上海市杨浦区2017-2018学年高考数学三模试卷(理科) Word版含解析

合集下载

2017年上海市杨浦区高考数学三模试卷与解析word

2017年上海市杨浦区高考数学三模试卷与解析word

2017年上海市杨浦区高考数学三模试卷一、填空题(共12小题,满分54分)1.(4分)计算:=.2.(4分)设集合S={x|≤0,x∈R},T={2,3,4,5,6},则S∩T=.3.(4分)已知复数z满足:z(2﹣i)=3+i(其中i为虚数单位),则z的模等于.4.(4分)若抛物线x2=2py(p>0)的焦点与椭圆+=1的一个顶点重合,则该抛物线的焦点到准线的距离为.5.(4分)二项式(x2+)5的展开式中含x4的项的系数是(用数字作答).6.(4分)已知函数f(x)=(x﹣a)|x|存在反函数,则实数a=.7.(5分)方程log2(4x﹣3)=x+1的解集为.8.(5分)已知函数y=2sin(ωx+φ)(ω>0),若存在x0∈R,使得f(x0+2)﹣f (x0)=4,则ω的最小值为.9.(5分)若正四棱锥P﹣ABCD的高为2,侧棱PA与底面ABCD所成角的大小为,则该正四棱锥的体积为.10.(5分)从1,2,3,4中选择数字,组成首位数字为1,有且只有两个数位上的数字相同的四位数,这样的四位数有个.11.(5分)已知等边△ABC的边长为2,点E、F分别在边CA、BA上且满足•=2•=3,则•=.12.(5分)已知函数f(x)=的最小值为a+1,则实数a 的取值范围为.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“a>1“是“<1“的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件14.(5分)如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)15.(5分)已知数列{a n}为等比数列,其前n项和为S n,则下列结论正确的是()A.若a1+a2>0,则a1+a3>0 B.若a1+a3>0,则a1+a2>0C.若a1>0,则S2017>0 D.若a1>0,则S2016>016.(5分)已知集合M={(x,y)||x|+|y|≤1},若实数对(λ,μ)满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“嵌入实数对”.则以下集合中,不存在集合M的“嵌入实数对”的是()A.{(λ,μ)|λ﹣μ=2}B.{(λ,μ)|λ+μ=2}C.{(λ,μ)|λ2﹣μ2=2} D.{(λ,μ)|λ2+μ2=2}三、解答题(共5小题,满分76分)17.(14分)如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AB⊥AD,AD=AB=1.AA1=CD=2.E为棱DD1的中点.(1)证明:B1C1⊥平面BDE;(2)求二面角D﹣BE﹣C1的大小.18.(14分)已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,),其部分图象如图所示.(I)求f(x)的解析式;(II)求函数在区间上的最大值及相应的x值.19.(14分)经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+a2﹣a(a>0):月需求量为y2吨,y2=﹣x2﹣x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.(1)已知a=,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.20.(16分)如图,由半圆x2+y2=r2(y≤0,r>0)和部分抛物线y=a(x2﹣1)(y ≥0,a>0)合成的曲线C称为“羽毛球形线”,曲线C与x轴有A、B两个焦点,且经过点(2,3).(1)求a、r的值;(2)设N(0,2),M为曲线C上的动点,求|MN|的最小值;(3)过A且斜率为k的直线l与“羽毛球形线”相交于P,A,Q三点,问是否存在实数k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.21.(18分)已知数列{a n}满足:a1=1,a n=,n=2,3,4,….(1)求a2,a3,a4,a5的值;(2)设b n=+1,n∈N*,求证:数列{b n}是等比数列,并求出其通项公式;(3)对任意的m≥2,m∈N*,在数列{a n}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,请说明理由.2017年上海市杨浦区高考数学三模试卷参考答案与试题解析一、填空题(共12小题,满分54分)1.(4分)计算:=.【解答】解:===.故答案为:.2.(4分)设集合S={x|≤0,x∈R},T={2,3,4,5,6},则S∩T={3,4,5} .【解答】解:S={x|≤0,x∈R}={x|3≤x<6},则S∩T={3,4,5},故答案为:{3,4,5}3.(4分)已知复数z满足:z(2﹣i)=3+i(其中i为虚数单位),则z的模等于.【解答】解:z(2﹣i)=3+i(其中i为虚数单位),∴z(2﹣i)(2+i)=(3+i)(2+i),∴5z=5+5i,可得z=1+i|z|=.故答案为:.4.(4分)若抛物线x2=2py(p>0)的焦点与椭圆+=1的一个顶点重合,则该抛物线的焦点到准线的距离为4.【解答】解:抛物线x2=2py(p>0)的焦点与椭圆+=1的一个顶点(0,2)重合,抛物线的开口向上,焦点坐标(0,2),可得p=4,则该抛物线的焦点到准线的距离为:p=4.故答案为:4.5.(4分)二项式(x2+)5的展开式中含x4的项的系数是10(用数字作答).=x10﹣2r x﹣r=x10﹣【解答】解:二项式(x2+)5的展开式中通项公式为T r+13r.令10﹣3r=4,可得r=2,∴展开式中含x4的项的系数是=10,故答案为10.6.(4分)已知函数f(x)=(x﹣a)|x|存在反函数,则实数a=0.【解答】解:a>0时,f(x)=,可得函数f(x)在内单调递减,在(﹣∞,0),上单调递增,因此不存在反函数.a=0时,f(x)=,可得函数f(x)在(﹣∞,+∞)上单调递增,因此存在反函数.a<0时,f(x)=,可得函数f(x)在内单调递减,在(﹣∞,),(0,+∞)上单调递增,因此不存在反函数.综上可得:a=0.故答案为:0.7.(5分)方程log2(4x﹣3)=x+1的解集为{log23} .【解答】解:∵log2(4x﹣3)=x+1,∴2x+1=4x﹣3,∴(2x)2﹣2•2x﹣3=0,解得2x=3,或2x=﹣1(舍),∴x=log23.∴方程log2(4x﹣3)=x+1的解集为{log23}.故答案为:{log23}.8.(5分)已知函数y=2sin(ωx+φ)(ω>0),若存在x0∈R,使得f(x0+2)﹣f(x0)=4,则ω的最小值为.【解答】解:存在x0∈R,使得f(x0+2)﹣f(x0)=4,即2sin[ω(x0+2)+φ]﹣2sin(ωx0+φ)=4成立,∴sin(ωx0+2ω+φ)﹣sin(ωx0+φ)=2,∴ωx0+2ω+φ=2k1π+①,ωx0+φ=2k2π+②,k1、k2∈Z;由①②解得:ω=k1π﹣k2π﹣,k1、k2∈Z;又ω>0,∴ω的最小值是.故答案为:.9.(5分)若正四棱锥P﹣ABCD的高为2,侧棱PA与底面ABCD所成角的大小为,则该正四棱锥的体积为.【解答】解:连结AC、BD,交于点O,连结PO,∵正四棱锥P﹣ABCD的高为2,侧棱PA与底面ABCD所成角的大小为,∴PO⊥平面ABCD,且PO=2,∴侧棱PA与底面ABCD所成角为∠PAO,且,∴AO=2,∴AB=,∴该正四棱锥的体积:V===.故答案为:.10.(5分)从1,2,3,4中选择数字,组成首位数字为1,有且只有两个数位上的数字相同的四位数,这样的四位数有36个.【解答】解:根据题意,分2种情况讨论,①后三位数字中包含1,则只需在2、3、4中任取两个,与1进行排列即可,有C32×A33=18种情况;②后三位数字中不包含1,则需要在2、3、4中取出2个,一个作为重复数字,另一个不重复,有A32×A33=18种不同情况;故这样的四位数有18+18=36种;故答案为:36.11.(5分)已知等边△ABC的边长为2,点E、F分别在边CA、BA上且满足•=2•=3,则•=﹣.【解答】解:设,,则==,=+=,∴=+λ=4﹣2λ,=μ•=2μ,∵,,∴λ=,μ=,∴=(+)•(+)=﹣+++=﹣4++1+=﹣.故答案为:﹣.12.(5分)已知函数f(x)=的最小值为a+1,则实数a 的取值范围为{﹣2﹣2}∪[﹣1,1] .【解答】解:(1)若﹣a≤0,即a≥0时,f(x)=,∴f(x)在(﹣∞,0]上单调递减,最小值为f(0)=2,在(0,+∞)上最小值为a+1,故只需2≥a+1即可,解得0≤a≤1;(2)若0<﹣a≤1,即﹣1≤a<0时,则f(x)=,∴f(x)在(﹣∞,0]上先减后增,最小值为f()=2﹣,在(0,+∞)上最小值为a+1,故只需2﹣≥a+1即可,解得﹣2﹣2≤a≤﹣2+2,又﹣1≤a<0,∴﹣1≤a<0,(3)若﹣a>1,即a<﹣1时,f(x)=,∴f(x)在(﹣∞,0]上先减后增,最小值为f()=2﹣,f(x)在(0,+∞)上的最小值为﹣a﹣1>0,而f(x)的最小值为a+1<0,故只需令2﹣=a+1即可,解得a=﹣2﹣2或a=﹣2+2(舍),综上,a的取值范围是{﹣2﹣2}∪[﹣1,1].故答案为:{﹣2﹣2}∪[﹣1,1].二、选择题(共4小题,每小题5分,满分20分)13.(5分)“a>1“是“<1“的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【解答】解:当a>1时,<1成立,即充分性成立,当a=﹣1时,满足<1,但a>1不成立,即必要性不成立,则“a>1“是“<1“的充分不必要条件,故选:A14.(5分)如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)【解答】解:∵f(x)是奇函数,∴f(﹣x)=﹣f(x).对于A,g(﹣x)=﹣x+f(﹣x)=﹣x﹣f(x)=﹣g(x),∴y=x+f(x)是奇函数.对于B,g(﹣x)=﹣xf(﹣x)=xf(x)=g(x),∴y=xf(x)是偶函数.对于C,g(﹣x)=(﹣x)2+f(﹣x)=x2﹣f(x),∴y=x2+f(x)为非奇非偶函数,对于D,g(﹣x)=(﹣x)2f(﹣x)=﹣x2f(x)=﹣g(x),∴y=x2f(x)是奇函数.故选B.15.(5分)已知数列{a n}为等比数列,其前n项和为S n,则下列结论正确的是()A.若a1+a2>0,则a1+a3>0 B.若a1+a3>0,则a1+a2>0C.若a1>0,则S2017>0 D.若a1>0,则S2016>0【解答】解:对于A:a1+a2>0,即a1(1+q)>0,那么a1+a3=a1(1+q2),当a1>0,可得a1+a3>0,当a1<0时,a1+a3>0不成立.对于B:a1+a3>0,即a1+a3=a1(1+q2)>0,可得a1>0,a1+a2>0,即a1(1+q)>0,当1+q<0时,不成立.对于C:a1>0,则S2017=,当q>1时,S2017>0.当0<q<1时,1﹣q>0,1﹣q2017>0,∴S2017>0.当﹣1<q<0时,1﹣q>0,1﹣q2017>0,∴S2017>0.当q<﹣1时,1﹣q<0,1﹣q2017<0,∴S2017>0.对于D:a1>0,则S2016=,当q>1时,1﹣q<0,1﹣q2016<0,∴S2016>0.当0<q<1时,1﹣q>0,1﹣q2016>0,∴S2016>0.当﹣1<q<0时,1﹣q>0,1﹣q2016>0,∴S2016>0.当q<﹣1时,1﹣q>0,1﹣q2016<0,∴S2016<0.故选C.16.(5分)已知集合M={(x,y)||x|+|y|≤1},若实数对(λ,μ)满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“嵌入实数对”.则以下集合中,不存在集合M的“嵌入实数对”的是()A.{(λ,μ)|λ﹣μ=2}B.{(λ,μ)|λ+μ=2}C.{(λ,μ)|λ2﹣μ2=2} D.{(λ,μ)|λ2+μ2=2}【解答】解:若集合M存在“嵌入实数对”(λ,μ),则|λx|+|μy|≤1对任意(x,y)∈M恒成立,又|x|+|y|≤1,∴|λ|≤1,|μ|≤1,∴﹣2≤λ﹣μ≤2,故A正确;﹣2≤λ+μ≤2,故B正确;﹣1≤λ2﹣μ2≤1,故C不正确;0≤λ2+μ2≤2,故D正确;故选C.三、解答题(共5小题,满分76分)17.(14分)如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AB⊥AD,AD=AB=1.AA1=CD=2.E为棱DD1的中点.(1)证明:B1C1⊥平面BDE;(2)求二面角D﹣BE﹣C1的大小.【解答】(1)证明:由题意,BD=BC=,∵CD=2,∴BD2+BC2=CD2,则BC⊥BD.又∵ABCD﹣A1B1C1D1为直四棱柱,∴BC⊥DE,∵BD∩DE=D,∴BC⊥平面BDE,又∵B1C1∥BC,∴B1C1⊥平面BDE;(2)解:如图建立空间直角坐标系,则有B(1,1,0),C(0,2,0),C1(0,2,2),E(0,0,1).,.设平面BEC的法向量为,由,得,取x=3,得.由(1)知,平面BDE的一个法向量.∴cos<>==.由图可知,二面角D﹣BE﹣C1为钝角,∴二面角D﹣BE﹣C1的大小为arccos(﹣).18.(14分)已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,),其部分图象如图所示.(I)求f(x)的解析式;(II)求函数在区间上的最大值及相应的x值.【解答】解:(I)由图可知,A=1(1分),所以T=2π(2分)所以ω=1(3分)又,且所以(5分)所以.(6分)(II)由(I),所以==(8分)=cosx•sinx(9分)=(10分)因为,所以2x∈[0,π],sin2x∈[0,1]故:,当时,g(x)取得最大值.(13分)19.(14分)经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+a2﹣a(a>0):月需求量为y2吨,y2=﹣x2﹣x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.(1)已知a=,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.【解答】解:(1)当a=,x=7时,y1=×7+×()2﹣=1+﹣=,y2=﹣×(7)2﹣×7+1=,∴y1<y2,∴该月销售额为7××104≈50313(元).(2)令f(x)=y1﹣y2=x2+(+a)x+﹣a﹣1,则f(x)在[6,14)上有零点,∵a>0,∴f(x)对称轴为直线x=﹣<0,又f(x)的图象开口向上,∴f(x)在[6,14)上只有1个零点,∴,即,又a>0,解得:0<a≤.20.(16分)如图,由半圆x2+y2=r2(y≤0,r>0)和部分抛物线y=a(x2﹣1)(y ≥0,a>0)合成的曲线C称为“羽毛球形线”,曲线C与x轴有A、B两个焦点,且经过点(2,3).(1)求a、r的值;(2)设N(0,2),M为曲线C上的动点,求|MN|的最小值;(3)过A且斜率为k的直线l与“羽毛球形线”相交于P,A,Q三点,问是否存在实数k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.【解答】解:(1)将(2,3)代入y=a(x2﹣1),解得:a=1,由y=x2﹣1与x轴交于(±1,0),则A(1,0),B(﹣1,0),代入圆x2+y2=r2,解得:r=±1,由r>0,则r=1,∴a的值为1,r的值为1;(2)设M(x0,y0),则丨MN丨2=x02+(y0﹣2)2,当y0≤0,x02=1﹣y02,丨MN丨2=5﹣4y0,∴当y0=0时,丨MN丨min=,当y≥0时,x02=1+y0,丨MN丨2=x02+(y0﹣2)2=1+y0+(y0﹣2)2=y02﹣3y0+5=(y0﹣)2+,当y 0=时,丨MN丨min=;(3)由题意可知:PQ的方程y=k(x﹣1),,整理得:x2﹣kx+k﹣1=0,则x=1,y=k﹣1,则Q(k﹣1,k2﹣2k),则,整理得:(1+k2)x2﹣2k2x+k2﹣1=0,解得:x=1或x=,则P点坐标为(,﹣),由∠QBA=∠PBA,则k BP=﹣k BQ,即=﹣,即k2﹣2k﹣1=0,解得:k=1±(负值舍去),因此存在实根k=1+,使得∠QBA=∠PBA.21.(18分)已知数列{a n}满足:a1=1,a n=,n=2,3,4,….(1)求a2,a3,a4,a5的值;(2)设b n=+1,n∈N*,求证:数列{b n}是等比数列,并求出其通项公式;(3)对任意的m≥2,m∈N*,在数列{a n}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,请说明理由.【解答】解:(1)∵a 1=1,∴a2=1+2a1=3,a3=+2a2=,a4=1+2a3=7,a5=+2a4=;证明:(2)由题意,对于任意的正整数n,b n=+1,=+1,∴b n+1又∵+1=(2+1)+1=2(+1)=2b n,∴b n=2b n,+1又∵b 1=+1=a1+1=2,∴数列{b n}是首项、公比均为2的等比数列,其通项公式b n=2n;(3)对任意的m≥2,m∈N*,在数列{a n}中存在连续的2m项构成等差数列.}中,,,,…,这对任意的m≥2,k∈N*,在数列{a连续的2m就构成一个等差数列.我们先来证明:“对任意的n≥2,n∈N*,k∈(0,2n﹣1),k∈N*,有”,由(2)得,∴,当k为奇数时,=,当k为偶数时,=1+2a,记,∴要证=,只需证明,其中,k 1∈N*,(这是因为若,则当时,则k一定是奇数)有===,当时,则k一定是偶数,有=1+=1+2()=1+2()=,以此递推,要证=,只要证明,其中,k2∈N*,如此递推下去,我们只需证明,,即,即,由(Ⅱ)可得,所以对n≥2,n∈N*,k∈(0,2n﹣1),k∈N*,有,对任意的m≥2,m∈N*,=,,其中i∈(0,2m﹣1),i∈N*,∴﹣=﹣,又,,∴,∴,,,…,这连续的2m项,是首项为,公差为﹣的等差数列.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2017年上海市杨浦区高考数学一模试卷带解析【精品】

2017年上海市杨浦区高考数学一模试卷带解析【精品】

第1页(共17页)页)2017年上海市杨浦区高考数学一模试卷一、填空题(本大题满分54分)共12小题,1-6题每题4分,7-12题每题5分 1.(4分)若“a >b ”,则“a 3>b 3”是命题(填:真、假) 2.(4分)已知A =(﹣∞,0],B =(a ,+∞),若A ∪B =R ,则a 的取值范围是 .3.(4分)z +2=9+4i (i 为虚数单位),则|z |= .4.(4分)若△ABC 中,a +b =4,∠C =30°,则△ABC 面积的最大值是 .5.(4分)若函数f (x )=log 2的反函数的图象经过点(﹣2,3),则a = . 6.(4分)过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则该截面的面积是 .7.(5分)抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a ,b ,c ,则a +bi (i 为虚数单位)是方程x 2﹣2x +c =0的根的概率是 .8.(5分)设常数a >0,(x +)9展开式中x 6的系数为4,则(a +a 2+…+a n)= .9.(5分)已知直线l 经过点且方向向量为(2,﹣1),则原点O 到直线l 的距离为 .10.(5分)若双曲线的一条渐近线为x +2y =0,且双曲线与抛物线y =x 2的准线仅有一个公共点,则此双曲线的标准方程为 .11.(5分)平面直角坐标系中,给出点A (1,0),B (4,0),若直线x +my ﹣1=0存在点P ,使得|P A |=2|PB |,则实数m 的取值范围是 . 12.(5分)函数y =f (x )是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f (x )=2x +1,若存在x 1,x 2,…x n 满足0≤x 1<x 2<…<x n ,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 1)|+…+|f (xn ﹣1﹣f (x n ))|=2016,则n +x n的最小值为 .二、选择题(本大题共4题,满分20分)13.(5分)若与﹣都是非零向量,则“•=•”是“⊥(﹣)”的( )A .充分但非必要条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件14.(5分)行列式中,元素7的代数余子式的值为( ) A .﹣15B .﹣3C .3D .1215.(5分)一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是( ) A .5800 B .6000C .6200D .640016.(5分)若直线+=1通过点P (cos θ,sin θ),则下列不等式正确的是( ) A .a 2+b 2≤1 B .a 2+b 2≥1C .+≤1D .+≥1三、解答题(满分76分)共5题17.(14分)某柱体实心铜制零件的截面边长是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中∠BAC =60°.(1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,毫米,试求该零件的重量试求该零件的重量试求该零件的重量(每(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克).V 柱=S 底•h .18.(14分)如图所示,l 1,l 2是互相垂直的异面直线,MN 是它们的公垂线段,点A ,B 在直线l 1上,且位于M 点的两侧,C 在l 2上,AM =BM =NM =CN (1)求证:异面直线AC 与BN 垂直;(2)若四面体ABCN 的体积V ABCN =9,求异面直线l 1,l 2之间的距离.19.(14分)如图所示,椭圆C:+y2=1,左右焦点分别记作F1,F2,过F1,F2分别作直线l1,l2交椭圆AB,CD,且l1∥l2.(1)当直线l 1的斜率k1与直线BC的斜率k2都存在时,求证:k1•k2为定值;(2)求四边形ABCD面积的最大值.20.(14分)数列{a n},定义{△a n}为数列{a n}的一阶差分数列,其中△a n=a n+1﹣a n(n∈N*)(1)若a n=n2﹣n,试判断{△a n}是否是等差数列,并说明理由;(2)若a1=1,△a n﹣a n=2n,求数列{a n}的通项公式;(3)对(b)中的数列{a n},是否存在等差数列{b n},使得b1C+b2C+…+b n C =a n,对一切n∈N*都成立,若存在,求出数列{b n}的通项公式,若不存在,请说明理由.21.(20分)对于函数f(x)(x∈D),若存在正常数T,使得对任意的x∈D,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T同比不减函数”.(1)求证:对任意正常数T,f(x)=x2都不是“T同比不减函数”;(2)若函数f(x)=kx+sin x是“同比不减函数”,求k的取值范围; (3)是否存在正常数T,使得函数f(x)=x+|x﹣1|﹣|x+1|为“T同比不减函数”;若存在,求T的取值范围;若不存在,请说明理由.2017年上海市杨浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题满分54分)共12小题,1-6题每题4分,7-12题每题5分 1.(4分)若“a>b”,则“a3>b3”是 真 命题(填:真、假)【解答】解:函数f(x)=x3在R是单调增函数,∴当a>b,一定有a3>b3,故是真命题答案为:真.2.(4分)已知A=(﹣∞,0],B=(a,+∞),若A∪B=R,则a的取值范围是 a≤0. .【解答】解:若A∪B=R,A=(﹣∞,0],B=(a,+∞),必有a≤0;故答案为:a≤0.3.(4分)z+2=9+4i(i为虚数单位),则|z|= 5 .【解答】解:设z=x+yi(x,y∈R),∵z+2=9+4i,∴x+yi+2(x﹣yi)=9+4i,化为:3x﹣yi=9+4i,∴3x=9,﹣y=4,解得x=3,y=﹣4.∴|z|==5.故答案为:5.4.(4分)若△ABC中,a+b=4,∠C=30°,则△ABC面积的最大值是 1 . 【解答】解:在△ABC中,∵C=30°,a+b=4,∴△ABC的面积S=ab•sin C=ab•sin30°=ab≤×()2=×4=1,当且仅当a=b=2时取等号,故答案为:1.5.(4分)若函数f(x)=log2的反函数的图象经过点(﹣2,3),则a= 2 . 【解答】解:∵函数f(x)=log2的反函数的图象经过点(﹣2,3),∴函数f(x)=log2的图象经过点(3,﹣2),∴﹣2=log2,∴a=2,故答案为2.6.(4分)过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则该截面的面积是 π .【解答】解:设截面的圆心为Q,由题意得:∠OAQ=60°,QA=1,∴S=π•12=π.答案:π.7.(5分)抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a,b,c,则a+bi(i为虚数单位)是方程x2﹣2x+c=0的根的概率是.【解答】解:抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a,b,c,基本事件总数n=6×6×6=216,∵a+bi(i为虚数单位)是方程x2﹣2x+c=0的根,∴(a+bi)2﹣2(a+bi)+c=0,即,∴a=1,c=b2+1,∴a+bi(i为虚数单位)是方程x2﹣2x+c=0的根包含的基本事件为:(1,1,2),(1,2,5),∴a+bi(i为虚数单位)是方程x2﹣2x+c=0的根的概率是p=.故答案为:.8.(5分)设常数a>0,(x+)9展开式中x6的系数为4,则(a+a2+…+a n)= .【解答】解:∵常数a>0,(x+)9展开式中x6的系数为4,∴=,当时,r =2,∴=4,解得a =,∴a +a 2+…+a n ===(1﹣),∴(a +a 2+…+a n )==.故答案为:.9.(5分)已知直线l 经过点且方向向量为(2,﹣1),则原点O 到直线l 的距离为 1 .【解答】解:直线的方向向量为(2,﹣1),所以直线的斜率为:﹣,直线方程为:x +2y +=0,由点到直线的距离可知:=1;故答案为:1.10.(5分)若双曲线的一条渐近线为x +2y =0,且双曲线与抛物线y =x 2的准线仅有一个公共点,则此双曲线的标准方程为.【解答】解:抛物线y =x 2的准线:y =﹣,双曲线与抛物线y =x 2的准线仅有一个公共点,可得双曲线实半轴长为a =,焦点在y 轴上.双曲线的一条渐近线为x +2y =0,∴=, 可得b =,则此双曲线的标准方程为:.故答案为:.11.(5分)平面直角坐标系中,给出点A (1,0),B (4,0),若直线x +my ﹣1=0存在点P ,使得|P A |=2|PB |,则实数m 的取值范围是 m ≥或m ≤﹣.【解答】解:设P (1﹣my ,y ), ∵|P A |=2|PB |, ∴|P A |2=4|PB |2,∴(1﹣my ﹣1)2+y 2=4(1﹣my ﹣4)2+y 2, 化简得(m 2+1)y 2+8my +12=0则△=64m 2﹣48m 2﹣48≥0, 解得m ≥或m ≤﹣, 即实数m 的取值范围是m ≥或m ≤﹣.故答案为:m ≥或m ≤﹣.12.(5分)函数y =f (x )是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f (x )=2x +1,若存在x 1,x 2,…x n 满足0≤x 1<x 2<…<x n ,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 1)|+…+|f (x n ﹣1﹣f (x n ))|=2016,则n +x n 的最小值为 1513 . 【解答】解:∵函数y =f (x )是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f (x )=2x +1,∴函数的值域为[﹣3,1],对任意x i ,x j (i ,j =1,2,3,…,m ),都有|f (x i )﹣f (x j )|≤f (x )max ﹣f (x )min =4,要使n +x n 取得最小值,尽可能多让x i (i =1,2,3,…,m )取得最高点,且f (0)=1,f (2)=﹣3,∵0≤x 1<x 2<…<x m ,|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x n ﹣1)﹣f (x n )|=2016, ∴n 的最小值为,相应的x n 最小值为1008,则n +x n 的最小值为1513.故答案为:1513.二、选择题(本大题共4题,满分20分)13.(5分)若与﹣都是非零向量,则“•=•”是“⊥(﹣)”的( )A .充分但非必要条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件【解答】解:“•=•”⇔“•﹣•=0”⇔“•(﹣)=0”⇔“⊥(﹣)”,故“•=•”是“⊥(﹣)”的充要条件, 故选:C . 14.(5分)行列式中,元素7的代数余子式的值为( ) A .﹣15B .﹣3C .3D .12【解答】解:∵行列式,∴元素7的代数余子式为: D 13=(﹣1)4=2×6﹣5×3=﹣3.故选:B .15.(5分)一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是( ) A .5800B .6000C .6200D .6400【解答】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为=5400, 当另外两名员工的工资都大于6500时,中位数为=6300,∴8位员工月工资的中位数的取值区间为[5400,6300], ∴8位员工月工资的中位数不可能是6400. 故选:D .16.(5分)若直线+=1通过点P (cos θ,sin θ),则下列不等式正确的是( )A .a 2+b 2≤1 B .a 2+b 2≥1 C .+≤1D .+≥1【解答】解:直线+=1通过点P (cos θ,sin θ), ∴b cos θ+a sin θ=ab , ∴sin (θ+φ)=ab ,其中tan φ=, ∴≥ab ,∴a 2+b 2≥a 2b 2, ∴+≥1,故选:D .三、解答题(满分76分)共5题 17.(14分)某柱体实心铜制零件的截面边长是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中∠BAC =60°.(1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,毫米,试求该零件的重量试求该零件的重量试求该零件的重量(每(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克).V 柱=S 底•h .【解答】解:(1)∵AB =55,AC =88,BP =R ,∠BAC =60°.AP =88﹣R , ∴在△ABP 中,由余弦定理可得:BP 2=AB 2+AP 2﹣2AB •AP •cos ∠BAC ,可得:R 2=552+(88﹣R )2﹣2×55×(88﹣R )×cos60°, ∴解得:R =49mm .(2)在△ABP 中,AP =88﹣49=39mm ,AB =55,BP =49, cos ∠BP A ==≈0.2347, ∴sin ∠BP A ≈0.972. ∴∠BP A =arcsin0.972.V柱=S底•h=(S△ABP+S扇形BPC)•h=(+)•3该零件的重量=(+)•3÷1000×8.9≈82.7.18.(14分)如图所示,l1,l2是互相垂直的异面直线,MN是它们的公垂线段,点A,B在直线l1上,且位于M点的两侧,C在l2上,AM=BM=NM=CN (1)求证:异面直线AC与BN垂直;(2)若四面体ABCN的体积V ABCN=9,求异面直线l1,l2之间的距离.【解答】解:(1)证明:由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN. 由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(2)∵AM=BM=NM=CN,MN是它们的公垂线段,就是异面直线l1,l2之间的距离,由中垂线的性质可得AN=BN,四面体ABCN的体积V ABCN=9,可得:V ABCN=9==MN3,∴MN=3.异面直线l1,l2之间的距离为3.19.(14分)如图所示,椭圆C:+y2=1,左右焦点分别记作F1,F2,过F1,F2分别作直线l1,l2交椭圆AB,CD,且l1∥l2.(1)当直线l 1的斜率k1与直线BC的斜率k2都存在时,求证:k1•k2为定值;(2)求四边形ABCD面积的最大值.【解答】(1)证明:由椭圆C:+y2=1,得a2=4,b2=1,∴.设k1=k,则AB所在直线方程为y=kx+,CD所在直线方程为y=kx﹣, 联立,得(1+4k2)x2+8k2x+12k2﹣4=0.解得,不妨取,则 同理求得,.则==,则k1•k2=;(2)解:由(1)知,,|AB|===.AB、CD的距离d=,∴=.令1+4k2=t(t≥1),则,∴当t=3时,S max=4.20.(14分)数列{a n},定义{△a n}为数列{a n}的一阶差分数列,其中△a n=a n+1﹣a n(n∈N*)(1)若a n=n2﹣n,试判断{△a n}是否是等差数列,并说明理由;(2)若a1=1,△a n﹣a n=2n,求数列{a n}的通项公式;(3)对(b)中的数列{a n},是否存在等差数列{b n},使得b1C+b2C+…+b n C =a n,对一切n∈N*都成立,若存在,求出数列{b n}的通项公式,若不存在,请说明理由.【解答】解:(1)若a n=n2﹣n,试判断{△a n}是等差数列,理由如下:∵a n=n2﹣n,∴△a n=a n+1﹣a n=(n+1)2﹣(n+1)﹣(n2﹣n)=2n,∵△a n+1﹣△a n=2,且△a1=4,∴{△a n}是首项为4,公差为2的等差数列;(2)∵△a n﹣a n=2n.△a n=a n+1﹣a n,∴a n+1﹣2a n=2n,∴﹣=,(6分)∴数列{}构成以为首项,为公差的等差数列,即=⇒a n=n•2n﹣1;(3)b1∁n1+b2∁n2+…+b n∁n n=a n,即b1∁n1+b2∁n2+…+b n∁n n=n•2n﹣1,∵1∁n1+2∁n2+3∁n3+…+n∁n n=n(C n﹣10+C n﹣11+C n﹣12+…+C n﹣1n﹣1)=n•2n﹣1,∴存在等差数列{b n},b n=n,使得b1∁n1+b2∁n2+…+b n∁n n=a n对一切自然n∈N都成立.21.(20分)对于函数f(x)(x∈D),若存在正常数T,使得对任意的x∈D,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T同比不减函数”.(1)求证:对任意正常数T,f(x)=x2都不是“T同比不减函数”;(2)若函数f(x)=kx+sin x是“同比不减函数”,求k的取值范围; (3)是否存在正常数T,使得函数f(x)=x+|x﹣1|﹣|x+1|为“T同比不减函数”;若存在,求T的取值范围;若不存在,请说明理由.【解答】解:(1)∵f(x)=x2,∴f(x+T)﹣f(x)=(x+T)2﹣x2=2xT+T2=T(2x+T),由于2x+T与0的小无法比较,∴f(x+T)≥f(x)不一定成立,∴对任意正常数T,f(x)=x2都不是“T同比不减函数,(2)∵函数f(x)=kx+sin x是“同比不减函数,∴f(x+)﹣f(x)=k(x+)+sin(x+)﹣kx﹣sin x=+cos x﹣sin x=﹣sin(x﹣)≥0恒成立,∴k≥sin(x﹣),∵﹣1≤sin(x﹣)≤1,∴k≥,(3)f(x)=x+|x﹣1|﹣|x+1|图象如图所示,由图象可知,只要把图象向左至少平移4个单位,即对任意的x∈D,都有f(x+T)≥f(x)成立,∴T≥4.赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念)根式的概念①如果,,,1nx a a R x R n =ÎÎ>,且n N +Î,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;表示;00的n 次方根是0;负数a 没有n 次方根.次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ³.③根式的性质:()nna a =;当n 为奇数时,nna a =;当n 为偶数时,(0)|| (0)nn a a a a a a ³ì==í-<î. (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m nmna a a m n N +=>Î且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,mmmn nnaa m n N a a-+==>Î且1)n >.0的负分数指数幂没有意义.的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数.(3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +×=>Î ②()(0,,)r s rs a a a r s R =>Î ③()(0,0,)r r rab a b a b r R =>>Î【2.1.2】指数函数及其性质 (4)指数函数)指数函数 函数名称函数名称指数函数指数函数定义定义函数(0xy a a =>且1)a ¹叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R值域值域 (0,)+¥过定点过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)xx x a x a x a x >>==<< 1(0)1(0)1(0)xx x a x a x a x <>==>< a 变化对变化对 图象的影响象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义)对数的定义①若(0,1)xa N a a =>¹且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.叫做真数.②负数和零没有对数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =Û=>¹>. (2)几个重要的对数恒等式)几个重要的对数恒等式log 10a =,log 1a a =,log b aa b =.(3)常用对数与自然对数)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质)对数的运算性质 如果0,1,0,0a a M N >¹>>,那么,那么①加法:log log log ()a a aM N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =Î ④log a Na N =⑤log log (0,)bn a a n M M b n R b=¹Î ⑥换底公式:log log (0,1)log b ab N N b b a=>¹且【2.2.2】对数函数及其性质(5)对数函数)对数函数函数函数 名称名称 对数函数对数函数定义定义函数log (0a yx a =>且1)a ¹叫做对数函数叫做对数函数图象图象1a > 01a <<xyO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=定义域定义域(0,)+¥值域值域R过定点过定点图象过定点(1,0),即当1x=时,0y=. 奇偶性奇偶性非奇非偶非奇非偶单调性单调性在(0,)+¥上是增函数上是增函数在(0,)+¥上是减函数上是减函数函数值的函数值的变化情况变化情况log0(1)log0(1)log0(01)aaax xx xx x>>==<<<log0(1)log0(1)log0(01)aaax xx xx x<>==><<a变化对变化对 图象的影响象的影响 在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.越大图象越靠高.。

2017-2018年上海市杨浦区中考三模数学试卷及答案

2017-2018年上海市杨浦区中考三模数学试卷及答案

上海市杨浦区2017-2018年中考三模数学试卷(满分 150 分,考试时间 100 分钟)5.8 考生注意:1.本试卷含三个大题,共 25 题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸 的相应位置上】1.点A 是数轴上的任意一点,则下列说法正确的是( )(A )点A 表示的数一定是整数; (B )点A 表示的数一定是分数; (C )点A 表示的数一定是有理数; (D )点A 表示的数可能是无理数. 2.下列关于x 的方程一定有实数解的是( )(A )21011xx x++=--; (B 1x -; (C )210x x --=; (D )210x x -+=.3.某学校为了了解九年级学生体能情况,随机选取 30 名学生测试一分钟仰卧起坐次数,并绘制了直方图(如图),学生仰卧起坐次数在 25~30 之间的频率为( ) (A )0.1;(B )0.4;(C )0.33; (D )0.17.4.将抛物线22y x =-平移到抛物线222y x x =+-的位置,以下描述正确的是( )(A )向左平移 1 个单位,向上平移 1 个单位; (B )向右平移 1 个单位,向上平移 1 个单位; (C )向左平移 1 个单位,向下平移 1 个单位; (D )向右平移 1 个单位,向下平移 1 个单位. 5.下列图形既是中心对称又是轴对称的是( ) (A )菱形;(B )梯形;(C )正三角形;(D )正五边形. 6.下列条件一定能推得△ABC 与△DEF 全等的是( ) (A )在△ABC 和△DEF 中,∠A =∠B ,∠D =∠E ,AB =DE ; (B )在△ABC 和△DEF 中,AB =AC ,∠A =∠F , FD =FE ;(C )在△ABC 和△DEF 中,1AB DEBC EF ==,∠B =∠E ; (D )在△ABC 和△DEF 中,1AB BCDE EF==,∠B =∠E . 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7= .8.方程x =的解是 . 9.如果反比例函数1ky x-=的图像在第二、四象限,那么k 的取值范围是 .10.函数y kx b =+的大致图像如图所示,则当 x < 0 时,y 的取值范围是 .11.黄老师在数学课上给出了6道习题,要求每位同学独立完成.则这些同学平均答对 道题.12.从分别标有 1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是 .13.在Rt △ABC 中,∠C =90°,点D 为AB 边上中,如果AB a = ,CD b =,那么CA =(用,a b表示).14.如果人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,那么该斜坡的坡度是 .15.如图,△ABC 中,∠A =80,∠B =40°,BC 的垂直平分线交AB 于点D ,联结DC .如果AD =2,BD =6,那么△ADC 的周长为 .16.如图,在Rt △ABC 中,∠A =90°,∠B =30°,BC =10,以A 为圆心画圆,如果⊙A 与直线 BC 相切,那么⊙A 的半径长为 .17.如果将点(-b ,-a )称为点(a ,b )的“反称点”,那么点(a ,b )也是点(-b ,-a )的“反称点”,此时,称点(a ,b )和点(-b ,-a )是互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点: . 18.如图,在菱形 ABCD 中,AB =a ,∠ABC =α.将菱形 ABCD 绕点B 顺时针旋转(旋转角小于90°),点 A 、C 、D 分别落在 A ’、C ’、D ’处,当 A ’C ’⊥BC 时 A ’D = (用含a 和α的代数式表示).三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2223231,11211x x x x x x x x ---÷+=-+++.20.(本题满分10分)解不等式组:2(3)3,52,32x xx x-+≤⎧⎪+⎨<+⎪⎩且写出使不等式组成立的所有整数.21.(本题满分10分)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数关系如图所示,根据图像所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<x<15的时段内,速度较快的人是;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?(4)在15<x<20的时段内,求两人速度之差.22.(本题满分10分)如图,已知:⊙O是△ABC的外接圆,半径长为5,点D、E分别是边AB和边AC的中点,AB=AC,BC=6.求∠OED的正切值.23.(本题满分12分,其中第(1)小题7分,第(2)小题小题5分)梯形ABCD中,AD//BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且⋅=⋅.BE CE BC CF(1)求证:AE CF BE DF⋅=⋅;(2)若点E为AB中点,求证:22⋅=-.AD BC EC BC224.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分)直线6=-过点A(1,-4),与x轴交于点B,与y轴交于点D,以点y kxA为顶点的抛物线经过点B,且交y轴于点C.(1)求抛物线的表达式;(2)如果点P在x轴上,且△ACD与△PBC相似,求点P的坐标;(3)如果直线l与直线6y kx=-关于直线BC对称,求直线l的表达式.25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)已知梯形ABCD中,AD//BC,AD=1,BC=2,sin B=3.过点在∠BCD的内5部作射线交射线BA于点E,使得∠DCE=∠B.(1)如图1,当ABCD为等腰梯形时,求AB的长;(2)当点E与点A重合时(如图 2),求AB的长;(3)当△BCE为直角三角形时,求AB的长.2017-2018 年杨浦区初三模拟测试数学试卷答案与评分标准 5.8 一、选择题1、D ;2、C ;3、B ;4、C ;5、A ;6、D ; 二、填空题7、 ;8、x =2;9、k >1 ;10、y <1;11、4.5;12、23;13、12b a - ;14、15、14;1617、(3,-3);18、2cos 2a a α-;19、解:原式=23(1)1(1)(1)(3)(1)1x x x x x x x -+⋅++--++-------------------------------------(6 分) =112=111x x x +-+------------------------------------------------------------(2 分)当1x =时,原式(2 分) 20、解:263,210312,x x x x -+≤⎧⎨+<+⎩---------------------------------------------------------------------(2 分)39,2,x x ≤⎧⎨-<⎩-----------------------------------------------------------------------------------(2 分)得3,2,x x ≤⎧⎨>⎩---------------------------------------------------------------------------------(2 分) ∴不等式组的解集是-2<x ≤3.-----------------------------------------------------(2 分) 使不等式组成立的所有整数是-1、0、1、2、3.----------------------------------(2 分) 21、解:(1)5000-------------------------------------------------------------------------------------(1 分)甲-------------------------------------------------------------------------------------(1 分) (2)设所求直线的解析式为:y =kx +5000,-----------------------------------------(1 分)由图象可知:当 x =20 时,y =0, ∴0=20k +5000,解得 k = -250.--------------------------------------------------(1 分)即 y = -250x +5000------------------------------------------------------------------(1 分)(3)当 x =15 时,y = -250x +5000= -250×15+5000=5000-3750=1250.------------(2 分)两人相距: 2000-1250=750(米).----------------------------------------------(1 分) (4)两人速度之差:750÷(20-15)=150(米/分) ---------------------------------(2 分)22、解:联结 AO 并延长交 BC 于点 H ,联结 OC ,∵AB=AC ,∴ AB AC =,∵O 为圆心,∴AH ⊥BC ,BH=HC ,---------------------------------------------------------------(2 分)∴HC=3,∵半径 OC=5,∴OH=4,AH=9,------------------------------------------(2 分) ∴在 Rt △AHC 中,tan ∠HAC=3193HC AH ==,即 tan ∠OAE=13---------------(2 分)∵D 、E 分别是边AB 和边AC 的中点,∴DE//BC ,∴AH ⊥DE ,∴∠OAE+∠AED=90°,∵E 是边AC 的中点,O 为圆心,∴OE ⊥AC ,∴∠AED+∠OED=90°, ∴∠OAE=∠OED ,--------------------------------------------------------------------------(2 分) ∴tan ∠OED= tan ∠OAE=13----------------------------------------------------------------(2 分)23、证明:(1)∵CE ⊥AB ,∴∠B+∠BCE=90°,∵DC ⊥BC ,∴∠DCE+∠BCE=90°,∴∠B=∠DCE ,-----------(2 分)∵ BE CE BC CF ⋅=⋅ ,∴BF CFBC CE=,∴△BCE ∽△CEF ,------(2 分)∴∠BCE=∠CEF ,------------------------------------------------------------(1 分)∴EF//BC ,----------------------------------------------------------------------(1 分)∴AE DFBE CF=,即AE CF BE DF ⋅=⋅ 。

2017-2018年上海市杨浦区中考三模数学试卷及答案

2017-2018年上海市杨浦区中考三模数学试卷及答案

2017-2018年上海市杨浦区中考三模数学试卷及答案上海市杨浦区2017-2018年中考三模数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1.点A是数轴上的任意一点,下列说法正确的是(C)点A表示的数一定是有理数。

2.下列关于x的方程一定有实数解的是(B)x-2=1-x。

3.某学校为了了解九年级学生体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了直方图(如图),学生仰卧起坐次数在25~30之间的频率为(B)0.4.4.将抛物线y=x^2-2平移到抛物线y=x^2+2x-2的位置,以下描述正确的是(A)向左平移1个单位,向上平移1个单位。

5.下列图形既是中心对称又是轴对称的是(C)正三角形。

6.下列条件一定能推得△ABC与△DEF全等的是(D)在△ABC和△DEF中,AB/BC=DE/EF,∠B=∠E。

二、填空题:(本大题共12题,每题4分,满分48分)7.计算:12+27=39.8.方程x+2=x的解是2.9.如果反比例函数y=k/x,当x=3时,y=4,那么k=12.10.函数y=kx+b的大致图像如图所示,则当x<0时,y的取值范围是y<0.11.XXX在数学课上给出了6道题,要求每位同学独立完成。

现将答对的题目数与相应的人数列表如下。

答对题目数相应的人数1 22 33 44 55 66 7这些同学平均答对了几道题目。

12.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是多少。

13.在直角三角形ABC中,∠C=90°,点D为AB边上中点,如果AB=a,CD=b,那么CA的长度为多少(用a,b表示)。

14.如果人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,那么该斜坡的坡度是多少。

15.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC。

如果AD=2,BD=6,那么△ADC的周长为多少。

2018年上海市杨浦区高考高三数学一模试卷及解析

2018年上海市杨浦区高考高三数学一模试卷及解析

2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x +α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B =(a,a +1),且B ⊆A.(1)求实数a 的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l 与抛物线Ω:y 2=4x 相交于不同两点A 、B,O 为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆C :(x ﹣5)2+y 2=16相切于点M,且M 为线段AB 的中点,求直线l 的方程; (3)若,点Q 在线段AB 上,满足OQ ⊥AB,求点Q 的轨迹方程.21.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U ﹣数列”A :a 1,a 2,…,a n 中,a 1=1,a n =2017,求n 的最大值;(3)设n0为给定的偶数,对所有可能的“U ﹣数列”A :a 1,a 2,…,,记,其中max {x1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数,求M 的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【试题解答】解:当n→+∞,→0,∴=1,故答案为:1.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=3.【试题解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.3.(4分)已知,则=﹣.【试题解答】解:∵,∴=.故答案为:﹣.4.(4分)若行列式,则x=2.【试题解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:25.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=6.【试题解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.6.(4分)在的二项展开式中,常数项等于﹣160.【试题解答】解:展开式的通项为T r=x6﹣r(﹣)r=(﹣2)r x6﹣2r+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1607.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【试题解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=2n﹣1.【试题解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣19.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【试题解答】解:∵在△ABC中,sinA、sinB、sinC依次成等比数列,∴sin2B=sinAsinC,利用正弦定理化简得:b2=ac,由余弦定理得:cosB==≥=(当且仅当a=c时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【试题解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.【试题解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【试题解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥,x1+x2=﹣,x1x2=,(*)由,可得,x1=λx2代入到(*)式整理可得==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3∴实数λ的取值范围.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【试题解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④【试题解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsinx是奇函数,图象关于y轴不对称,不满足条件,故选:B.15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【试题解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8【试题解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a2+b2+c2=4R2=4所以S△ABC +S△ACD+S△ADB=(ab+ac+bc )≤(a2+b2+c2)=2即最大值为:2故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【试题解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【试题解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90 O,,…(12分)则,∴异面直线SO与PA所成角的大小.…(14分)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【试题解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【试题解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m =0时,x =1和x =9符合题意;当m ≠0时,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2. △=16(m 2+b)>0,y 1+y 2=4m, 所以,所以线段AB 的中点M(2m 2+b,2m)因为k AB •k CM =﹣1,,所以,得b =3﹣2m 2所以△=16(m 2+b)=16(3﹣m 2)>0,得0<m 2<3 因为,所以m 2=3(舍去)综上所述,直线l 的方程为:x =1,x =9(3)设直线AB :x =my +b,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2 △=16(m 2+b)>0,y 1+y 2=4m,y 1y 2=﹣4b 所以,得b =0或b =4b =0时,直线AB 过原点,所以Q(0,0); b =4时,直线AB 过定点P(4,0) 设Q(x,y),因为OQ ⊥AB, 所以(x ≠0),综上,点Q 的轨迹方程为x 2﹣4x +y 2=021.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【试题解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意. 综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且此时.综上,M的最小值为.。

上海市杨浦区控江中学2017-2018学年高考数学模拟试卷(理科)(9月份) Word版含解析

上海市杨浦区控江中学2017-2018学年高考数学模拟试卷(理科)(9月份) Word版含解析

2017-2018学年上海市杨浦区控江中学高考数学模拟试卷(理科)一.填空题(每小题4分,共56分).1.集合A={x|x2﹣2x<0},B={x|x2<1},则A∪B等于.2.函数y=的定义域是.3.已知函数f(x)=,则f﹣1(1)=.4.若复数+b(b∈R)所对应的点在直线x+y=1上,则b的值为.5.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.6.已知平面上四点O、A、B、C,若=+,则=.7.若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为.8.对于抛物线C,设直线l过C的焦点F,且l与C的对称轴的夹角为.若l被C所截得的弦长为4,则抛物线C的焦点到顶点的距离为.9.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,PA⊥平面ABCD.若PA=a,则直线PB与平面PCD所成的角的大小为.10.在极坐标系中,曲线ρ=4cos(θ﹣)与直线ρcosθ=2的两个交点之间的距离为.11.某班级有4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3个专业都有学生选择的概率是.12.设F1、F2分别为双曲线的左、右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为.13.函数f(x)=2x+sin2x﹣1图象的对称中心是.14.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是.二.选择题(每小题5分,共20分).15.下列函数中,与函数y=x3的值域相同的函数为()A.y=()x+1B.y=ln(x+1)C.y=D.y=x+16.一无穷等比数列{a n}各项的和为,第二项为,则该数列的公比为()A.B.C.D.或17.角α终边上有一点(﹣1,2),则下列各点中在角3α的终边上的点是()A.(﹣11,2)B.(﹣2,11)C.(11,﹣2)D.(2,﹣11)18.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中()A.存在某个位置,使得直线AB和直线CD垂直B.存在某个位置,使得直线AC和直线BD垂直C.存在某个位置,使得直线AD和直线BC垂直D.无论翻折到什么位置,以上三组直线均不垂直三.解答题(五题分别为12,14,14,16,18分,共74分).19.已知复数﹣1+3i、cosα+isinα(0<α<,i是虚数单位)在复平面上对应的点依次为A、B,点O是坐标原点.(1)若OA⊥OB,求tanα的值;(2)若B点的横坐标为,求S△AOB.20.某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,l=2r+1(l为圆柱的高,r为球的半径,l≥2).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)若预算为8万元,求所能建造的储油罐中r的最大值(精确到0.1),并求此时储油罐的体积V(单位:立方米,精确到0.1立方米).21.已知f (x )=x n +x n ﹣1+…+x ﹣1,x ∈(0,+∞).n 是不小于2的固定正整数.(1)当n=2时,若不等式f (x )≤kx 对一切x ∈(0,1]恒成立,求实数k 的取值范围;(2)试判断函数f (x )在(,1)内零点的个数,并说明理由.22.如图,在平面直角坐标系xOy 中,过y 轴正方向上一点C (0,c )任作一直线,与抛物线y=x 2相交于A ,B 两点,一条垂直于x 轴的直线分别与线段AB 和直线l :y=﹣c 交于点P ,Q .(1)若•=2,求c 的值;(2)若P 为线段AB 的中点,求证:直线QA 与该抛物线有且仅有一个公共点. (3)若直线QA 的斜率存在,且与该抛物线有且仅有一个公共点,试问P 是否一定为线段AB 的中点?说明理由.23.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n ﹣1﹣a n ﹣2|,n=3,4,5,…,则称{a n }为“D ﹣数列”.(1)举出一个前六项均不为零的“D ﹣数列”(只要求依次写出该数列的前六项);(2)若“D ﹣数列”{a n }中,a 2015=3,a 2016=0,数列{b n }满足b n =a n +a n+1+a n+2,n=1,2,3,…,分别判断当n →∞时,a n 与b n 的极限是否存在?如果存在,求出其极限值(若不存在不需要交代理由);(3)证明:任何“D ﹣数列”中总含有无穷多个为零的项.2016年上海市杨浦区控江中学高考数学模拟试卷(理科)(5月份)参考答案与试题解析一.填空题(每小题4分,共56分).1.集合A={x|x2﹣2x<0},B={x|x2<1},则A∪B等于(﹣1,2).【考点】并集及其运算.【分析】化简集合A、B,求出A∪B即可.【解答】解:集合A={x|x2﹣2x<0}={x|0<x<2}=(0,2);B={x|x2<1}={x|﹣1<x<1}=(﹣1,1);所以A∪B=(﹣1,2).故答案为:(﹣1,2).2.函数y=的定义域是(﹣∞,0].【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,求解指数不等式得答案.【解答】解:由,得,∴2x≤0,即x≤0.∴函数y=的定义域是:(﹣∞,0].故答案为:(﹣∞,0].3.已知函数f(x)=,则f﹣1(1)=1.【考点】反函数;二阶矩阵.【分析】本题由矩阵得到f(x)的表达式,再由反函数的知识算出.【解答】解:由f(x)==2x﹣1,由反函数的性质知2x﹣1=1,解得x=1所以f﹣1(1)=1.故答案为:1.4.若复数+b(b∈R)所对应的点在直线x+y=1上,则b的值为0.【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数+b=+b=+b=b+i所对应的点(b,1)在直线x+y=1上,∴b+1=1,解得b=0.故答案为:0.5.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为\frac{1}{3}.【考点】等比数列的性质.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为6.已知平面上四点O、A、B、C,若=+,则=\frac{2}{3}.【考点】向量的线性运算性质及几何意义.【分析】变形已知式子可得,即,问题得以解决.【解答】解:∵=+,∴,∴,∴∴=.故答案为:.7.若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为﹣1.【考点】二次函数的性质.【分析】由恒成立转化为最值问题,由此得到二次函数不等式,结合图象得到x的取值范围.【解答】解:∵对任意正实数a,不等式x2≤1+a恒成立,∴等价于a≥x2﹣1,∴a≥(x2﹣1)max0≥(x2﹣1)max﹣1≤x≤1∴实数x的最小值为﹣1.8.对于抛物线C,设直线l过C的焦点F,且l与C的对称轴的夹角为.若l被C所截得的弦长为4,则抛物线C的焦点到顶点的距离为\frac{1}{2}.【考点】抛物线的简单性质.【分析】设抛物线方程为y2=2px(p>0),得出直线l的方程,联立方程组得出根与系数的关系,利用弦长公式列方程解出p.则焦点到顶点的距离为.【解答】解:不妨设抛物线方程为y2=2px(p>0),则抛物线的焦点F(,0),则直线l的方程为y=x﹣.联立方程组,消元得y2﹣2py﹣p2=0.∴y1+y2=2p,y1y2=﹣p2.∴直线l被抛物线解得弦长为=4.∴=4,解得p=1.∴F(,0).即抛物线C的焦点到顶点的距离为.故答案为:.9.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,PA⊥平面ABCD.若PA=a,则直线PB与平面PCD所成的角的大小为\frac{π}{6}.【考点】直线与平面所成的角.【分析】求出B到平面PCD的距离,即可求出直线PB与平面PCD所成的角大小.【解答】解:设B到平面PCD的距离为h,直线PB与平面PCD所成的角为α,由等体积可得••a•a•h=••a•a•a,∴h=a,∵PB=a,∴sinα=,∴α=.故答案为:.10.在极坐标系中,曲线ρ=4cos(θ﹣)与直线ρcosθ=2的两个交点之间的距离为2\sqrt{3}.【考点】简单曲线的极坐标方程.【分析】把所给的直线和曲线的极坐标方程化为直角坐标方程,再把直线方程代入曲线方程,求得交点的坐标,可得弦长【解答】解:曲线ρ=4cos(θ﹣)即ρ2=2ρcosθ+2ρsinθ,化为直角坐标方程为(x﹣1)2+=4,表示以(1,)为圆心,半径等于2的圆.直线ρcosθ=2的直角坐标方程为x=2,把x=2代入圆的方程可得y=0,或y=2,故弦长为2,故答案为:.11.某班级有4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3个专业都有学生选择的概率是\frac{4}{9}.【考点】等可能事件的概率.【分析】设“这3个专业都有学生选择”为事件A,首先计算4名学生选择3个专业,可能出现的结果数目,注意是分步问题,再由排列、组合计算这3个专业都有学生选择的可能出现的结果数,结合等可能事件的概率公式,计算可得答案.【解答】解:设“这3个专业都有学生选择”为事件A,由题知,4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,可能出现的结果共有34=81种结果,且这些结果出现的可能性相等,3个专业都有学生选择的可能出现的结果数为C42A33=36,则事件A的概率为,故答案为:.12.设F1、F2分别为双曲线的左、右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为4x±3y=0.【考点】双曲线的简单性质.【分析】过F2点作F2Q⊥PF1于Q点,得△PF1F2中,PF2=F1F2=2c,高F2Q=2a,PQ=PF1=c+a,利用勾股定理列式,解之得a与c的比值,从而得到的值,得到该双曲线的渐近线方程.【解答】解:∵PF2=F1F2=2c,∴根据双曲线的定义,得PF1=PF2+2a=2c+2a过F2点作F2Q⊥PF1于Q点,则F2Q=2a,等腰△PF1F2中,PQ=PF1=c+a,∴=PQ2+,即(2c)2=(c+a)2+(2a)2,解之得a=c,可得b== c∴=,得该双曲线的渐近线方程为y=±x,即4x±3y=0故答案为:4x±3y=013.函数f(x)=2x+sin2x﹣1图象的对称中心是(0,﹣1).【考点】函数的图象.【分析】先研究函数g(x)=2x+sin2x的对称性,在研究函数f(x)与函数g(x)图象间的关系,最后由g(x)的对称中心推出f(x)的对称中心.【解答】解:设g(x)=2x+sin2x,则g(﹣x)=﹣2x+sin(﹣2x)=﹣2x﹣sin2x=﹣(2x+sin2x)=﹣g(x)∴g(x)为奇函数,其对称中心为(0,0)∵f(x)=g(x)﹣1∴函数f(x)的图象是由函数g(x)的图象再向下平移1个单位得到的,故f(x)的对称中心为(0,﹣1)故答案为:(0,﹣1).14.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是\frac{2\sqrt{21}}{3}.【考点】两点间的距离公式.【分析】过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G,由此可得结论.【解答】解:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=在Rt△ABD中,AB==故答案为:二.选择题(每小题5分,共20分).15.下列函数中,与函数y=x3的值域相同的函数为()A.y=()x+1B.y=ln(x+1)C.y=D.y=x+【考点】函数的值域.【分析】知道已知函数的值域是R,再观察四个选项的y的取值情况,从而找出正确答案.【解答】解:∵函数y=x3的值域为实数集R,又选项A中y>0,选项B中y取全体实数,选项C中的y≠1,选项D中y≠0,故选B.16.一无穷等比数列{a n}各项的和为,第二项为,则该数列的公比为()A.B.C.D.或【考点】等比数列的性质.【分析】设无穷等比数列{a n}的公比为q,由题意可得,联立消去a1解方程可得.【解答】解:设无穷等比数列{a n}的公比为q,则,联立消去a1可得,整理可得9q2﹣9q+2=0,分解因式可得(3q﹣2)(3q﹣1)=0,解得q=或q=故选:D17.角α终边上有一点(﹣1,2),则下列各点中在角3α的终边上的点是()A.(﹣11,2)B.(﹣2,11)C.(11,﹣2)D.(2,﹣11)【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义求得sinα和cosα的值,再利用3倍角公式求得tan3α的值,从而得出结论.【解答】解:∵角α终边上有一点(﹣1,2),由三角函数的定义可知:sinα=,cosα=,∴sin3α=3sinα﹣4sin3α=,cos3α=4cos3α﹣3cosα=,∴tan3α==,故点(11,﹣2)在角3α的终边上,故选:C.18.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中()A.存在某个位置,使得直线AB和直线CD垂直B.存在某个位置,使得直线AC和直线BD垂直C.存在某个位置,使得直线AD和直线BC垂直D.无论翻折到什么位置,以上三组直线均不垂直【考点】空间中直线与直线之间的位置关系.【分析】假设各选项成立,根据线面位置关系推导结论,若得出矛盾式子,则假设错误,得出正确选项.【解答】解:对于A,若存在某个位置,使得直线AB与直线CD垂直,∵CD⊥BC,∴CD⊥平面ABC,∴平面ABC⊥平面BCD,过点A作平面BCD的垂线AE,则E在BC上,∴当A在平面BCD上的射影在BC上时,AB⊥CD.故A正确;对于B,若存在某个位置,使得直线AC与直线BD垂直,作AF⊥BD,则BD⊥平面AFC,∴BD⊥EC,显然这是不可能的,故B错误;对于C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,BC⊥AC,∴AB>BC,即1>2,显然这是不可能的,故C错误.故选:A.三.解答题(五题分别为12,14,14,16,18分,共74分).19.已知复数﹣1+3i、cosα+isinα(0<α<,i是虚数单位)在复平面上对应的点依次为A、B,点O是坐标原点.(1)若OA⊥OB,求tanα的值;(2)若B点的横坐标为,求S△AOB.【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】(1)由已知得到A,B的坐标,进一步求得的坐标,由OA⊥OB得,代入坐标后整理可得tanα的值;(2)由已知求出|OA|,|OB|,由两角差的正弦求得sin∠AOB,代入三角形的面积公式得答案.【解答】解:(1)由题可知:A(﹣1,3),B(cosα,sinα),∴,由OA⊥OB,得,∴﹣cosα+3sinα=0,∴;(2)由(1),记∠AOx=β,,∴,,∵|OB|=1,,得,sin∠AOB=sin(β﹣α)=.∴S△AOB==.20.某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,l=2r+1(l为圆柱的高,r为球的半径,l≥2).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)若预算为8万元,求所能建造的储油罐中r的最大值(精确到0.1),并求此时储油罐的体积V(单位:立方米,精确到0.1立方米).【考点】组合几何体的面积、体积问题.【分析】(1)求出半球与圆柱的面积,得出y关于r的函数;(2)令y≤80,解出r的最大值,从而得出体积V的最大值.【解答】解:(1)半球的表面积,圆柱的表面积S2=2πr•l.于是.定义域为.(2)16πr2+2πr≤80,即,解得.,经计算得V≈22.7(立方米).故r的最大值为1.2(米),此时储油罐的体积约为22.7立方米.21.已知f(x)=x n+x n﹣1+…+x﹣1,x∈(0,+∞).n是不小于2的固定正整数.(1)当n=2时,若不等式f(x)≤kx对一切x∈(0,1]恒成立,求实数k的取值范围;(2)试判断函数f(x)在(,1)内零点的个数,并说明理由.【考点】函数恒成立问题.【分析】(1)代入得表达式.只需求出左式的最大值即可;(2)先求出端点值f()<0,f(1)>0,判断存在零点,根据函数在区间内递增,故仅有一个零点.【解答】解:(1)n=2时,f(x)=x2+x﹣1,﹣﹣f(x)≤kx即.﹣在(0,1]上递增,﹣﹣故即要求,即k≥1.﹣(2).﹣f(1)=n﹣1>0.﹣故f(x)在上有零点.﹣又f(x)在上增,故零点不会超过一个.﹣所以f(x)在上有且仅有一个零点.﹣(722.如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于A,B两点,一条垂直于x轴的直线分别与线段AB和直线l:y=﹣c交于点P,Q.(1)若•=2,求c的值;(2)若P为线段AB的中点,求证:直线QA与该抛物线有且仅有一个公共点.(3)若直线QA的斜率存在,且与该抛物线有且仅有一个公共点,试问P是否一定为线段AB 的中点?说明理由.【考点】抛物线的简单性质.【分析】(1)设出直线AB:y=kx+c,代入抛物线的方程,运用韦达定理和向量的数量积的坐标表示,解方程可得c的值;(2)运用中点坐标公式可得Q的坐标,运用两点的斜率公式,可得QA的斜率,求得抛物线对应函数的导数,可得切线的斜率,即可得证;(3)设A(t,t2),这里x A=t≠0,由(2)知过A的与y=x2有且仅有一个公共点的斜率存在的直线必为y=2tx﹣t2.求得Q的横坐标,P的横坐标,求得AC的方程,联立抛物线的方程,求得B的横坐标,运用中点坐标公式,即可判断P为线段AB的中点.【解答】解:(1)设直线AB:y=kx+c,与y=x2联立,得x2﹣kx﹣c=0,设A(x1,y1),B(x2,y2),则x1x2=﹣c,从而y1y2=x12x22=c2,由•=2,可得c 2﹣c=2得c=2或﹣1(舍去), 得c=2;(2)证明:由(1)可得,故直线PQ :x=,可得.设,k QA ==,由(1)可得x 1x 2=﹣c ,即有x 2=﹣,可得k QA ==2x 1,由y=x 2的导数为y ′=2x ,可得过A 的切线的斜率为2x 1,故直线QA 与该抛物线有且仅有一个公共点; (3)设A (t ,t 2),这里x A =t ≠0,由(2)知过A 的与y=x 2有且仅有一个公共点的斜率存在的直线必为y=2tx ﹣t 2.与y=﹣c 相交,得.故,,所以.与y=x 2联立,得x 2﹣(t ﹣)x ﹣c=0,即,故.这样,即P 是AB 的中点.23.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n ﹣1﹣a n ﹣2|,n=3,4,5,…,则称{a n }为“D ﹣数列”.(1)举出一个前六项均不为零的“D ﹣数列”(只要求依次写出该数列的前六项);(2)若“D ﹣数列”{a n }中,a 2015=3,a 2016=0,数列{b n }满足b n =a n +a n+1+a n+2,n=1,2,3,…,分别判断当n →∞时,a n 与b n 的极限是否存在?如果存在,求出其极限值(若不存在不需要交代理由);(3)证明:任何“D ﹣数列”中总含有无穷多个为零的项. 【考点】数列的极限. 【分析】(1)由新定义,比如如10,9,1,8,7,1;(2){a n}的极限不存在,{b n}的极限存在.运用分段形式写出a n与b n的通项公式,即可得到结论;(3)运用反证法证明.假设{a n}中只有有限个零,则存在K,使得当n≥K时,a n>0.运用推理论证得到{b n}单调,即可证明.【解答】解:(1)如10,9,1,8,7,1等等.(2){a n}的极限不存在,{b n}的极限存在.事实上,因为|3﹣0|=3,|0﹣3|=3,|3﹣3|=0,当n≥2015时,a n=,k∈Z,因此当n≥2015时,b n=6.所以b n=6.(3)证明:假设{a n}中只有有限个零,则存在K,使得当n≥K时,a n>0.当n≥K时,记b n=max{a n,a n+1}.于是a n+1≤b n,a n+2=|a n﹣a n+1|<max{a n,a n+1}<b n,故b n+1≤b n,而a n+3=|a n+2﹣a n+1|<max{a n+2,a n+1}≤b n+1≤b n,从而b n+2<b n.这样b K>b K+2>b K+4>…形成了一列严格递减的无穷正整数数列,这不可能,故假设不成立,{a n}中必有无限个0.2016年7月14日。

杨浦区2018学年度第一学期高三年级模拟质量调研 数学学科试卷及答案

杨浦区2018学年度第一学期高三年级模拟质量调研                  数学学科试卷及答案

杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷及答案 2018.12.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果.1.设全集{}=1,2,3,4,5U ,若集合{}3,4,5A =,则U A =ð ▲ .2.已知扇形的半径为6,圆心角为3π,则扇形的面积为 ▲ . 3.已知双曲线221x y -=,则其两条渐近线的夹角为 ▲________.4. 若nb a )(+展开式的二项式系数之和为8,则n = ▲________.5. 若实数,x y 满足 221x y +=,则xy 的取值范围是▲________.6. 若圆锥的母线长=l )(5cm ,高)(4cm h =,则这个圆锥的体积等于▲________()3cm . 7. 在无穷等比数列{}n a 中,121lim()2n n a a a →∞+++=,则1a 的取值范围是▲________. 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+. 且B A ⊆, 则实数a 的取值范围为▲________.9. 在行列式中,第3行第2列的元素的代数余子式记作,则的零点是▲________10. 已知复数1cos 2()i z x f x =+,2cos )i z x x =++ (,R x λ∈,i 为虚数单位).在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若︒=∠9021OZ Z ,其中O 是坐标原点,则函数()f x 的最小正周期 ▲________. 11. 当a x <<0时,不等式2)(1122≥-+x a x 恒成立,则实数a 的最大值为 ▲________. 274434651xx--()f x 1()y f x =+12. 设d 为等差数列}{n a 的公差,数列}{n b 的前n 项和n T ,满足)N ()1(21*∈-=+n b T n n n n ,且25b a d ==. 若实数)3,N }(|{*32≥∈<<=∈+-k k a x a x P m k k k ,则称m 具有性质k P .若n H 是数列}{n T 的前n 项和,对任意的*N ∈n ,12-n H 都具有性质k P ,则所有满足条件的k 的值为▲________.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 下列函数中既是奇函数,又在区间[-1,1]上单调递减的是 ………( ). x x f arcsin )(=. lg y x =.()f x x =-.()cos f x x =14. 某象棋俱乐部有队员5人,其中女队员2人. 现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ………( )()A .310()B .35()C .25()D .2315. 已知x x f θsin log )(=,,设sin cos ,2a f θθ+⎛⎫=⎪⎝⎭b f =,sin 2sin cos c f θθθ⎛⎫=⎪+⎝⎭,则c b a ,,的大小关系是 ………( )()A .b c a ≤≤.()B .a c b ≤≤. ()C .a b c ≤≤.()D .c b a ≤≤.16. 已知函数nx x m x f x ++⋅=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是………( )()A . [0,4) ()B . [1,4)- ()C . [3,5]- ()D . [0,7)()A ()B ()C ()D )2,0(πθ∈三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF PE ⊥.18. (本题满分14分,第1小题满分7分,第2小题满分7分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且5cos 13B =. (1)若4sin 5A =,求cos C ; (2)若4b =,求证:5-≥⋅BC AB .19. (本题满分14分,第1小题满分6分,第2小题满分8分)上海某工厂以x 千克/小时的速度匀速生产一种产品,每一小时可获得的利润是)315(xx -+元,其中101≤≤x .(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20. (本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线x y C 4:2=上存在不同的两点B A ,,满足PB PA ,的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且),(),,(M M P P y x M y x P ,证明:M P y y =;(3)若P 是曲线221(0)4y x x +=<上的动点,求PAB ∆面积的最小值.21. (本题满分18分,第1小题满分4分,第2小题满分5分,第3小题满分9分) 记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,其中*N ∈n . (1) 若2cos2n n n a π=+,请写出3b 的值; (2) 求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3) 若对任意n ,有||2018n a <, 且||1n b =,请问:是否存在*K ∈N ,使得对于任意不小于K 的正整数n ,有1n n b b += 成立?请说明理由.青浦区2018学年第一学期高三年级期终学业质量调研测试数学参考答案及评分标准 2018.12说明1.本解答列出试题一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后续部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,但是原则上不应超出后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题至第21题中右端所注的分数,表示考生正确做到这一步应得的该题分数. 4.给分或扣分均以1分为单位.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果. 1.{}1-; 2.“若a b <,则22am bm <”; 3.()2,3-;4.43; 5.12π;67.(0,4)(4,8); 8.32;9. 80; 10. 14;11.10,2⎛⎤ ⎥⎝⎦;12.1,3⎤⎦.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13. A ;14. D ; 15.C ;16. C .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)在正四棱柱1111ABCD A B C D -中, ∵1AA ⊥平面ABCD ,AD ⊂≠平面ABCD , ∴1AA AD ⊥,故14AA =, ∴正四棱柱的侧面积为(43)448⨯⨯=, 体积为2(3)436⨯=.(2)建立如图的空间直角坐标系O xyz -,由题意 可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E ,1(0,0,4)AA =,3(,3,2)2BE =--,设1AA 与BE 所成角为α,直线BE 与平面ABCD 所成角为θ,则11cos ||||AA BEAA BE α⋅===⋅ 又1AA是平面ABCD 的一个法向量, 故sin cos θα==,θ=.所以直线BE 与平面ABCD所成的角为arcsin61. 【另法提示:设AD 中点为G ,证EBG ∠即为BE 与平面ABCD 所成的角,然后解直角三角形EBG ,求出EBG ∠】arctan 1518.(本题满分14分)第(1)小题满分8分,第(2)小题满分6分.解:(1),1,01BP t CP t t ==-≤≤45DAQ θ∠=︒-,1tan(45)1tDQ tθ-=︒-=+, 12111t tCQ t t-=-=++所以211t PQ t +===+ 故221111211t t l CP CQ PQ t t t t t+=++=-++=-++=++ 所以△CPQ 的周长l 是定值2(2)111221ABP ADQ ABCD t t S S S S t ∆∆-=--=--⨯+正方形122(1)221t t=-++≤+当且仅当1t =时,等号成立所以摄像头能捕捉到正方形ABCD 内部区域的面积S至多为22hm19.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)因为函数()3g x x =是函数()3mf x x x=+在区间[)+∞4,上的弱渐近函数, 所以()()1mf xg x x-=≤ ,即m x ≤在区间[)+∞4,上恒成立, 即444m m ≤⇒-≤≤(2)()()2f x g x x x -==[)2,+x ∈∞,()()22(f x g x x x ∴-==-A DCBθP Q45令2()()()2(x xh x f x g x x=-===任取122x x≤<,则2212311x x≤-<-≤<120xx<<12()()h x h x⇒>⇒<即函数()()()2(h x f x g x x=-=在区间[)2,+∞上单调递减,所以(()()0,4f x gx-∈-,又([]0,41,1-⊆-,即满足()2g x x=使得对于任意的[)2,x∈+∞有()()1f xg x-≤恒成立,所以函数()2g x x=是函数()f x=在区间[)2,+∞上的弱渐近函数.20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分.解:(1)242a a=⇒=,又双曲线的渐近线方程为y=,所以bba==双曲线的标准方程是221412x y-=.(2)法一:由题不妨设11()A x,22(,)B x,则1212(,)22x xP+,由P在双曲线上,代入双曲线方程得124x x⋅=;法二:当直线AB的斜率不存在时,显然2x=±,此时124xx⋅=;当直线AB的斜率存在时,设直线AB的方程为(0,y kxt k k=+≠≠则由y kx tAy=+⎛⎧⎪⇒⎨=⎪⎩同理y kx tBy=+⎛⎧⎪⇒⎨=⎪⎩此时223,33kt t P k k ⎛⎫ ⎪--⎝⎭代入双曲线方程得224(3)t k =-,所以212243t x x k ⋅==-(3)①对称中心:原点;对称轴方程:,y y x ==②顶点坐标:3,22⎛⎫⎪ ⎪⎝⎭,322⎛⎫-- ⎪ ⎪⎝⎭;焦点坐标:(,(1,-实轴长:2a =、虚轴长:22b =、焦距:24c =③范围:()0,,2,x y ⎡≠∈-∞+∞⎣④渐近线:0,3x y x ==21.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.解:(1)因为数列{}n b 是“Γ数列”,且11b =,3k =、4d =、0c =,所以当1n ≥,n *∈N 时,310n b +=,又*2016672N 3=∈,即20170b =, 20182017044b b d =+=+=,20192018448b b d =+=+= (2)因为数列{}n b 是“Γ数列”,且12b =,4k =、2d =、1c =()()()414344341434243434312336n n n n n n n n n n b b cb b b d b b d b b d b d +---------=-=⨯+-=+-=+-==则数列前4n 项中的项43n b -是以2为首项,6为公差的得差数列,易知{}4n b 中删掉含有43n b -的项后按原来的顺序构成一个首项为2公差为2的等差数列,41543()n n S b b b -∴=+++()()()()23467846454442414+n n n n n n b b b b b b b b b b b b -----++++++++++++⎡⎤⎣⎦2(1)3(31)26(3)2212822n n n n n n n n --=+⨯+⨯+⨯=+ 43nn S λ≤⋅,43nn S λ∴≤,设2412833n n n n S n n c +==,则()max n c λ≥,22211112(1)8(1)12824820333n n n n n n n n n n n c c +++++++-++-=-=当1n =时,2248200n n -++>,12c c <;当2n ≥,n *∈N 时,2248200n n -++<,1n n c c +<,∴123c c c <>>,∴()2max 649n c c ==, 即()2max 649n c c λ≥==(3)因为{}n b 既是“Γ数列”又是等比数列,设{}n b 的公比为1n nb q b +=,由等比数列的通项公式有1n n b bq -=,当m *∈N 时,21k m k m b b d ++-=,即()11km km km bq bq bq q d +-=-=① 1q =,则0d =,n b b =; ② 1q ≠,则()1kmd qq b=-,则kmq 为常数,则1q =-,k 为偶数,2d b =-,()11n n b b -=-; 经检验,满足条件的{}n b 的通项公式为n b b =或()11n n b b -=-.。

上海市杨浦高级中学2017-2018学年高三下学期8月月考数学试卷(理科) Word版含解析

上海市杨浦高级中学2017-2018学年高三下学期8月月考数学试卷(理科) Word版含解析

2017-2018学年上海市杨浦高级中学高三(下)月考数学试卷(理科)一、填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.抛物线y2=x的焦点F坐标为.2.已知全集U={﹣2,﹣1,0,1,2},集合,则∁U A=.3.如果=,那么a的取值范围是.4.关于x的方程:4x•|4x﹣2|=3的解为.5.不等式的解集为.6.向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.7.已知数列{a n}满足(n∈N*),则a2n=.8.在(2x+y+z)10的展开式中,x3y2z5的系数为.9.在极坐标系中,将圆ρ=2沿着极轴正方向平移两个单位后,再绕极点逆时针旋转弧度,则所得的曲线的极坐标方程为.10.5位好朋友相约乘坐迪士尼乐园的环园小火车.小火车的车厢共有4节,设每一位乘客进入每节车厢是等可能的,则这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率是.11.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是.12.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为.若他投篮一次得分ξ的数学期望,则a的取值范围是.13.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“›”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i为虚数单位),“z1›z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.下面命题:①1›i›0;②若z1›z2,z2›z3,则z1›z3;③若z1›z2,则对于任意z∈C,z1+z›z2+z;④对于复数z›0,若z1›z2,则z•z1›z•z2.其中真命题是.(写出所有真命题的序号)14.符号表示数列{a n}的前n项和(即).已知数列{a n}满足a1=0,a n≤a n≤a n+1(n∈N*),记,若S2016=0,则当+1取最小值时,a2016=.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,填写结果,选对得5分,否则一律得零分.15.在样本的频率分布直方图中,共有9个小长方形,若第1个长方形的面积为0.02,前5个与后5个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第5组)的频数为()A.12 B.24 C.36 D.4816.已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m17.将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.18.在半径为r的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是()A.2πr B.C.D.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图:已知四棱锥P﹣ABCD,底面是边长为6的正方形,PA=8,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM、AN、MN.(1)求证:AB⊥MN;(2)求二面角N﹣AM﹣B的大小.20.已知向量和向量,且.(1)求函数f(x)的最小正周期和最大值;(2)已知△ABC的三个内角分别为A,B,C,若有=1,,求△ABC面积的最大值.21.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)曲线BC是抛物线y=﹣ax2+30(a >0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.(1)若要求CD=20米,AD=(10+30)米,求t与a值;(2)当0<t≤10时,若要求体育馆侧面的最大宽度DF不超过45米,求a的取值范围.22.如图数表:,每一行都是首项为1的等差数列,第m行的公差为d m,且每一列也是等差数列,设第m行的第k项为a mk(m,k=1,2,3,…,n,n≥3,n ∈N*).(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示d m(3≤m≤n);(2)当d1=1,d2=3时,将数列{d m}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为,求数列的前n项和S n;(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式恒成立的所有N的值.23.如图,圆O与直线x+y+2=0相切于点P,与x正半轴交于点A,与直线y=x在第一象限的交点为B.点C为圆O上任一点,且满足=x+y,以x,y为坐标的动点D (x,y)的轨迹记为曲线Γ.(1)求圆O的方程及曲线Γ的方程;(2)若两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ于点E、F和M、N,求四边形EMFN面积的最大值,并求此时的k的值.(3)根据曲线Γ的方程,研究曲线Γ的对称性,并证明曲线Γ为椭圆.2015-2016学年上海市杨浦高级中学高三(下)3月月考数学试卷(理科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.抛物线y2=x的焦点F坐标为.【考点】抛物线的简单性质.【分析】焦点在x轴的正半轴上,且p=,利用焦点为(,0),写出焦点坐标.【解答】解:抛物线y2=x的焦点在x轴的正半轴上,且p=,∴=,故焦点坐标为(,0),故答案为:(,0).2.已知全集U={﹣2,﹣1,0,1,2},集合,则∁U A=.【考点】补集及其运算.【分析】先根据整除性求出集合A,然后根据补集的定义求出C U A即可.【解答】解:∵x∈Z∴能被2整除的数有﹣2,﹣1,1,2则x=﹣2,﹣1,1,2即A={﹣2,﹣1,1,2}而U={﹣2,﹣1,0,1,2},则C U A={0}故答案为:{0}3.如果=,那么a的取值范围是.【考点】数列的极限.【分析】直接利用数列的极限的运算法则,化简已知条件即可推出a的范围.【解答】解:=,可得=,可得,解得a∈(﹣4,2).故答案为:(﹣4,2).4.关于x的方程:4x•|4x﹣2|=3的解为.【考点】根的存在性及根的个数判断.【分析】令4x=t,将方程转化为关于t的一元二次方程计算.【解答】解:令4x=t,(t>0).则当t≥2时,t2﹣2t﹣3=0,解得t=3或t=﹣1(舍).∴x=log43.当0<t<2时,t(2﹣t)=3,即t2﹣2t+3=0,方程无解.故答案为:x=log43.5.不等式的解集为.【考点】其他不等式的解法.【分析】将行列式按第二行展开,求得不等式=+2≥0,注意对数函数的定义域.【解答】解:等价于lgx++2=+2≥0,即,解得0<x≤或x>1,故不等式的解集为.故答案为:.6.向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.【考点】平面向量的基本定理及其意义.【分析】以向量、的公共点为坐标原点,建立如图直角坐标系,得到向量、、的坐标,结合题中向量等式建立关于λ、μ的方程组,解之得λ=﹣2且μ=﹣,即可得到的值.【解答】解:以向量、的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵∴,解之得λ=﹣2且μ=﹣因此,==4故答案为:47.已知数列{a n}满足(n∈N*),则a2n=.【考点】数列递推式.【分析】由已知求出数列的第二项,并得到数列{a n}的偶数项构成以2为首项,以2为公比的等比数列,然后由等比数列的通项公式得答案.【解答】解:由①,得a2=2,且(n≥2)②,①÷②得:,∴数列{a n}的偶数项构成以2为首项,以2为公比的等比数列,则.故答案为:2n.8.在(2x+y+z)10的展开式中,x3y2z5的系数为.【考点】二项式定理的应用.【分析】根据展开式中项的由来,利用组合解答即可.【解答】解:由题意,在(2x+y+z)10的展开式中,含有x3y2z5的项为,所以系数为8××=20160.故答案为:20160.9.在极坐标系中,将圆ρ=2沿着极轴正方向平移两个单位后,再绕极点逆时针旋转弧度,则所得的曲线的极坐标方程为.【考点】简单曲线的极坐标方程.【分析】根据圆ρ=2的圆心与半径,得出平移和旋转后的圆心与半径,由此写出所得曲线的极坐标方程.【解答】解:圆ρ=2的圆心为(0,0),半径为2;沿着极轴正方向平移两个单位后,圆心为(2,0),半径为2;绕极点按逆时针方向旋转,所得圆的圆心为(2,),半径为2;设p为所求圆上任意一点,则OP=ρ=2×2cos(θ﹣)=4cos(θ﹣).故答案为:ρ=4cos(θ﹣).10.5位好朋友相约乘坐迪士尼乐园的环园小火车.小火车的车厢共有4节,设每一位乘客进入每节车厢是等可能的,则这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率是.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)包含的基本事件个数,由此能求出这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率.【解答】解:5位好朋友相约乘坐迪士尼乐园的环园小火车.小火车的车厢共有4节,设每一位乘客进入每节车厢是等可能的,则基本事件总数n=45,这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)包含的基本事件个数:m=+,∴这5位好朋友无人落单(即一节车厢内,至少有5人中的2人)的概率:p===.故答案为:.11.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是.【考点】函数的周期性.【分析】函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=log a|x|的图象,结合图象可得log a5<1 或log a5≥﹣1,由此求出a的取值范围.【解答】解:根据题意,函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log a|x|的交点的个数;f(x+2)=f(x),函数f(x)是周期为2的周期函数,又由当﹣1<x≤1时,f(x)=x3,据此可以做出f(x)的图象,y=log a|x|是偶函数,当x>0时,y=log a x,则当x<0时,y=log a(﹣x),做出y=log a|x|的图象,结合图象分析可得:要使函数y=f(x)与y=log a|x|至少有6个交点,则log a5<1 或log a5≥﹣1,解得a>5,或0<a≤.所以a的取值范围是(0,]∪(5,+∞).故答案为:(0,]∪(5,+∞).12.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为.若他投篮一次得分ξ的数学期望,则a的取值范围是.【考点】离散型随机变量的期望与方差.【分析】由已知得,0<a<1,0<b<1,从而3a+2b=3a+2(﹣a)>,由此能求出a的取值范围.【解答】解:∵一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为.∴a+b+=1,∴,∵0<a<1,0<b<1,∴0<a<,∵投篮一次得分ξ的数学期望,∴3a+2b=3a+2(﹣a)>,解得a>,综上,.故答案为:(,).13.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“›”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i为虚数单位),“z1›z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.下面命题:①1›i›0;②若z1›z2,z2›z3,则z1›z3;③若z1›z2,则对于任意z∈C,z1+z›z2+z;④对于复数z›0,若z1›z2,则z•z1›z•z2.其中真命题是.(写出所有真命题的序号)【考点】复数代数形式的混合运算.【分析】利用复数的新定义大小关系即可得出.【解答】解:①.∵1=1+0•i,i=0+1•i,∵实部1>0,∴1›i.又0=0+0•i,∵实部0=0,虚部1>0,∴i›0,∴1›i›0,所以①正确.②设z k=a k+b k i,k=1,2,3,a k,b k∈R.∵z1›z2,z2›z3,∴a1≥a2,a2≥a3,∴a1≥a3.则当a1>a3时,可得z1›z3;当a1=a3时,有b1>b2>b3,可得z1›z3,∴②正确;③令z=a+bi(a,b∈R),∵z1›z2,∴a1≥a2,∴a1+a≥a2+a,当a1=a2时,b1>b2,故a1+a=a2+a,b1+b>b2+b,可得z1+z›z2+z;当a1>a2时,a1+a>a2+a,可得z1+z›z2+z;∴③正确;④取z=0+i>0,z1=a1+b1i,z2=a2+b2i,(a k,b k∈R,k=1,2),不妨令a1=a2,b1>b2,则z1›z2,此时z•z1=﹣b1+a1i,z•z2=﹣b2+a2i,不满足z•z1›z•z2.故④不正确.由以上可知:只有①②③正确.故答案为:①②③.14.符号表示数列{a n}的前n项和(即).已知数列{a n}满足a1=0,a n≤a n≤a n+1(n∈N*),记,若S2016=0,则当+1取最小值时,a2016=.【考点】数列的求和.【分析】S2016=0,=,进一步可知{a n}从第一起k∈{1,2,3,4,…,1008},当取最小值,a2016=1007.【解答】解:S2016=0,(﹣1)k=0,即=,∵a n ≤a n +1,(n ∈N *),0<a <1,∴≥,∴a 2k ﹣1=a 2k ,k ∈{1,2,3,4,…,1008}, ∵a 1=0,a n ≤a n +1≤a n +1(n ∈N *),∴当取最小值,∴a 2016=1007, 故答案为:1007.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,填写结果,选对得5分,否则一律得零分.15.在样本的频率分布直方图中,共有9个小长方形,若第1个长方形的面积为0.02,前5个与后5个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第5组)的频数为( ) A .12 B .24 C .36 D .48 【考点】频率分布直方图.【分析】设出公差,利用9个小长方形面积和为1,求出公差,然后求解中间一组的频数.【解答】解:设公差为d ,那么9个小长方形的面积分别为0.02,0.02+d ,0.02+2d ,0.02+3d ,0.02+4d ,0.02+3d ,0.02+2d ,0.02+d ,0.02,而9个小长方形的面积和为 1,可得0.18+16d=1 可以求得d=∴中间一组的频数为:160×(0.02+4d )=36. 故选C .16.已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3C . mD .3m 【考点】双曲线的简单性质.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C :x 2﹣my 2=3m (m >0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F 到C 的一条渐近线的距离为=.故选:A .17.将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【考点】两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.【解答】解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B18.在半径为r的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是()A.2πr B.C.D.【考点】多面体和旋转体表面上的最短距离问题.【分析】球面上两点之间最短的路径是大圆(圆心为球心)的劣弧的弧长,因此最短的路径分别是经过的各段弧长的和,利用内接正三棱锥,它的底面三个顶点恰好同在一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,经过的最短路程为:一个半圆一个圆即可解决.【解答】解:由题意可知,球面上两点之间最短的路径是大圆(圆心为球心)的劣弧的弧长,内接正三棱锥,它的底面三个顶点恰好同在一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,例如动点从A到S,再到C,到B回到A,∠SOA=∠SOC=90°,∠COB=∠BOA=60°,则经过的最短路程为:一个半圆一个圆,即:=故选B.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图:已知四棱锥P﹣ABCD,底面是边长为6的正方形,PA=8,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM、AN、MN.(1)求证:AB⊥MN;(2)求二面角N﹣AM﹣B的大小.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.(1)分别以AD、AB、AP为x轴、y轴、z轴建立空间直角坐标系,只要证明,【分析】即可证明AB⊥MN.(2)利用法向量的夹角公式即可得出.【解答】(1)证明:分别以AD、AB、AP为x轴、y轴、z轴建立空间直角坐标系,则A(0,0,0)、B(0,6,0)、M(6,3,0)、N(0,3,4),得,,∴,∴AB⊥MN.(2)解:取平面AMB的一个法向量为,设平面AMN的法向量,又,,由,取平面AMN的一个法向量,设二面角N﹣AM﹣B为α,则=,∴二面角N﹣AM﹣B的大小为.20.已知向量和向量,且.(1)求函数f(x)的最小正周期和最大值;(2)已知△ABC的三个内角分别为A,B,C,若有=1,,求△ABC 面积的最大值.【考点】三角函数中的恒等变换应用;平面向量共线(平行)的坐标表示;正弦定理.【分析】(1)根据向量平行的坐标关系求出f(x)的解析式,化简成为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,结合三角函数的图象和性质求其最大值.(2)利用=1,求出A的角的大小,在结合余弦定理,利用三角函数的图象和性质求其最大值.【解答】解:(1)由题意:可得:⇔f(x)的最小正周期T=sinx的图象和性质可知:sin(x+)的最大值是1,∴的最大值是2.所以:函数f(x)的最小正周期为2π,最大值为2.(2)由(1)可知.∵=1,得:,∵0<A<π,∴,∴,解得:.又∵,即,∴b2+c2﹣bc=3,又∵b2+c2≥2bc(当且仅当b=c时取等号),则有:3+bc≥2bc,∴bc≤3,∴,所以:△ABC面积的最大值为:.21.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)曲线BC是抛物线y=﹣ax2+30(a >0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.(1)若要求CD=20米,AD=(10+30)米,求t与a值;(2)当0<t≤10时,若要求体育馆侧面的最大宽度DF不超过45米,求a的取值范围.【考点】直线和圆的方程的应用;直线与圆的位置关系.【分析】(1)根据圆E的半径CD=30﹣t求出t的值,再利用圆E的方程求出点C的坐标,代入抛物线方程求出a的值;(2)根据圆E的半径,利用抛物线求出OD的值,写出DF的表达式,求DF在t∈(0,10]时不等式DF≤45恒成立即可.【解答】解:(1)因为CD=30﹣t=20,解得t=10;…3分此时圆E:x2+(y﹣10)2=202,令y=0,得AO=10,所以OD=AD﹣AO=30,将点C(30,20)代入y=﹣ax2+30(a>0)中,解得;…7分(2)因为圆E的半径为30﹣t,所以CD=30﹣t,在y=﹣ax2+30中,令y=30﹣t,解得,则由题意知对t∈(0,10]恒成立,…9分所以恒成立,而,当,即t=15∉(0,10]时,由()递减,可知:当t=10取最小值;…12分故,解得.…14分.22.如图数表:,每一行都是首项为1的等差数列,第m行的公差为d m,且每一列也是等差数列,设第m行的第k项为a mk(m,k=1,2,3,…,n,n≥3,n ∈N*).(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示d m(3≤m≤n);(2)当d1=1,d2=3时,将数列{d m}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为,求数列的前n项和S n;(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式恒成立的所有N的值.【考点】数列的应用.【分析】(1)根据第三行成等差数列得出a3n,根据最后一列成等差数列得出a3n,从而得出d1,d2,d3的关系,同理根据a mn的不同算法即可得出d m关于m,d1,d2的式子;(2)根据分组特点计算c m,利用错位相减法计算S n;(3)把S n,d n代入不等式求出使不等式成立的n的最小值即可得出N的最小值.【解答】解:(1)∵每一行都是首项为1的等差数列,∴a1n=1+(n﹣1)d1,a2n=1+(n﹣1)d2,a3n=1+(n﹣1)d3.∵每一列也是等差数列,∴2a2n=a1n+a3n,∴2+2(n﹣1)d2=1+(n﹣1)d1+1+(n﹣1)d3,即2d2=d1+d3∴d1,d2,d3成等差数列.∵a mn=1+(n﹣1)d m,a mn=a1n+(m﹣1)(a2n﹣a1n)=a1n+(m﹣1)(a2n﹣a1n)=1+(n﹣1)d1+(m﹣1)(n﹣1)(d2﹣d1),∴1+(n﹣1)d m=1+(n﹣1)d1+(m﹣1)(n﹣1)(d2﹣d1)化简得d m=(2﹣m)d1+(m﹣1)d2.(2)当d1=1,d2=3时,d m=2m﹣1(m∈N*),按数列{d m}分组规律,第m组中有2m﹣1个数,所以第1组到第m组共有1+3+5+…+(2m﹣1)=m2个数.则前m组的所有数字和为,∴,∵c m>0,∴c m=m,从而,m∈N*,∴S n=1×2+3×22+5×23+…+(2n﹣1)×2n,∴2S n=1×22+3×23+…+(2n﹣1)×2n+1,∴﹣S n=2+23+24+…+2n+1﹣(2n﹣1)×2n+1=2+23(2n﹣1﹣1)﹣(2n﹣1)×2n+1=(3﹣2n)×2n+1﹣6.∴.(3)由得(2n﹣3)•2n+1>50(2n﹣1).令a n=(2n﹣3)•2n+1﹣50(2n﹣1)=(2n﹣3)(2n+1﹣50)﹣100.∴当n≤5时,a n<0,当n≥6时,a n>0,所以,满足条件的所有正整数N=5,6,7,8, (20)23.如图,圆O与直线x+y+2=0相切于点P,与x正半轴交于点A,与直线y=x在第一象限的交点为B.点C为圆O上任一点,且满足=x+y,以x,y为坐标的动点D (x,y)的轨迹记为曲线Γ.(1)求圆O的方程及曲线Γ的方程;(2)若两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ于点E、F和M、N,求四边形EMFN面积的最大值,并求此时的k的值.(3)根据曲线Γ的方程,研究曲线Γ的对称性,并证明曲线Γ为椭圆.【考点】直线与圆的位置关系;椭圆的简单性质.【分析】(1)圆O与直线x+y+2=0相切于点,利用点到直线的距离,即可求出半径,解得圆的方程.根据=x+y和坐标关系带入圆的方程,即可得到曲线Γ的方程;垂直(2)两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ,解出坐标,由题意l1与l2垂直,利用两点之间的距离求出EF,MN长度,即可得到四边形的面积,利用基本不等式即可得到答案.(3)根据(1)中得到的方程,首先考虑奇偶性和x轴,y=x轴的对称,在考虑非常见对称.利用椭圆的定义证明即可.【解答】解:由题意:圆O与直线x+y+2=0相切于点,利用点到直线的距离,即可求出半径,r=∴圆的方程为:x2+y2=1圆与x轴的交点A(1,0),与直线y=x在第一象限的交点B为(,),由=x+y,可得:,将代入x2+y2=1得到:x2+y2+xy=1,()即为曲线Γ的方程;(2)∵两条直线l1:y=kx和l2:y=﹣x分别交曲线Γ于点E、F和M、N.∴联立:⇒解得:点E(,),点F(﹣,﹣)那么:|EF|=同理:联立⇒解得:点M(,)点N(﹣,﹣)那么:|MN|=l2,所以四边形EMFN面积的为S=|MN|•|EF|=2×由题意可知:l1⊥=∵.(当且仅k=±1时等号成立)∴⇒故当k=±1时,四边形EMFN的面积最大,其最大值为:.(3)由(1)可知:曲线Γ的方程:x2+y2+xy=1,()关于直线y=x,也关于原点对称,同时关于直线y=﹣x对称证明:设曲线Γ上任一点的坐标为P(x0,y0),则有点P关于直线y=x的对称点P′(y0,x0),带入方程得:,显然成立.故曲线Γ的方程关于直线y=x对称.同理:曲线Γ的方程关于原点对称,同时关于直线y=﹣x对称.证明曲线Γ为椭圆型曲线.证明:曲线Γ的方程:x2+y2+xy=1和直线x=y的交点坐标为B1(﹣,﹣),B2(,)曲线Γ的方程:x2+y2+xy=1和直线x=﹣y的交点坐标为A1(﹣1,1),A2(1,﹣1)|0A1|=,|0B1|=,那么,在y=﹣x上取F1(﹣,,),F2(,﹣)设P(x,y)在曲线Γ的方程上的任意一点,则|PF1|+|PF2|======因为xy≤,∴=2=|A1A2|即曲线Γ的方程上的任意一点P到两个定点F1(﹣,,),F2(,﹣)的距离之和为定值2.可以反过来证明:若点P到两个定点F1(﹣,,),F2(,﹣)的距离之和为定值2,可以求得P的轨迹方程,得到为:x2+y2+xy=1故曲线Γ的方程是椭圆,其焦点坐标为F1(﹣,,),F2(,﹣).2016年10月11日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年上海市杨浦区高考数学三模试卷(理科)一.填空题1.函数y=log2(x+1)的反函数为.2.若直线l1:2x+my+1=0与l2:y=3x﹣1垂直,则实数m=.3.若2+i(i虚数单位)是实系数一元二次方程x2+px+q=0的根,则p+q=.4.已知sinx=,x∈(,π),则行列式的值等于.5.已知A={x|>1},B={x|log2(x﹣1)<1},则A∩B=.6.已知A地位于东经30°、北纬45°,B地位于西经60°、北纬45°,则A、B两地的球面距离与地球半径的比值为.7.在某次数学测验中,5位学生的成绩如下:78、85、a、82、69,他们的平均成绩为80,则他们成绩的方差等于.8.在极坐标系下,点(2,)到直线ρcos(θ﹣)=1的距离为.9.若(x+)n(n∈N*)展开式中各项系数的和等于64,则展开式中x3的系数是.10.三阶矩阵中有9个不同的数a ij(i=1,2,3;j=1,2,3),从中任取三个,则至少有两个数位于同行或同列的概率是(结果用分数表示)11.若函数y=cos(x+)的图象向右平移φ个单位(φ>0),所得到的图象关于y轴对称,则φ的最小值为.12.若两整数a、b除以同一个整数m,所得余数相同,即=k(k∈Z),则称a、b对模m同余,用符号a≡b(mod m)表示,若a≡10(mod 6)(a>10),满足条件的a由小到大依次记为a1,a2…a n,…,则数列{a n}的前16项和为.13.已知双曲线﹣=1(a∈N*)的两个焦点为F1,F2,P为该双曲线上一点,满足|F1F2|2=|PF1|•|PF2|,P到坐标原点O的距离为d,且5<d<9,则a2=.14.如图,已知AB⊥AC,AB=3,AC=,圆A是以A为圆心半径为1的圆,圆B是以B为圆心的圆.设点P,Q分别为圆A,圆B上的动点,且=,则•的取值范围是.二.选择题15.已知数列{a n}的前n项和S n=p n+q(p≠0,q≠1),则“q=﹣1”是“数列{a n}是等比数列”的()A.充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件16.已知z1、z2均为复数,下列四个中,为真的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数17.椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.18.定义域为[a,b]的函数y=f(x)图象的两个端点为A(a,f(a)),B(b,f(b)),M(x,y)是y=f(x)图象上任意一点,过点M作垂直于x轴的直线l交线段AB于点N(点M与点N可以重合),我们称||的最大值为该函数的“曲径”,下列定义域为[1,2]上的函数中,曲径最小的是()A.y=x2 B.y= C.y=x﹣D.y=sin x三.解答题19.如图,圆锥的顶点为P,底面圆心为O,线段AB和线段CD都是底面圆的直径,且直线AB与直线CD的夹角为,已知|OA|=1,|PA|=2.(1)求该圆锥的体积;(2)求证:直线AC平行于平面PBD,并求直线AC到平面PBD的距离.20.已知数列{a n}中,a n+1=+(n∈N*),a1=1;(1)设b n=3n a n(n∈N*),求证:{b n}是等差数列;(2)设数列{a n}的前n项和为S n,求的值.21.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)(1)当点F与点C重合时,试确定点E的位置;(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.22.已知圆E:(x﹣1)2+y2=4,线段AB、CD都是圆E的弦,且AB与CD垂直且相交于坐标原点O,如图所示,设△AOC的面积为S1,设△BOD的面积为S2;(1)设点A的横坐标为x1,用x1表示|OA|;(2)求证:|OA|•|OB|为定值;(3)用|OA|、|OB|、|OC|、|OD|表示出S1+S2,试研究S1+S2是否有最小值,如果有,求出最小值,并写出此时直线AB的方程;若没有最小值,请说明理由.23.已知非空集合A是由一些函数组成,满足如下性质:①对任意f(x)∈A,f(x)均存在反函数f﹣1(x),且f﹣1(x)∈A;②对任意f(x)∈A,方程f(x)=x均有解;③对任意f(x)、g(x)∈A,若函数g(x)为定义在R上的一次函数,则f(g(x))∈A;(1)若f(x)=,g(x)=2x﹣3均在集合A中,求证:函数h(x)=(2x﹣3)∈A;(2)若函数f(x)=(x≣1)在集合A中,求实数a的取值范围;(3)若集合A中的函数均为定义在R上的一次函数,求证:存在一个实数x0,使得对一切f (x)∈A,均有f(x0)=x0.2016年上海市杨浦区高考数学三模试卷(理科)参考答案与试题解析一.填空题1.函数y=log2(x+1)的反函数为y=2x﹣1(x∈R).【考点】反函数.【分析】由y=log2(x+1)(x>﹣1)解得x=2y﹣1,把x与y互换即可得出.【解答】解:由y=log2(x+1)(x>﹣1)解得x+1=2y,即x=2y﹣1,把x与y互换可得:y=2x ﹣1(x∈R).∴y=log2(x+1)的反函数为y=2x﹣1(x∈R).故答案为:y=2x﹣1(x∈R).2.若直线l1:2x+my+1=0与l2:y=3x﹣1垂直,则实数m=6.【考点】直线的一般式方程与直线的垂直关系.【分析】根据两直线垂直时,一次项对应系数之积的和等于0,解方程求得m的值.【解答】解:直线l1:2x+my+1=0与l2:y=3x﹣1垂直,即为3x﹣y﹣1=0∴2×3+m×(﹣1)=0,解得m=6,故答案为:6.3.若2+i(i虚数单位)是实系数一元二次方程x2+px+q=0的根,则p+q=1.【考点】复数代数形式的混合运算.【分析】可知2﹣i也是实系数一元二次方程x2+px+q=0的根,从而利用韦达定理求得.【解答】解:∵2+i是实系数一元二次方程x2+px+q=0的根,∴2﹣i是实系数一元二次方程x2+px+q=0的根,∴2+i+2﹣i=﹣p,(2+i)(2﹣i)=q,解得,p=﹣4,q=5;故p+q=1;故答案为:1.4.已知sinx=,x∈(,π),则行列式的值等于.【考点】同角三角函数基本关系的运用.【分析】由已知利用同角三角函数基本关系式可求cosx,进而可求secx的值,再计算行列式的值即可得解.【解答】解:∵sinx=,x∈(,π),∴cosx=﹣=﹣,secx==﹣,∴=sinxsecx+1=(﹣)+1=.故答案为:.5.已知A={x|>1},B={x|log2(x﹣1)<1},则A∩B={x|1<x<2} .【考点】交集及其运算.【分析】求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.【解答】解:集合A中不等式,当x>0时,解得:x<2,此时0<x<2;当x<0时,解得:x>2,无解,∴A={x|0<x<2},集合B中不等式变形得:log2(x﹣1)<1=log22,即0<x﹣1<2,解得:1<x<3,即B={x|1<x<3},则A∩B={x|1<x<2},故答案为:{x|1<x<2}.6.已知A地位于东经30°、北纬45°,B地位于西经60°、北纬45°,则A、B两地的球面距离与地球半径的比值为.【考点】球面距离及相关计算.【分析】求出球心角,然后A、B两点的距离,求出两点间的球面距离,即可求出A、B两地的球面距离与地球半径的比值.【解答】解:地球的半径为R,在北纬45°,而AB=R,所以A、B的球心角为:,所以两点间的球面距离是:R,所以A、B两地的球面距离与地球半径的比值为故答案为:.7.在某次数学测验中,5位学生的成绩如下:78、85、a、82、69,他们的平均成绩为80,则他们成绩的方差等于38.【考点】极差、方差与标准差.【分析】根据披平均成绩求出a的值,根据方差的计算公式求出这组数据的方差即可.【解答】解:∵5位学生的成绩如下:78、85、a、82、69,他们的平均成绩为80,∴78+85+a+82+69=5×80,解得:a=86,∴s2= [(78﹣80)2+(85﹣80)2+(86﹣80)2+(82﹣80)2+(69﹣80)2]=38,则他们成绩的方差等于38,故答案为:38.8.在极坐标系下,点(2,)到直线ρcos(θ﹣)=1的距离为1.【考点】简单曲线的极坐标方程.【分析】把极坐标方程化为直角坐标方程,利用点到直线的距离公式即可得出.【解答】解:直线ρcos(θ﹣)=1化为: +=1,即x﹣y+2=0.点P(2,)化为P,∴点P到直线的距离d==1.故答案为:1.9.若(x+)n(n∈N*)展开式中各项系数的和等于64,则展开式中x3的系数是15.【考点】二项式系数的性质.【分析】令x=1,则(x+)n(n∈N*)展开式中各项系数的和=2n=64,解得n.再利用二项式定理的通项公式即可得出.【解答】解:令x=1,则(x+)n(n∈N*)展开式中各项系数的和为:2n=64,解得n=6.∴的展开式的通项公式T r+1==,令=3,解得r=2.∴展开式中x3的系数为:=15.故答案为:15.10.三阶矩阵中有9个不同的数a ij(i=1,2,3;j=1,2,3),从中任取三个,则至少有两个数位于同行或同列的概率是(结果用分数表示)【考点】列举法计算基本事件数及事件发生的概率.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,取出的三个数,使它们不同行且不同列:从第一行中任取一个数有C31=3种方法,则第二行只能从另外两列中的两个数任取一个有C21=2种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有3×2=6种方法三个数分别位于三行或三列的情况有6种;∴所求的概率为=,故答案为:11.若函数y=cos(x+)的图象向右平移φ个单位(φ>0),所得到的图象关于y轴对称,则φ的最小值为.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由y=Asin(ωx+φ)的图象变换规律,结合正弦函数、余弦函数的图象的对称性可得﹣φ+=kπ,k∈Z,从而求得φ的最小值.【解答】解:把函数y=cos(x+)的图象向右平移φ个单位(φ>0),可得y=cos(x﹣φ+)的图象;根据所得到的图象关于y轴对称,可得﹣φ+=kπ,k∈Z,可得φ的最小值为,故答案为:.12.若两整数a、b除以同一个整数m,所得余数相同,即=k(k∈Z),则称a、b对模m同余,用符号a≡b(mod m)表示,若a≡10(mod 6)(a>10),满足条件的a由小到大依次记为a1,a2…a n,…,则数列{a n}的前16项和为976.【考点】整除的定义.【分析】由两数同余的定义,m是一个正整数,对两个正整数a、b,若a﹣b是m的倍数,则称a、b模m同余,我们易得若a≡10(mod 6)(a>10),则a﹣10为6的整数倍,则a=6n+10,再根据等差数列{a n}的前n项公式计算即可得答案.【解答】解:由两数同余的定义,m是一个正整数,对两个正整数a、b,若a﹣b是m的倍数,则称a、b模m同余,我们易得若a≡10(mod 6)(a>10),则a﹣10为6的整数倍,则a=6n+10,故a=16,22,28,…均满足条件.由等差数列{a n}的前n项公式,则=976.故答案为:976.13.已知双曲线﹣=1(a∈N*)的两个焦点为F1,F2,P为该双曲线上一点,满足|F1F2|2=|PF1|•|PF2|,P到坐标原点O的距离为d,且5<d<9,则a2=1或4.【考点】双曲线的简单性质.【分析】求得双曲线的b,c,设P为右支上一点,|PF1|=m,|PF2|=n,运用双曲线的定义,结合条件,由两点的距离公式,解不等式可得a的正整数解.【解答】解:双曲线﹣=1的b=2,c2=a2+4,设P为右支上一点,|PF1|=m,|PF2|=n,由双曲线的定义可得m﹣n=2a,由题意可得4c2=mn,m2+n2=d2,可得(m﹣n)2+2mn=4a2+8c2=d2∈(25,81),即25<12a2+32<81,即为a2<,由a为正整数,可得a=1,2,故答案为:1或4.14.如图,已知AB⊥AC,AB=3,AC=,圆A是以A为圆心半径为1的圆,圆B是以B为圆心的圆.设点P,Q分别为圆A,圆B上的动点,且=,则•的取值范围是[﹣1,11] .【考点】平面向量数量积的运算.【分析】设∠QBA=θ,则∠PAC=90°+θ,从而有=﹣,=﹣,通过计算求出即可.【解答】解:设∠QBA=θ,则∠PAC=90°+θ,∵=﹣,=﹣∴•=(﹣)•(﹣)=•﹣•﹣•+•=•﹣•+•﹣•+•=2﹣cos(+θ)+3cos(π﹣θ)﹣•2•cos(+θ)+•2•cos=5+3sinθ﹣3cosθ=5+6sin(θ﹣),∵﹣1≢sin(θ﹣)≢1,∴•∈[﹣1,11].二.选择题15.已知数列{a n}的前n项和S n=p n+q(p≠0,q≠1),则“q=﹣1”是“数列{a n}是等比数列”的()A.充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.=(p﹣1)•p n﹣1进而可判定n≣2时,{a n}【分析】先求出a1的值,再由n≣2时,a n=S n﹣S n﹣1是等比数列,最后再验证当n=1时q=﹣1时可满足,{a n}是等比数列,从而{a n}是等比数列的必要条件是p≠0且p≠1且q=﹣1;反之,q=﹣1时,当p=0或p=﹣1时,{a n}不是等比数列;利用充要条件的定义得到结论.【解答】解:当n=1时,a1=S1=p+q;=(p﹣1)•p n﹣1.当n≣2时,a n=S n﹣S n﹣1当p≠0,p≠1,∴当n≣2时,{a n}是等比数列.要使{a n}(n∈N*)是等比数列,则=p,即(p﹣1)•p=p(p+q),∴q=﹣1,即{a n}是等比数列的必要条件是p≠0且p≠1且q=﹣1.反之,q=﹣1时,S n=p n﹣1,a n=(p﹣1)•p n﹣1,因为p=1时,{a n}不是等比数列所以“q=﹣1”是“数列{a n}为等比数列”的必要不充分条件.故选B.16.已知z1、z2均为复数,下列四个中,为真的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数【考点】复数代数形式的混合运算.【分析】A.取z1=i,即可判断出正误;B.由|z2|=2,则z2=2(cosθ+isinθ),θ∈[0,2π);C.取z1=i,z2=﹣i,即可否定;D.设z1=a+bi,z2=c+di,a,b,c,d∈R,利用复数的运算法则即可判断出正误.【解答】解:A.不成立,例如取z1=i;B.不成立,|z2|=2,则z2=2(cosθ+isinθ),θ∈[0,2π);C.不成立,例如取z1=i,z2=﹣i;D.设z1=a+bi,z2=c+di,a,b,c,d∈R,则z1+z2=(a+bi)(c﹣di)+(a﹣bi)(c+di)=ac+bd+(bc﹣ad)i+ac﹣bd+(ad﹣bc)i=2ac,因此是实数,正确.故选:D.17.椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.【考点】直线与圆锥曲线的关系;直线的斜率.【分析】由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选B.18.定义域为[a,b]的函数y=f(x)图象的两个端点为A(a,f(a)),B(b,f(b)),M(x,y)是y=f(x)图象上任意一点,过点M作垂直于x轴的直线l交线段AB于点N(点M与点N可以重合),我们称||的最大值为该函数的“曲径”,下列定义域为[1,2]上的函数中,曲径最小的是()A.y=x2 B.y= C.y=x﹣D.y=sin x【考点】函数的图象;函数的图象与图象变化.【分析】根据已知中函数的“曲径”的定义,逐一求出给定四个函数的曲径,比较后,可得答案.【解答】解:当y=f(x)=x2时,端点A(1,1),B(2,4),直线AB的方程为y=3x﹣2,故||=3x﹣2﹣x2,当x=时,||的最大值为,即该函数的“曲径”为,当y=f(x)=时,端点A(1,2),B(2,1),直线AB的方程为y=﹣x+3,故||=﹣x+3﹣,当x=时,||的最大值为3﹣2,即该函数的“曲径”为3﹣2,当y=f(x)=x﹣时,端点A(1,0),B(2,),直线AB的方程为y=x﹣,故||=x﹣﹣x+=﹣x﹣+,当x=时,||的最大值为﹣,即该函数的“曲径”为﹣,当y=f(x)=sin x时,端点A(1,),B(2,),直线AB的方程为y=,故||=sin x﹣,当x=时,||的最大值为1﹣,即该函数的“曲径”为1﹣,故函数y=x﹣的曲径最小,故选:C.三.解答题19.如图,圆锥的顶点为P,底面圆心为O,线段AB和线段CD都是底面圆的直径,且直线AB与直线CD的夹角为,已知|OA|=1,|PA|=2.(1)求该圆锥的体积;(2)求证:直线AC平行于平面PBD,并求直线AC到平面PBD的距离.【考点】点、线、面间的距离计算;旋转体(圆柱、圆锥、圆台).【分析】(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得AC∥BD,即可证明直线AC平行于平面PBD,C到平面PBD的距离即直线AC到平面PBD的距离,由V C﹣PBD=V P﹣BCD,求出直线AC到平面PBD的距离.【解答】(1)解:设圆锥的高为h,底面半径为r,则r=1,h=,∴圆锥的体积V=Sh=;(2)证明:由对称性得AC ∥BD , ∵AC ⊄平面PBD ,BD ⊂平面PBD , ∴AC ∥平面PBD ,∴C 到平面PBD 的距离即直线AC 到平面PBD 的距离,设C 到平面PBD 的距离为d ,则由V C ﹣PBD =V P ﹣BCD ,得,可得,∴d=,∴直线AC 到平面PBD 的距离为.20.已知数列{a n }中,a n+1=+(n ∈N *),a 1=1;(1)设b n =3n a n (n ∈N *),求证:{b n }是等差数列;(2)设数列{a n }的前n 项和为S n ,求的值.【考点】数列的求和;等差数列的通项公式.【分析】(1)由a n+1=+(n ∈N *),可得3n+1a n+1﹣3n a n =3,又b n =3n a n (n ∈N *),可得b n+1﹣b n =3,利用等差数列的定义即可证明.(2)由(1)可得:b n =3n ,3n a n =3n ,可得a n =.利用“错位相减法”与等比数列的前n项和公式可得:S n =﹣.再利用极限的运算性质即可得出.【解答】(1)证明:∵a n+1=+(n ∈N *),∴3n+1a n+1﹣3n a n =3,又b n =3n a n (n ∈N *),∴b n+1﹣b n =3,∴{b n }是等差数列,首项为3,公差为3.(2)解:由(1)可得:b n =3+3(n ﹣1)=3n ,∴3n a n =3n ,可得a n =.∴S n =1++3×+…++n ×,=+…+(n ﹣1×)+n ×,∴=1+++…+﹣n ×=﹣n ×=﹣×,∴S n =﹣.∴1﹣=.∴=.∴==.21.图为一块平行四边形园地ABCD,经测量,AB=20米,BC=10米,∠ABC=120°,拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同的花卉,设EB=x,EF=y(单位:米)(1)当点F与点C重合时,试确定点E的位置;(2)求y关于x的函数关系式,并确定点E、F的位置,使直路EF长度最短.【考点】基本不等式在最值问题中的应用.【分析】(1)当点F与点C重合时,S△BEC=S▱ABCD,即•EB•h=AB•h,从而确定点E的位置;(2)点E在线段AB上,分10≢x≢20与0≢x<10讨论以确定y关于x的函数关系式,从而利用分段函数解得,当0≢x<10时,y=2,由二次函数求最小值,当10≢x≢20时,y=,由基本不等式求最值;从而可得.【解答】解:(1)当点F与点C重合时,S△BEC=S▱ABCD,即•EB•h=AB•h,其中h为平行四边形AB边上的高,得EB=AB,即点E是AB的中点.(2)∵点E在线段AB上,∴0≢x≢20,当10≢x≢20时,由(1)知,点F在线段BC上,∵AB=20m,BC=10m,∠ABC=120°,∴S▱ABCD=AB•BC•sin∠ABC=20×10×=100.由S△EBF=x•BF•sin120°=25,得BF=,∴由余弦定理得,y=EF==,当0≢x<10时,点F在线段CD上,=(x+CF)×10×sin60°=25得CF=10﹣x,由S四边形EBCF当BE≣CF时,EF=,当BE<CF时,EF=,化简均为y=EF=2,综上所述,y=;当0≢x<10时,y=2,当x=时,y有最小值y min=5,此时CF=;当10≢x≢20时,y=≣10>5,故当点E距点B2.5m,点F距点C7.5m时,EF最短,其长度为5.22.已知圆E:(x﹣1)2+y2=4,线段AB、CD都是圆E的弦,且AB与CD垂直且相交于坐标原点O,如图所示,设△AOC的面积为S1,设△BOD的面积为S2;(1)设点A的横坐标为x1,用x1表示|OA|;(2)求证:|OA|•|OB|为定值;(3)用|OA|、|OB|、|OC|、|OD|表示出S1+S2,试研究S1+S2是否有最小值,如果有,求出最小值,并写出此时直线AB的方程;若没有最小值,请说明理由.【考点】圆方程的综合应用.【分析】(1)利用距离公式,即可用x1表示|OA|;(2)分类讨论,计算|OA|•|OB|,即可证明|OA|•|OB|为定值;(3)由(2)得|OA|•|OB|=3,同理|OC||OD|=3,利用基本不等式,即可得出结论.【解答】(1)解:设A(x1,y1),代入圆E:(x﹣1)2+y2=4,得y12=﹣x12+2x1+3,∴|OA|==;(2)证明:设B(x2,y2),同理可得|OB|=,∴|OA|•|OB|=x 1≠x 2,设直线AB 的方程为y=kx ,代入圆的方程得(k +1)x 2﹣2x ﹣3=0,∴x 1+x 2=,x 1x 2=﹣,代入可得|OA |•|OB |=3,x 1=x 2,直线过原点,直线AB 的方程为x=0,即x 1=x 2=0,代入可得|OA |•|OB |=3, 综上所述,|OA |•|OB |=3为定值;(3)解:由(2)得|OA |•|OB |=3,同理|OC ||OD |=3∴S 1+S 2=(|OA ||OC |+|OB ||OD |)≣=3,当且仅当|OA ||OC |=|OB ||OD |时取等号,此时,S 1+S 2最小值为3,直线AB 的方程为y=±x .23.已知非空集合A 是由一些函数组成,满足如下性质: ①对任意f (x )∈A ,f (x )均存在反函数f ﹣1(x ),且f ﹣1(x )∈A ; ②对任意f (x )∈A ,方程f (x )=x 均有解;③对任意f (x )、g (x )∈A ,若函数g (x )为定义在R 上的一次函数,则f (g (x ))∈A ;(1)若f (x )=,g (x )=2x ﹣3均在集合A 中,求证:函数h (x )=(2x ﹣3)∈A ;(2)若函数f (x )=(x ≣1)在集合A 中,求实数a 的取值范围; (3)若集合A 中的函数均为定义在R 上的一次函数,求证:存在一个实数x 0,使得对一切f(x )∈A ,均有f (x 0)=x 0.【考点】反函数;函数解析式的求解及常用方法.【分析】(1)由f (x )=∈A ,根据性质①可得:f ﹣1(x )=∈A ,且存在x 0>0,使得=x 0,由g (x )=2x ﹣3∈A ,且为一次函数,根据性质③即可证明.(2)由性质②,方程=x (x ≣1),即a=x 在x ∈[1,+∞)上有解,可得a ≣1.变形f(x )==x +1+﹣2,(x ∈[1,+∞)).对与2的关系分类讨论,利用基本不等式的性质即可得出.(3)任取f 1(x )=ax +b ,f 2(x )=cx +d ∈A ,由性质(1)a ,c ≠0,不妨设a ,c ≠1,(若a=1,则b=0,f 1(x )=x ),由性质③函数g (x )=f 1(f 2(x ))=acx +(ad +b )∈A ,函数h (x )=f 2(f 1(x ))=acx +(bc +d )∈A ,由性质①:h ﹣1(x )=∈A ,由性质③:h ﹣1(g(x ))==x=∈A ,由性质②方程:x +=x 有解,可得ad +b=bc +d ,即,即可证明.【解答】(1)证明:由f(x)=∈A,根据性质①可得:f﹣1(x)=∈A,且存在x0>0,使得=x0,由g(x)=2x﹣3∈A,且为一次函数,根据性质③可得:h(x)==f﹣1(g(x))∈A.(2)解:由性质②,方程=x(x≣1),即a=x在x∈[1,+∞)上有解,∴a≣1.由f(x)===x+1+﹣2,(x∈[1,+∞)).若>2,a>3时,>1,且f(1)=,∴此时f(x)没有反函数,即不满足性质①.若≢2,1≢a≢3时,函数f(x)在[1,+∞)上单调递增,∴函数f(x)有反函数,即满足性质①.综上:a∈[1,3].(3)证明:任取f1(x)=ax+b,f2(x)=cx+d∈A,由性质(1)a,c≠0,不妨设a,c≠1,(若a=1,则b=0,∴f1(x)=x),由性质③函数g(x)=f1(f2(x))=acx+(ad+b)∈A,函数h(x)=f2(f1(x))=acx+(bc+d)∈A,由性质①:h﹣1(x)=∈A,由性质③:h﹣1(g(x))==x=∈A,由性质②方程:x+=x有解,∴ad+b=bc+d,即,f1(x)=x,可得ax+b=x,x=.f2(x)=x,可得cx+d=x,x=.由此可知:对于任意两个函数f1(x),f2(x),存在相同的x0满足:f1(x0)=x0f2(x0),∴存在一个实数x0,使得对一切f(x)∈A,均有f(x0)=x0.2016年8月24日。

相关文档
最新文档