国家现行有关标准和规范对原有结构进行检测鉴定或评估。

1.0.6 采用粘贴碳纤维片材加固修复混凝土结构时,应由对该加固修复方法有经验的设计人员进行设计,并应由专业施工队伍进行施工。

2.1术语2.1.1 碳纤维片材Carbon Fiber Reinforced Polymer Laminate 碳纤维布和碳纤维板的总称。

2.1.2碳纤维布Carbon Fiber Sheet 碳纤维布为连续碳纤维单向或多向排列、未经树脂浸渍的布状碳纤维制品。

2.1.3碳纤维板Carbon Fiber Plate 碳纤维板为连续碳纤维单向或多向排列、并经树脂浸溃固化的板状碳纤维制品。

2.1.4 底层树脂Primer 用于基底处理的树脂。

2.1.5找平材料Putty Fillers 用于对加固构件表面进行找干处理的材料。

2.1.6漫溃树脂Saturating Resin 用于粘贴井浸透碳纤维布的树脂。

2.1.7粘结树脂Adhesives 用于粘贴碳纤维板的树脂。

预应力碳纤维布加固混凝土构件的试验及施工技术

预应力碳纤维布加固混凝土构件的试验及施工技术

预应力碳纤维布加固混凝土构件的试验及施工技术一、碳纤维布的特性碳纤维布是一种由多个超细的碳纤维索折叠而成的无纺布,大部分由碳挤出布制成,也可由碳化纤制成。

碳纤维布具有抗拉强度高、拉伸模量高、体积密度小、弯曲模量高、耐化学腐蚀能力强、弹性模量高等特性。

由于碳纤维布可大幅提高混凝土构件的抗拉强度和刚度,因此被广泛应用于预应力筑造结构。

二、预应力碳纤维布加固混凝土构件的试验1.耐拉力试验:采用合格的耐拉仪,以一定的速度和力应力试验,按规定时间观察试件的情况,关于破坏时的拉力、松弛率、断后伸长率等指标取样测试,评定碳纤维布加固后的材料的抗拉性能。

2.疲劳试验:采用合格的疲劳机床,以相同的速度但不同的载荷连续测试,检查耐久次数与承载能力,观察在预定条件下试样的变形,并记录拉伸、应变,以此确定碳纤维布连续荷载下,构件的承载能力。

3.高温性能试验:采用烘箱,以一定的时间加热,找出碳纤维布加固构件在特定温度和时间下的变形、断裂特性,衡量其抗高温开裂能力。

三、预应力碳纤维布加固混凝土构件的施工技术1.前期准备:对要采用碳纤维布加固的混凝土构件进行准备工作,清除表面水泥渣、污垢等杂物;2.安装改型:制定合理的改型方案,采用注浆方法,将碳纤维布固定在表面,同时布置合理的加固节点;3.注浆粘接:采用专用胶水或水泥混合物等水泥凝灰,尽可能对碳纤维布和构件表面进行充分的粘接。

4.施加预应力:将已经粘接的碳纤维布及混凝土构件施加预定的预应力,以确保碳纤维布及混凝土构件的刚度和稳定性;5.张紧调整:安装完预应力装置后,进行张紧调整,校准预应力装置,使预应力在指定的范围内;6.固定工作:完成粘接、施预应力和张紧调整工作后,利用橡皮垫、混凝土或钢板等方法将预应力器固定;7.验证试验:完成预应力碳纤维布加固混凝土构件施工工作后,通过试验证明碳纤维布加固后的混凝土构件符合要求。

综上所述,预应力碳纤维布加固混凝土构件的试验及施工技术是非常重要的分类工作,加固时需要谨慎细致,确保碳纤维布加固工程施工质量。

预应力碳纤维板与混凝土的黏结性能测试

预应力碳纤维板与混凝土的黏结性能测试

预应力碳纤维板与混凝土的黏结性能测试一、前言预应力碳纤维板作为一种新型复合材料,具有高强度、轻质、耐腐蚀等优点,已经在工程领域得到了广泛的应用。

然而,预应力碳纤维板与混凝土的黏结性能对于工程结构的安全性和可靠性至关重要。

因此,对于预应力碳纤维板与混凝土的黏结性能进行测试和分析非常必要。

二、预应力碳纤维板与混凝土的黏结机理预应力碳纤维板与混凝土的黏结机理主要有以下几种:1.机械钩爪预应力碳纤维板表面的机械钩爪能够在混凝土内部形成锚固力,从而增加预应力碳纤维板与混凝土的黏结强度。

2.化学键合预应力碳纤维板表面的活性分子能够与混凝土表面的粘结剂发生化学键合作用,从而增加预应力碳纤维板与混凝土的黏结强度。

3.摩擦力预应力碳纤维板与混凝土表面的摩擦力也能够增加两者的黏结强度。

三、测试方法测试预应力碳纤维板与混凝土的黏结性能主要有以下几种方法:1.剥离试验剥离试验是一种常用的测试预应力碳纤维板与混凝土黏结性能的方法。

该方法是通过从混凝土表面剥离预应力碳纤维板,测量剥离力来评估两者的黏结强度。

2.剪切试验剪切试验是一种测试预应力碳纤维板与混凝土黏结性能的方法。

该方法是通过在预应力碳纤维板与混凝土黏结面上施加剪力,测量剪切力来评估两者的黏结强度。

3.拉伸试验拉伸试验是一种测试预应力碳纤维板与混凝土黏结性能的方法。

该方法是通过在预应力碳纤维板与混凝土黏结面上施加拉力,测量拉力来评估两者的黏结强度。

四、测试结果分析测试结果显示,预应力碳纤维板与混凝土的黏结强度受到许多因素的影响,如预应力碳纤维板的表面形态、混凝土的强度、环境温度和湿度等。

其中,预应力碳纤维板的表面形态对于黏结强度的影响最为显著,表面越粗糙,黏结强度越高。

五、结论综上所述,预应力碳纤维板与混凝土的黏结性能对于工程结构的安全性和可靠性具有重要的影响。

测试预应力碳纤维板与混凝土的黏结性能的方法有剥离试验、剪切试验和拉伸试验等。

测试结果显示,预应力碳纤维板的表面形态是影响黏结强度的重要因素之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p rtrsdf rn ec n io a d ep es stedf rn ewi e eauec ef in fl e r x a s n An lsso x ei na eaue iee c o dt n,n x rse h iee c t tmp rtr of ce t n a p n i . ayi fep rme tl i h i o i e o
La g — e a u e Di e e c n to r e Te mp r t r f r n e Co di n f i
Z u — u CHE HU G o h a, NG a, HANG u —e g Hu Z J np n
( e to rht tr Cv n ier g L U, h nqn 0 3 1 C ia D p.f c i cue& i l gne n ,E C o gig4 1 1 , hn ) A e iE i
第2 8卷 第 1期 21 0 2年 1 月

勤工程学院学报
V0 _ 8 N . l2 o 1
J 0UR NAL OF L 0GI T C NGI E NG UN VERS r s I AL E NE RI I rY
Jn 2 1 a .0 2
文章 编号 :6 2— 83 2 1 ) 1 0 7— 5 17 7 4 (0 2 0 —00 0
d t h w h t e a t fe — eo main c p ct t c b n f e en o c s c n r t t ou r cin o % i p i la n aa s o s t a n i r e d fr t a a i o’ a o b r r i r e o c ee wi v l me fa t f1 h t - o y r i f h o so t ma mo g
维对混 凝 土性 能的提 升仍 然有很 大的 帮助 。
关键 词
碳纤维; 混凝 土 ; 约束 变形 ; 无 温差 ; 温度 线膨胀 系数
文献标 志码 : A
中图分 类号 : U 2 . 7 T 5 852
Ex rm e a s a c n Un o sr i e fr t n o r o i e n r t n pe i ntlRe e r h o c n tan d Deo ma i fCa b n F b rCo c ee i o
碳纤维混凝土、 聚酯纤维混凝土和素混凝土加热放热试验, 比较掺入不 同纤维体积分数的 纤维混凝 土在 大温差条件下无约束 自由变形的差异 , 并用温度线膨胀 系数表达。对试验
数 据进行 分 析 , 到体 积 分数 为 1 的碳 纤 维混 凝 土 比素 混 凝 土抗 自由 变形 能 力提 高 了 得 %
3 . %, 88 在本试验的各种体积分数 中效果最好。结果表明碳纤维与混凝土, 虽然热力学性
能不 同 , 但是 二者 结合 之后 碳 纤维 因其 高弹性 模 量的特 性 , 而 可 以更好 地抑 制混 凝土 自 反
由变形。试验效果也表明, 随着施工工艺的完善 , 纤维体积分数 可能会超过 1 , 碳 % 碳纤
o e h a i g a d r la ig h a f a b n f e en o c d c n r t , oy se b rr i o c d c n r t n li o c ee c mp e f h e t n e e sn e t r o b rr if re o c ee p le t r e e n r e o cee a d p an c n r t , o a s t n oc i i f f r t e d f r n eo n o s a n d d f r t n o b rr i o c d c n rt n o p r td wi i e e tv l me r t so b ri r etm. h i e e c fu c n t i e e omai f e n r e o c eei c r o a e t df r n o u ai f e l g e r o fi ef h f o fi n a
d i1.9 9 ji n 17 7 4 .0 2 0 .0 o:0 3 6/.s .6 2— 83 2 1 . 102 s
大温差 条件下碳 纤维混凝土 无约束变形试验
朱 国华 , 程 华 , 张俊鹏
( 后勤工程学院 军事建筑工程 系, 重庆 4 11 ) 03 1
摘 要 为 了研 究碳 纤 维、 酯纤 维对混 凝 土在 自由条件 下 的约束作 用 , 聚 通过设 计 对
Ab ta t T t d e c n tan fc r o h ra d p l e trf e o ce ei e o d t n ,h e e r h d sg st et s s r c o s y t o sr i t ab n f e n oy se b r o c n r t n f ec n i o s t e rs ac e in h t u h o i i t r i e
t o e w t ai u o a e f ab n f e . n a g r h n t a l i o c e eb 8 8 . h e u t s o a ec mb n t n o h s i v r s d s g s o r o b r a d l e a t p an c n r t y 3 . % T e r s l h w t t o iai f h o c i r t h o f s h t h o c b n f e n o c ee c n i h btt efe eo ma in o o ce e e e t ey d et h ih ea t d l sp o e t so ab n r a o b ra d c n r t a n i i h r ed fr t c n rt f c i l u o te h g lsi mo u u r p r e fc r o i o f v c i i r t o g h n e e tp o e e fc o b ra d c n r t r i e e t T s e u t a o s o h t w t t e i r v me to f e ,h u h t e i h r n r p riso a b n f e n o ce e a e d f rn . e tr s l s h w t a , i h mp o e n f b t r i f sl h c n t ci n tc nq e, e v l me f ci n o ab n f e n c n r t y e c e % ,n e p si l o e h n e t e p r r a c o sr t e h i u t ou r t fc r b ri o ce ema x e d l u o h a o o i a d b o sb et n a c e fm n e h o
相关文档
最新文档