实验四 分光计的调整及光栅常数的测定

合集下载

分光计的调整和光栅常数的测定

分光计的调整和光栅常数的测定

实验4-11 分光计的调整及光栅常数测定分光计作为基本的光学仪器之一,它是精确测定光线偏转角的仪器,也称之为测角仪。

光学中很多基本量(如反射角、折射角、衍射角等)都可以由它直接测量。

因此,可以应用它测定物质的有关常数(如折射率、光栅常数、光波波长等),或研究物质的光学特性(如光谱分析)。

应用分光计必须经过一系列仔细的调整,才能得到准确的结果。

因此,在学习使用过程中,要做到严谨、细致,才能正确掌握。

【实验目的】1. 了解分光计的基本构造,学会调整分光计。

2. 观察光栅衍射现象,学会用分光计测光栅常数。

【实验原理】光栅是利用衍射原理使光发生色散的光学元件,其由大量等宽、等间距、相互平行的狭缝(或刻痕)组成。

光栅分为透射式和反射式两类,并有平面、凹面之分。

根据夫琅和费衍射理论,当波长为λ的单色平行光垂直照射到光栅上时,经每一狭缝的光都要产生衍射,由于各缝发出的衍射光都是相干光,彼此要产生干涉,于是在透镜L 的焦平面上,就会形成一系列被相当宽的暗区隔开的又细又亮的明条纹,称为谱线(见图4-11-1)。

各明条纹所对应的衍射角φ应满足下列条件λφk b a =+sin )( ( ,2,1,0±±=k ) (4-11-1)式中a 为狭缝宽度,b 为缝间距离,(b a +)称为光栅常数,k 为光谱线的级次。

对应于k =0的明条纹为中央明条纹,也称为零级谱线。

若入射光为复色光,则各波长的零级谱线均在同一位置,其它级次的谱线位于零级谱线的两侧,且同级谱线按不同波长,从短波向长波散开,即衍射角逐渐增大,形成光栅光谱。

由式(4-11-1)可以看出,如果已知入射光波长,只要测出其k 级谱线相应的衍射角φ就可以计算出光栅常数。

【实验仪器】分光计、平面反射镜、光栅、汞灯图4-11-1光栅【实验内容与要求】1.调整分光计(1)调整望远镜使之聚焦于无穷远,适于接收平行光。

(2)调整望远镜光轴与仪器转轴垂直。

实验四 分光计的调整及光栅常数的测定

实验四  分光计的调整及光栅常数的测定

实验四分光计的调整及光栅常数的测定分光计作为基本的光学仪器之一,它是精确测定光线偏转角的仪器,也称之为测角仪。

光学中很多基本量(如反射角、折射角、衍射角等)都可以由它直接测量。

因此,可以应用它测定物质的有关常数(如折射率、光栅常数、光波波长等),或研究物质的光学特性(如光谱分析)。

应用分光计必须经过一系列仔细的调整,才能得到准确的结果。

因此,在学习使用过程中,要做到严谨、细致,才能正确掌握。

【实验目的】1.了解分光计构造的基本原理。

2.学习分光计的调整技术,掌握分光计的正确使用方法。

3.利用分光计测定光栅常数。

【实验原理】1.分光计光线入射到光学元件上,由于反射或折射等作用,使光线产生偏离,分光计就是用来测量入射光与出射光之间偏离角度的一种仪器。

要测定此角,必须满足两个条件:⑴入射光与出射光均为平行光;⑵入射光、出射光以及反射面或折射面的法线都与分光计的刻度盘平行。

为此,分光计上装有能造成平行光的平行光管、观察平行光的望远镜及放置光学元件的载物台,它们都装有调节水平的螺钉。

为了读出测量时望远镜转过的角度,配有与望远镜连接在一起的刻度盘,如图4-1所示。

各部分别介绍如下:⑴读数装置。

在底座19的中央固定一中心轴,度盘22和游标盘21套在中心轴上,可以绕中心轴旋转;度盘下端有轴承支撑,使旋转轻便灵活;度盘上的刻线把360°圆周角分成720等份,每份为30′。

同一直径方向两端各有一个游标读数装置,测量时,对望远镜的两个位置中每一位置都读出两个数值,然后对同侧的差值读数取平均值,这样可以消除因偏心引起的误差(见本实验参考资料)。

⑵平行光管。

立柱23固定在底座上,平行光管3安装在立柱上,平行光管的光轴位置可以通过立柱上的调节螺钉26、27分别进行左右、水平微调,平行光管有一狭缝装置1。

旋松螺钉2,转动装有狭缝的内套筒使狭缝成严格的垂直状,前后移动内套筒,使狭缝严格地处在透镜焦平面上,则平行光管发出狭缝平行光。

分光镜的调整和光栅常数的测量实验报告

分光镜的调整和光栅常数的测量实验报告

南昌大学物理实验报告课程名称:大学物理实验实验名称:分光计的调节和光栅常数的测量学院:信息工程学院专业班级:计算机科学与技术学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1.了解分光计的基本结构和原理;2.掌握分光计的调整要求和调整方法;3.调整分光计,使其达到最佳工作状态,可进行精密测量;4.用调整好的分光计测三棱镜的顶角;5.观察光栅衍射现象,理解光栅衍射基本规律;学会用分光计测光栅常数。

二、实验原理:①分光计的调节和使用分光计主要由五个部分构成:底座、平行光管、自准直望远镜、载物台和读数装置。

不同型号分光计的光学原理基本相同。

JJY型分光计如图3-7-1所示。

1.底座分光计底座(17)中心固定有一中心轴,望远镜、度盘和游标盘套在中心轴上,可绕中心轴旋转。

2.平行光管平行光管安装在固定立柱上,它的作用是产生平行光。

平行光管由狭缝和透镜组成,如图3-7-2。

狭缝宽度可调(范围0.02~2mm),透镜与狭缝间距可以通过伸缩狭缝筒进行调节。

当狭缝位于透镜焦平面上时,由狭缝经过透镜出射的光为平行光。

3.自准直望远镜阿贝式自准直望远镜安装在支臂上,支臂与转座固定在一起并套装在度盘上。

它用来观察和确定光线行进方向。

自准直望远镜由物镜、目镜、分划板等组成(如图3-7-3),三者间距可调。

其中,分划板上刻有“”形叉丝;分划板下方与一块45º全反射小棱镜的直角面相贴,直角面上涂有不透明薄膜,薄膜上划有一个“十”形透光的窗口,当小电珠光从管侧经另一直角面入射到棱镜上,即照亮“十”字窗口。

调节目镜,使目镜视场中出现清晰的“”形叉丝。

在物镜前方放置一平面镜,然后调节物镜,使分划板位于物境焦平面上,那么从棱镜“十”字口发出的绿光经物镜后成为平行光射向前方平面境,其反射光又经物镜成像于分划板上。

这时,从目镜中可以看到清晰的“”形叉丝和绿色“十”字像。

此时望远镜已调焦至无穷远,适合观察平行光了。

如果平面境的法线与望远镜光轴方向一致,则绿色“十”字像位于分划板“”形叉丝的上横线上,如图3-7-3中的视场。

分光计调整及光栅常数测量实验报告南昌大学

分光计调整及光栅常数测量实验报告南昌大学

南昌大学物理实验报告课程名称:大学物理实验实验名称:光栅衍射实验学院:机电工程学院专业班级:能源与动力工程162班学生姓名:韩杰学号:5902616051实验地点:基础实验大楼座位号:cos ln 1sin tan ln 1m m m m d dϕλϕϕϕλ∂==∂∂=∂2221()()tan λϕλϕ∆∆=+∆m md d 由以上推导可知,测量d 时,在m ϕ∆一定的情况下,m ϕ越大d 的偏差越小。

但是m ϕ大时光谱级次高,谱线难以观察。

所以要各方面要综合考虑。

而对λ的测量,也是m ϕ越大不确定度越小。

综上,在可以看清谱线的情况下,应该尽量选择级次高的光谱观察,以减小误差。

6.2 求绿线的d 和λ并计算不确定度 1)二级光谱下:由sin mm d λϕ=,代入数据m ϕ=19,可得d =3349.1nm又由mm m m m m d d d d ϕϕϕϕϕϕtan ln )()ln (22∆=∆∂∂=∆∂∂=∆,m ϕ∆=2’得d ∆=3349.1*[2π/(60*180)]/tan(19)=0.6nmd =(3349.1±5.7)nm而实验前已知光栅为300线每毫米,可见测量结果与实际较吻合。

再用d 求其他光的λ:sin /m d m λϕ=2221()()tan λϕλϕ∆∆=+∆m md d对波长较长的黄光:ϕm =20 o 15',d=3349nm 代入,可得λ=579.6nm ,λ∆=1.4nm可以看到,三级谱线下测量后计算的结果教二级谱线下的结果其偏差都更小,与理论推断吻合。

6.3 在i=15 o 时,测定波长较短的黄线的波长。

由,m=2,可得:在同侧:λ=577.9nm在异侧:λ=575.9nm6.4 最小偏向角法求波长较长的黄线的波长由公式:,3,2,1,0,2sin2±±±==m m d λδ代入数据:m=2,δ= 39o 51'代入,得λ=579.4nm与实际值吻合良好。

分光计调节和使用光栅常量测定

分光计调节和使用光栅常量测定

分光计调节和使用光栅常量测定分光计是一种用于测量和分析光的仪器,它可以将光束分解成不同波长的组成部分,从而提供光的光谱信息。

分光计具有调节和使用光栅常量测定的功能,这使得它能够更精确地测量和分析光的特性。

分光计的调节是一个关键步骤,它可以确保所测量的光具有适当的强度和波长范围。

分光计的调节通常包括以下几个步骤:1.调节波长:分光计可以调节光的波长范围,这通常通过旋转一个波长选择旋钮来实现。

在调节波长时,需要根据所需要测量的光的波长范围来选择合适的波长。

2.调节入射光强度:分光计具有调节光的强度的功能。

在调节入射光强度时,需要确保所测量的光具有适当的强度,而不会过强或过弱。

3.调节光束宽度:分光计的光束宽度可以通过调节光圈大小和准直器来调节。

光束宽度的调节通常通过旋转一个光束宽度调节旋钮来实现。

使用光栅常量测定是分光计的重要应用之一、光栅常量是光栅片的一个重要参数,它描述了光栅的光栅面积、刻痕数和波长之间的关系。

光栅常量的测定通常使用分光计的光栅扫描和分析功能。

光栅扫描是光栅常量测定的关键步骤之一、在光栅扫描过程中,光栅片会旋转,并且光栅片前面的光束会通过光栅片。

通过对扫描过程中的光束进行分析,可以确定光栅的光栅常量。

分光计的光谱分析功能可以用来测量扫描过程中的光的强度和波长。

通过测量光束强度和波长之间的关系,可以确定光栅的光栅常量。

光栅常量的测定通常需要使用一些标准光源进行校准,以提高测量结果的准确性。

光栅常量的测定可以应用于许多领域,例如光学仪器校准、光谱分析和光学元件研究等。

通过测量光栅常量,可以了解光栅的特性,并为精确的光学测量和分析提供基础。

总之,分光计的调节和使用光栅常量测定是分光计的重要功能之一、通过调节分光计的波长、入射光强度和光束宽度,可以确保测量到的光具有适当的特性。

使用光栅常量测定可以确定光栅的光栅常量,并为光学测量和分析提供准确的基础。

分光计调整和光栅常数测量实验报告

分光计调整和光栅常数测量实验报告

分光计调整和光栅常数测量实验报告一、实验目的1、了解分光计的结构,掌握分光计的调节和使用方法。

2、观察光栅衍射现象,测量光栅常数。

二、实验原理1、分光计的原理分光计是一种能精确测量角度的光学仪器。

它由望远镜、平行光管、载物台和读数装置等部分组成。

通过调节分光计,使望远镜和平行光管的光轴都与仪器的中心转轴垂直,从而能够准确测量光线的偏转角度。

2、光栅衍射原理光栅是由大量等宽、等间距的平行狭缝组成的光学元件。

当一束平行光垂直照射在光栅上时,会产生衍射现象。

根据光栅方程:$d\sin\theta = k\lambda$(其中$d$为光栅常数,$\theta$为衍射角,$k$为衍射级数,$\lambda$为入射光波长),在已知入射光波长的情况下,通过测量衍射角$\theta$,可以计算出光栅常数$d$。

三、实验仪器分光计、光栅、汞灯、平面反射镜四、实验步骤1、分光计的调整粗调:将望远镜、平行光管和载物台大致调水平。

望远镜的调节:调节目镜,使分划板清晰;将平面反射镜放在载物台上,通过调节望远镜的俯仰和水平调节螺丝,使反射回来的十字像清晰且与分划板上的十字叉丝重合。

平行光管的调节:打开平行光管的狭缝,调节平行光管的俯仰和水平调节螺丝,使狭缝像清晰且与望远镜分划板的竖线平行。

载物台的调节:使载物台平面与分光计的中心转轴垂直。

2、光栅的放置将光栅放在载物台上,使光栅平面与平行光管的光轴垂直。

3、测量光栅常数用汞灯作为光源,照亮平行光管的狭缝。

转动望远镜,观察光栅衍射光谱。

找到中央明条纹(零级条纹)和左右两侧的一级、二级等衍射条纹。

分别测量各级衍射条纹对应的角度。

为了减小误差,采用左右游标读数法,即分别读取左右游标对应的角度值,然后取平均值。

五、实验数据记录与处理1、分光计游标读数左游标读数右游标读数2、各级衍射条纹的角度测量一级衍射条纹(左)一级衍射条纹(右)二级衍射条纹(左)二级衍射条纹(右)3、数据处理根据光栅方程计算光栅常数。

分光计的调节和使用 光栅常量的测定

分光计的调节和使用 光栅常量的测定

大学物理实验报告(分光计的调节和使用)一、实验目的:1.了解分光计的基本结构和原理;2.掌握分光计的调整要求和调整方法;3.调整分光计,使其达到最佳工作状态,可进行精密测量;4.用调整好的分光计测三棱镜的顶角;5.观察光栅衍射现象,理解光栅衍射基本规律;6.学会用分光计测光栅常数。

二、实验原理:①分光计的调节和使用分光计主要由五个部分构成:底座、平行光管、自准直望远镜、载物台和读数装置。

不同型号分光计的光学原理基本相同。

JJY型分光计如图3-7-1所示。

1.底座分光计底座(17)中心固定有一中心轴,望远镜、度盘和游标盘套在中心轴上,可绕中心轴旋转。

2.平行光管平行光管安装在固定立柱上,它的作用是产生平行光。

平行光管由狭缝和透镜组成,如图3-7-2。

狭缝宽度可调(范围0.02~2mm),透镜与狭缝间距可以通过伸缩狭缝筒进行调节。

当狭缝位于透镜焦平面上时,由狭缝经过透镜出射的光为平行光。

3.自准直望远镜阿贝式自准直望远镜安装在支臂上,支臂与转座固定在一起并套装在度盘上。

它用来观察和确定光线行进方向。

自准直望远镜由物镜、目镜、分划板等组成(如图3-7-3),三者间距可调。

其中,分划板上刻有“”形叉丝;分划板下方与一块45º全反射小棱镜的直角面相贴,直角面上涂有不透明薄膜,薄膜上划有一个“十”形透光的窗口,当小电珠光从管侧经另一直角面入射到棱镜上,即照亮“十”字窗口。

调节目镜,使目镜视场中出现清晰的“”形叉丝。

在物镜前方放置一平面镜,然后调节物镜,使分划板位于物境焦平面上,那么从棱镜“十”字口发出的绿光经物镜后成为平行光射向前方平面境,其反射光又经物镜成像于分划板上。

这时,从目镜中可以看到清晰的“”形叉丝和绿色“十”字像。

此时望远镜已调焦至无穷远,适合观察平行光了。

如果平面境的法线与望远镜光轴方向一致,则绿色“十”字像位于分划板“”形叉丝的上横线上,如图3-7-3中的视场。

4.载物台载物台套装在游标盘上,可以绕中心轴转动,它用来放置光学元件。

分光计的调节及光栅常数的测量

分光计的调节及光栅常数的测量

南昌大学物理实验报告
课程名称:大学物理实验
实验名称:分光计的调节与光栅系数的测量学院:
专业班级:
学生姓名:学号:
实验地点:311 座位号:9
实验时间:
()
1 4.调整平行光管
1)目测粗调至平行光轴大致与望远镜光轴相一致
2)打开狭缝,从望远镜中观察,同时调节目镜,直到看见清晰的狭缝像为止,然后调节缝宽,使望远镜视场中缝宽约为1mm 。

3)调节平行光管的倾斜度,达到右图的状态,此时平行光管与望远镜的光轴在同一水平面内,并与分光计中心轴垂直。

4)消除视差,稍微移动望远镜的目镜套筒及转动目镜,最后达到移动头部时,准线与像无相对移动为止
5.光栅和棱镜一样,是重要的分光原件,已广泛应用在单色仪、摄谱仪等光学仪器中,实际上平面平面透射光栅是一组数目极多的等宽等间距的平行狭缝,如下图所示
狭缝光源S 位于透镜1L 的物方焦平面上,G 为光栅,光栅上相邻狭缝间距d ,狭缝缝宽a ,缝间 不透光部分宽为b ,b a d +=称为光栅常量。

本实验所用的全息光栅,则是用全息技术将一系列致密的、等距的干涉条纹在涂有乳胶的玻璃片上感光,经处理后,感光的部分成为不透明的条纹,而未感光的部分成透光的狭缝。

每相邻狭缝间的距离d 就
是光栅常量d ,如右图所示。

自1L 射出的平行光垂直照射在光栅G 上,透镜2L 将与光栅法线成θ角的衍射光汇聚于其像方焦面上的θP 点,产生衍射亮条纹的条件是 λθk d =sin
上式称为光栅方程,式中θ是衍射角,λ是光波波长,k 是条纹级数(0=k ,1±,2±,…),衍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四分光计的调整及光栅常数的测定分光计作为基本的光学仪器之一,它是精确测定光线偏转角的仪器,也称之为测角仪。

光学中很多基本量(如反射角、折射角、衍射角等)都可以由它直接测量。

因此,可以应用它测定物质的有关常数(如折射率、光栅常数、光波波长等),或研究物质的光学特性(如光谱分析)。

应用分光计必须经过一系列仔细的调整,才能得到准确的结果。

因此,在学习使用过程中,要做到严谨、细致,才能正确掌握。

【实验目的】1.了解分光计构造的基本原理。

2.学习分光计的调整技术,掌握分光计的正确使用方法。

3.利用分光计测定光栅常数。

【实验原理】1.分光计光线入射到光学元件上,由于反射或折射等作用,使光线产生偏离,分光计就是用来测量入射光与出射光之间偏离角度的一种仪器。

要测定此角,必须满足两个条件:⑴入射光与出射光均为平行光;⑵入射光、出射光以及反射面或折射面的法线都与分光计的刻度盘平行。

为此,分光计上装有能造成平行光的平行光管、观察平行光的望远镜及放置光学元件的载物台,它们都装有调节水平的螺钉。

为了读出测量时望远镜转过的角度,配有与望远镜连接在一起的刻度盘,如图4-1所示。

各部分别介绍如下:⑴读数装置。

在底座19的中央固定一中心轴,度盘22和游标盘21套在中心轴上,可以绕中心轴旋转;度盘下端有轴承支撑,使旋转轻便灵活;度盘上的刻线把360°圆周角分成720等份,每份为30′。

同一直径方向两端各有一个游标读数装置,测量时,对望远镜的两个位置中每一位置都读出两个数值,然后对同侧的差值读数取平均值,这样可以消除因偏心引起的误差(见本实验参考资料)。

⑵平行光管。

立柱23固定在底座上,平行光管3安装在立柱上,平行光管的光轴位置可以通过立柱上的调节螺钉26、27分别进行左右、水平微调,平行光管有一狭缝装置1。

旋松螺钉2,转动装有狭缝的内套筒使狭缝成严格的垂直状,前后移动内套筒,使狭缝严格地处在透镜焦平面上,则平行光管发出狭缝平行光。

狭缝的宽度可在0.02~2.00mm内由螺钉28调节,一般在教师指导下调节。

图4-2 望远镜结构图4-3 分划板视场⑶望远镜。

阿贝自准直望远镜8安装在支臂14上,支臂和转座20固定在一起并套在度盘上。

当松开制动螺钉16时,转座和度盘可以相对转动,当旋紧此制动螺钉,转座和度盘一起旋转。

旋紧制动架18与底座上的制动螺钉17时,借助于此制动架末端上的调节螺钉15可以对望远镜进行左右转动微调。

望远镜的光轴位置,可以通过螺钉12、13分别进行水平、左右微调。

阿贝自准直望远镜内部结构如图12-2所示,从目镜所见分划板视场如图4-3。

旋目镜调焦手轮11,使目镜中能十分清晰地看到分划板上的分划线。

旋松螺钉9,转动目镜组10使分划线成水平状。

前后移动目镜组,使分划板处在物镜的焦平面上,则亮十字经物镜发出的光为平行光,当它被反射回望远镜时,将在分划板上成清晰的亮十字像,且与实物亮十字无视差。

⑷载物台。

载物台5套在游标盘上,可绕中心轴旋转,旋紧载物台锁紧螺钉7和制动架4与游标盘的制动螺钉25时,借助于立柱23的调节螺钉24可以对载物台进行微调。

放松载物台锁紧螺钉时,载物台可根据需要升高或降低。

调到所需位置后,再把锁紧螺钉锁紧。

载物台有三只调平螺钉6,可用来调节载物台面,使之与旋转主轴垂直。

⑸照明。

外接6.3V 电源,插头插在底座的插座上,经导电环通到转座的插座上,望远镜系统的照明器插头与之相接,这样可以避免望远镜系统旋转时电线拖动。

2.光栅光栅是由许多等宽度a (透光部分)、等间距b (不透光部分)的平行缝组成的一种分光元件。

当波长为λ的单色光垂直照射在光栅面上时,则透过各狭缝的光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列间距不同的明条纹。

根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下式决定:(a +b )sin φk =k λ(k =0,±1,±2,…)(4-1)式中a +b =d 称为光栅常数,k 为光谱级数,φk 为第k 级谱线的衍射角。

见图4-4,k =0对应于φ=0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。

如果入射光不是单色光,则由式(4-1)可知,λ不同,φk 也各不相同,于是将复色光分解。

而在中央k =0,φk =0处,各色光仍然重叠在一起,组成中央明条纹。

在中央明条纹两侧对称地分布k =1,2,…级光谱线,各级谱线都按波长由小到大,依次排列成一组彩色谱线,如图4-5所示。

根据式(4-1),如能测出各种波长谱线的衍射角φk ,则从已知波长λ的大小,可以算出光栅常数d ;反之,已知光栅常数d ,则可以算出波长λ。

【实验仪器】 分光计,钠光灯,双平面镜,光栅。

【注意事项】1.移动望远镜时,只能推动立柱14,不允许搬动镜筒及目镜。

2.取放双面镜及光栅时只能拿边缘,不许触摸表面,且严防失手摔碎;不许擦拭光栅。

3.狭缝宽度要在教师指导下缓慢调节。

【实验步骤】1.首先,检查仪器及用具是否齐全、完好,然后将钠灯电源插头插于墙上,打开钠光灯预热。

打开6V 变压器开关。

2.目镜的调焦:转动接目镜调焦手轮11直至视场中分划线清晰。

3.望远镜调焦:取出双平面镜,扣在望远镜8的前端,即使平面镜平面与望远镜光轴垂直。

从目镜中观察,可以看到一亮斑,旋松螺钉9,前后微动目镜组,对望远镜进行调焦,使亮斑成为清晰的十字像,旋紧螺钉9。

4.调整望远镜光轴、载物台平面垂直于旋转主轴:①粗调:调节载物台a 、b 、c 三只螺钉使两圆盘夹缝处螺钉螺纹数大致相等(6个螺纹数最佳);调节目镜下方螺钉12使望远镜大致水平。

②细调:把双平面镜按图12--6所示方位放置于载物台上,左手使灰台板左右小角度转动,使平面镜平面与望远镜光轴有横向垂直机会,眼看目镜,同时用右手调节望远镜水平调节螺钉12(寻找纵向垂直机会)至视场中出现亮十字像,并调12使十字像处于图4-3所示位置(实际操作中可简化为十字像横与分划线重和)。

转动灰台板使双平面镜转到反面,用手小角度左右转动,寻找反面垂直机会,若无十字像出现,立即把平面镜转回正面。

观察望远镜状态,看目镜一端是向上还是向下倾斜? 判断后,调节螺钉12校正望远镜水平,此时,视场中十字像偏离了分划线(注意:上----不可出视场;下----不过横叉丝),调节载物台螺钉a ,使亮十字像回到分划线,经过一次或多次判断、调节,反面视场中定会看到十字像。

但此时反面十字像横与分划线不重和。

调节螺钉12使十字像向分划线趋近一半,再调节载物台螺钉b 使二者重合(以下称‘一半一半’法);转回正面,十字像横与分划线又不重和了,调螺钉12使十字像向分划线趋近一半,再调节螺钉a 使二者重合。

这样反复多次‘一半一半’地调节,就会使得两面的十字像横均与分划线重合,望远镜光轴与旋转主轴垂直了,但此时载物台平面不一定与旋转主轴垂直,这是由于两条直线确定一个平面。

以上仅调了一条直线,即a 、b 螺钉顶端所在的直线。

这时可把双面镜按图4--7所示放置,调节螺钉c (此时不能再动螺钉a 、b 、12)使双面镜正面对应十字像横与分划线重合,这时载物台平面与旋转主轴垂直了。

图4-6 双面镜初放置图4-7 双面镜转置5.调节分划板成水平和竖直当载物台连同双平面镜相对望远镜旋转时观察,如果分划线与亮十字的移动方向不平行,就要转动目镜组,使亮十字的移动方向与分划线平行。

注意,此时不可破坏望远镜的调焦,然后将目镜的锁紧螺钉旋紧。

6.平行光管的调焦首先关掉望远镜目镜照明器上的光源,拿走载物台上的双平面镜。

打开狭缝28,用漫反射光照明狭缝,前后移动狭缝装置1,使狭缝清晰地成像在望远镜分划板平面上。

然后把平行光管光轴左右调整螺钉26调到适中位置,并调节望远镜光轴左右调整螺钉13和平行光管水平调整螺钉27,使狭缝位于视场中心。

最后,旋转狭缝装置,使狭缝与目镜分划板的叉丝竖线平行,注意不要破坏平行光管的调焦,然后将狭缝装置锁紧螺钉旋紧。

表4-17.用钠黄光(λ=589.3nm )测衍射角:将平行光管正对钠光灯,并将光栅放在载物台上使其与平行光管光轴垂直,观察其零级及一级衍射条纹,可以看到一级衍射条纹是两条靠得很近的谱线(589.0nm 和589.6nm ),λ=589.3nm 是它们的波长的平均值。

分别测定左一级、右一级衍射条纹左、右两端刻度盘的读数,重复测量三次,并记录在表4-1中。

图12-8 角游标读数练习图12-9 偏心差原理如此,得本光栅对钠黄光的一级衍射角为[]||||4122111θθθθϕ'-+'-=(4-2) 求得此光栅衍射的一级衍射角的三次测量的平均值1ϕ,取ΔB =1′=601度,求测量结果的不确定度Δφ1,并由1ϕ求得光栅常数d ,由Δφ1利用不确定度传递公式k kkd ϕϕϕλ∆=∆2sin cos (4-3) 求得Δd ,则光栅常数d =d ±Δd 。

*注意Δφ要化为弧度。

【思考题】1.应用分光计进行测量之前,应调节到何种状态?2.调节分光计的基本步骤是什么?3.按游标原理,读出图4-8中的角度数。

参考资料消除偏心差的原理由于刻度盘中心与游标盘中心并不一定重合,真正转过的角度同读出的角度之间会稍有差别,这个差别叫“偏心差”。

如图4-9所示,O 与O ′分别为刻度盘与游标盘的中心,游标盘转过的角度为φ,但读出的角度,在两个游标上分别为φ1和φ2。

由几何原理可知:1121ϕα=,2221ϕα=又因为21ααϕ+=故[]||||21)(41221121θθθθϕϕϕ'-+'-=+=所以实验时,取两个游标读出的角度数值的平均值。

相关文档
最新文档