元素半导体和化合物半导体

合集下载

1)射频半导体工艺——GaAs半导体材料可以分为元素半导体和化合物

1)射频半导体工艺——GaAs半导体材料可以分为元素半导体和化合物

1.)射频半导体工艺——GaAs半导体材料可以分为元素半导体和化合物半导体两大类,元素半导体指硅、锗单一元素形成的半导体,化合物指砷化镓、磷化铟等化合物形成的半导体。

砷化镓的电子迁移速率比硅高5.7 倍,非常适合用于高频电路。

砷化镓组件在高频、高功率、高效率、低噪声指数的电气特性均远超过硅组件,空乏型砷化镓场效晶体管(MESFET)或高电子迁移率晶体管(HEMT/PHEMT),在3 V 电压操作下可以有80 %的功率增加效率(PAE: power addedefficiency),非常的适用于高层(high tier)的无线通讯中长距离、长通信时间的需求。

砷化镓元件因电子迁移率比硅高很多,因此采用特殊的工艺,早期为MESFET 金属半导体场效应晶体管,后演变为HEMT ( 高速电子迁移率晶体管),pHEMT( 介面应变式高电子迁移电晶体)目前则为HBT ( 异质接面双载子晶体管)。

异质双极晶体管(HBT)是无需负电源的砷化镓组件,其功率密度(power density)、电流推动能力(current drive capability)与线性度(linearity)均超过FET,适合设计高功率、高效率、高线性度的微波放大器,HBT 为最佳组件的选择。

而HBT 组件在相位噪声,高gm、高功率密度、崩溃电压与线性度上占优势,另外它可以单电源操作,因而简化电路设计及次系统实现的难度,十分适合于射频及中频收发模块的研制,特别是微波信号源与高线性放大器等电路。

砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4-6 英寸,比硅晶圆的12 英寸要小得多。

磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC 成本比较高。

磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。

2.)SiGe1980 年代IBM 为改进Si 材料而加入Ge,以便增加电子流的速度,减少耗能及改进功能,却意外成功的结合了Si 与Ge。

半导体化学3、化学基础知识

半导体化学3、化学基础知识

X射线衍射分析
X射线衍射原理
利用X射线在晶体中的衍射现象,通过分析衍射图谱获得晶体结 构信息。
半导体材料中的应用
用于确定半导体材料的晶体结构、晶格常数、晶体取向等。
实验方法与技巧
样品制备、实验参数设置、数据收集与处理等。
电子显微分析
1 2
电子显微技术
包括透射电子显微镜(TEM)和扫描电子显微镜 (SEM),利用电子束与物质相互作用产生的信 号进行成像分析。
气相沉积法
化学气相沉积(CVD)
在高温下,通过气体之间的化学反应在基片上沉积出固态薄膜。
物理气相沉积(PVD)
通过蒸发、升华或溅射等物理过程,使源材料从靶材上转移到基片上形成薄膜。
分子束外延(MBE)
在高真空或超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸气,经小孔准直 后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫 描,就可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。
半导体化学3化学基础知识
目录
• 半导体化学概述 • 半导体材料基础知识 • 半导体材料制备技术 • 半导体材料表征技术 • 半导体器件加工工艺简介 • 半导体化学应用前景展望
01 半导体化学概述
半导体定义与分类
半导体定义
半导体是指常温下导电性能介于 导体与绝缘体之间的材料。
半导体分类
根据化学成分不同,半导体可分 为元素半导体(如硅、锗等)和 化合物半导体(如砷化镓、磷化 铟等)。
03
工程技术
与工程师合作,将半导体化学的研究成果应用于实际生产中,推动半导
体产业的创新发展。同时,通过不断的技术创新和改进,提高半导体器
件的性能和降低成本,满足不断增长的市场需求。

半导体材料的分类_及其各自的性能

半导体材料的分类_及其各自的性能

其中晶态半导体又可以分为单晶半导体和多晶半导体。

上述材料中,锗(Ge)、硅(Si)、砷化镓(GaAs)都是单晶,是由均一的晶粒有序堆积组成;而多晶则是由很多小晶粒杂乱地堆积而成。

对于非晶态半导体,有非晶态硅、非晶态锗等,它们没有规则的外形,也没有固定熔点,内部结构不存在长程有序,只是在若干原子间距内的较小范围内存在结构上的有序排列,称作短程有序。

另外,在实际应用中,根据半导体材料中是否含有杂质,又可以将半导体材料分为本征半导体和杂质半导体。

在下面的章节中将会介绍,杂质的存在将对材料的性能产生很大的影响。

二. 半导体材料的结构及其性能1.几种半导体材料的结构1.1金刚石结构型材料Si、Ge等Ⅳ族元素有4个未配对的价电子,每个原子只能与周围4个原子共价键合,使每个原子的最外层都成为8个电子的闭合壳层,因此共价晶体的配位数(即晶体中一个原子最近邻的原子数)只能是 4。

方向性是指原子间形成共价键时,电子云的重叠在空间一定方向上具有最高密度,这个方向就是共价键方向。

共价键方向是四面体对称的,即共价键是从正四面体中心原子出发指向它的四个顶角原子,共价键之间的夹角为109°28′,这种正四面体称为共价四面体,见图 1.2。

图中原子间的二条连线表示共有一对价电子,二条线的方向表示共价键方向。

共价四面体中如果把原子粗略看成圆球并且最近邻的原子彼此相切,圆球半径就称为共价四面体半径。

单纯依靠图1.2那样的一个四面体还不能表示出各个四面体之间的相互关系,为充分展示共价晶体的结构特点,图1.3(a)画出了由四个共价四面体所组成的一个Si、Ge晶体结构的晶胞,统称为金刚石结构晶胞,整个Si、Ge晶体就是由这样的晶胞周期性重复排列而成。

它是一个正立方体,立方体的八个顶角和六个面心各有一个原子,内部四条空间对角线上距顶角原子1/4对角线长度处各有一个原子,金刚石结构晶胞中共有8个原子。

金刚石结构晶胞也可以看作是两个面心立方沿空间对角线相互平移 1/4 对角线长度套构而成的。

半导体物理1-8章重点总结

半导体物理1-8章重点总结

半导体重点总结(1-7章)绪论1. 制作pn 结的基本步骤。

(重点,要求能够画图和看图标出步骤)第一章. 固体晶体结构1. 半导体基本上可以分为两类:位于元素周期表IV 元素半导体材料和化合物半导体材料。

大部分化合物半导体材料是III 族和V 族化合形成的。

2. 元素半导体,如:Si 、Ge ; 双元素化合物半导体,如:GaAs (III 族和V 族元素化合而成)、InP 、ZnS 。

类似的也有三元素化合物半导体。

3. 固体类型:(a )无定形(b )多晶(c )单晶 图见P6 多晶:由两个以上的同种或异种单晶组成的结晶物质。

多晶没有单晶所特有的各向异性特征 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性。

似晶非晶。

4. 原胞和晶胞:原胞是可以通过重复形成晶格的最小晶胞。

晶胞就是可以复制出整个晶体 的小部分晶体。

5. (a )简立方 1 个原子(b )体心立方 2 个原子(c )面心立方 4 个原子计算方法:顶点的一个原子同时被8个晶胞共享,因此对于所求晶胞而言只占有了该原子的1/8;边上、面心和体心原子分别同时被4,2,1个晶胞共享,对于所求晶胞而言分别占有了该原子的1/4,1/2,1/2.如此计算。

例如(c )图中8*1/8+6*1/2=1+3=4. 6. 晶格常数:所取的立方体晶胞的边长。

单位为A ,1A=10^-8cm. 7. 原子体密度:原子个数/体积。

比如上图(c )假设晶格常数为5A 。

求原子体密度。

8.密勒指数(取面与x,y,z 平面截距的倒数):密勒指数描述晶面的方向,任何平行平面都有相同的密勒指数。

9. 特定原子面密度:原子数/截面面积。

计算方法:计算原子面密度时求原子个数的方法与求体密度时的方法类似,但是应当根据面的原子共用情况来计算。

其中有一种较为简便的算法:计算该面截下该原子的截面的角度除处以360,即为该面实际占有该原子的比例。

举例1:计算下图(a )中所显示面所拥有的原子个数和原子面密度:该面截取了顶角四个原子和体心一个原子,顶角每个原子与面的截面角度为90度,90/360=1/4,体心原子与面的截面角度为360度,360/360=1,所以原子总数,1+1+1/4*4=2()223384 3.210510cm ρ-==⨯⨯个原子/举例2:第一次作业中有一道小题是计算硅晶体在晶面(1,1,1)的面密度,晶格常数为a ,如下图可以知道如图所示的等边三角形的边长为√2*a,三个角顶点截面角度为60度,所以该面实际占据这个三个点的比率都为1/6,三个面心点截面角度为180度,所以该面实际占据这个三个点的比率都为1/2.所以该面拥有原子数为3*1/6+3*1/2=1/2+3/2=2.等边三角形面积为√3/2*a^2,所以可以算出面密度为4/(√3a^2).10. 晶向:与晶面垂直的矢量(在非简立方体晶格中不一定成立)。

半导体术语(荣)

半导体术语(荣)

2.1 半导体semiconductor:电阻率介于导体与绝缘体之间,其范围为的一种固体物质。

在较宽的温度范围内,电阻率随温度的升高而减小。

电流是由带正电的空穴和带负电的电子的定向传输实现的。

半导体按其结构可分为三类:单晶体、多晶体和非晶体。

2.2 元素半导体elemental semiconductor:由一种元素组成的半导体。

硅和锗是最常用的元素半导体。

2.3 化合物半导体compound semiconductor:由两种或两种以上的元素化合而成的半导体,如砷化稼、稼铝砷等。

2.4 本征半导体intrinsic semiconductor:晶格完整且不含杂质的单晶半导体,其中参与导电的电子和空穴数目相等。

这是一种实际上难以实现的理想情况。

实用上所说的本征半导体是指仅含极痕量杂质,导电性能与理想情况很相近的半导体。

2.5 导电类型conductivity type:半导体材料中多数载流子的性质所决定的导电特性。

2.6 n-型半导体n-type semiconductor:多数载流子为电子的半导体。

2.7 p-型半导体p-type semiconductor:多数载流子为空穴的半导体。

2.8 空穴hole:半导体价带结构中一种流动空位,其作用就像一个具有正有效质量的正电子电荷一样。

2.9 受主accepter:半导体中其能级位于禁带内,能“接受”价带激发电子的杂质原子或晶格缺陷,形成空穴导电。

2.10 施主donor:半导体中其能级位于禁带内,能向导带“施放”电子的杂质原子或晶格缺陷,形成电子导电。

2.11 载流子carrier:固体中一种能传输电荷的载体,又称荷电载流子。

例如,半导体中导电空穴和导电电子2.12 载流子浓度carrier concentration:单位体积的载流子数目。

在室温无补偿存在的情况下为电离杂质的浓度。

空穴浓度的符号为p,电子浓度的符号为n。

2.13 多数载流子majority carrier:大于载流子总浓度一半的那类载流子。

半导体材料分类

半导体材料分类

半导体材料分类
半导体材料是一种特殊的材料,其电学性质介于导体和绝缘体之间。

根据其化学成分和结构特点,半导体材料可以被分为以下几类: 1. 元素半导体:由单一的元素组成,例如硅(Si)、锗(Ge)等。

这些材料的导电性极弱,但在特定条件下能够被激活成为有效的导体。

2. 化合物半导体:由多个元素组合而成,例如氮化镓(GaN)、磷化铟(InP)等。

这些材料的导电性能较元素半导体更强,同时还具有
其他优良的物理和化学性能。

3. 合金半导体:由两种或两种以上的元素组合而成,例如锗硅
合金(GeSi)等。

这些材料的导电性能往往比单一化合物半导体更好,且还具有一些特殊的电学、光学等性质。

4. 有机半导体:由碳、氢、氧等有机分子组成,例如聚苯乙烯(Polyphenyl ethylene)、聚乙烯吡咯烷酮(Polyvinylpyrrolidone)等。

这些材料的导电性能较差,但具有良好的可溶性、可加工性、透明性等特点,适用于柔性显示、光伏等领域。

5. 杂化半导体:由半导体材料和其他材料如金属、陶瓷等组合
而成,例如氧化铝浸涂硅片等。

这些材料具有特殊的结构和性质,适用于某些特定的应用领域。

- 1 -。

半导体材料硅基本性质

半导体材料硅基本性质

半导体材料硅的基本性质一.半导体材料固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下:图1 典型绝缘体、半导体及导体的电导率范围半导体又可以分为元素半导体和化合物半导体,它们的定义如下:元素半导体:由一种材料形成的半导体物质,如硅和锗。

化合物半导体:由两种或两种以上元素形成的物质。

1)二元化合物GaAs —砷化镓SiC —碳化硅2)三元化合物As —砷化镓铝AlGa11AlInAs —砷化铟铝11半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。

非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。

掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。

如磷、砷就是硅的施主。

受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。

如硼、铝就是硅的受主。

图(a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅掺入施主的半导体称为N型半导体,如掺磷的硅。

由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。

如图所示。

掺入受主的半导体称为P型半导体,如掺硼的硅。

由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。

如图所示。

二.硅的基本性质硅的基本物理化学性质硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

性质符号单位硅(Si)原子序数Z 14原子量M原子密度个/cm3 ×1022晶体结构金刚石型晶格常数 a Å熔点Tm ℃1420 密度(固/液) ρg/ cm3介电常数ε0个/ cm3×1010本征载流子浓度ni本征电阻率ρi Ω·cm ×105电子迁移率μn cm2/(V·S) 1350空穴迁移率μp cm2/(V·S) 480电子扩散系数Dncm2/S空穴扩散系数Dp cm2/S禁带宽度(25℃)Eg eV导带有效态密度Nc cm-3×1019价带有效态密度Nvcm-3×1019器件最高工作温度℃250表1 硅的物理化学性质(300K)硅的电学性质硅的电学性质有两大特点:一、导电性介于半导体和绝缘体之间,其电阻率约在10-4~1010Ω·cm二、导电率和导电类型对杂质和外界因素(光热,磁等)高度敏感。

半导体材料的概念

半导体材料的概念

半导体材料的概念半导体是指具有半导体特性的材料,它们在导电性能上介于导体和绝缘体之间。

半导体材料在电子、通信、能源、医疗等领域有着广泛的应用。

本文将介绍半导体材料的几种主要类型,包括元素半导体、化合物半导体、非晶半导体、有机半导体、金属间化合物、氧化物半导体以及合金与固溶体。

1.元素半导体元素半导体是指只由一种元素组成的半导体材料,如硅、锗等。

其中,硅是最常用和最重要的元素半导体之一,它具有高导电性能、高热导率以及稳定的化学性质,因此在微电子、太阳能电池等领域得到广泛应用。

2.化合物半导体化合物半导体是指由两种或两种以上元素组成的半导体材料,如GaAs、InP等。

这些化合物半导体具有较高的电子迁移率和特殊的能带结构,因此在高速电子器件、光电子器件等领域具有广泛的应用前景。

3.非晶半导体非晶半导体是指没有晶体结构的半导体材料,它们通常由化学气相沉积、物理气相沉积等方法制备。

非晶半导体具有较低的晶格缺陷和较高的电子迁移率,因此在太阳能电池、电子器件等领域得到广泛应用。

4.有机半导体有机半导体是指由有机分子组成的半导体材料,如聚合物的分子晶体、共轭分子等。

有机半导体具有较低的制造成本、较高的柔性和可加工性,因此在柔性电子器件、印刷电子等领域具有广阔的应用前景。

5.金属间化合物金属间化合物是指由两种或两种以上金属元素组成的化合物,如Mg3N2、TiS2等。

这些金属间化合物具有特殊的物理和化学性质,因此在电子器件、催化剂等领域具有潜在的应用价值。

6.氧化物半导体氧化物半导体是指由金属元素和非金属元素组成的氧化物,如ZnO、SnO2等。

这些氧化物半导体具有较高的电子迁移率和稳定性,因此在太阳能电池、电子器件等领域得到广泛应用。

7.合金与固溶体合金与固溶体是指由两种或两种以上的金属或非金属元素组成的混合物,如Ag-Cu合金、Zn-S固溶体等。

这些合金与固溶体具有特殊的物理和化学性质,因此在电子器件、催化剂等领域具有潜在的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元素半导体和化合物半导体
引言
半导体是一种介于导体和绝缘体之间的材料,具有电导率较低的特点。

根据其组成和性质的不同,半导体可以分为元素半导体和化合物半导体。

本文将分别介绍这两种类型的半导体。

一、元素半导体
元素半导体是由单一元素构成的半导体材料,最常见的元素半导体是硅(Si)和锗(Ge)。

这两种元素都属于第四主族,具有四个价电子。

在晶体结构中,这些价电子形成共价键,使得电子在晶格中能够自由移动。

元素半导体的电导率通常较低,原因是在绝对零度时,晶体中的所有价电子都占据价带,没有自由电子。

但是,当元素半导体受到能量激发时,一部分价电子会跃迁到导带中,形成自由电子和空穴,从而增加了电导率。

元素半导体的电导率还可以通过掺杂来调控。

掺杂是向晶体中引入少量杂质,改变晶体中的电荷载流子浓度。

N型掺杂是向晶体中引入五价元素,如磷(P),使得晶体中形成多余的电子,增加了电导率。

P型掺杂是引入三价元素,如硼(B),使得晶体中形成多余的空穴,同样也会增加电导率。

二、化合物半导体
化合物半导体是由两种或多种元素组成的半导体材料,最常见的化合物半导体是砷化镓(GaAs)和硒化锌(ZnSe)。

化合物半导体的晶体结构比较复杂,通常采用砷化镓这样的III-V族化合物或硒化锌这样的II-VI族化合物。

化合物半导体相对于元素半导体来说,具有更高的电导率和更好的电子迁移性能。

这是因为化合物半导体的晶格结构中,不同元素的电子云有较大的重叠,电子之间的相互作用更强,电子迁移更容易。

此外,化合物半导体的能带结构和禁带宽度也与元素半导体有所不同,使得化合物半导体在特定的应用中具有优势。

化合物半导体的掺杂方式与元素半导体类似,通过引入杂质改变载流子浓度,从而调控电导率。

不同的是,化合物半导体通常采用III 族和V族元素掺杂(如砷化镓中的硅掺杂)或II族和VI族元素掺杂(如硒化锌中的铝掺杂)。

总结
元素半导体和化合物半导体是半导体材料的两种主要类型。

元素半导体由单一元素构成,如硅和锗,具有较低的电导率,可以通过掺杂来调控。

化合物半导体由两种或多种元素组成,如砷化镓和硒化锌,具有较高的电导率和电子迁移性能,也可以通过掺杂来改变电导率。

这两种半导体材料在电子学和光电子学等领域都有广泛的应用,为现代科技的发展做出了重要贡献。

相关文档
最新文档