第七章《三角形》测试题
第7章《三角形》三套精练精析(含答案)

第七章《三角形》提要:本章的考查重点是三角形的性质,包括等腰三角形、直角三角形的一些特殊性质.由于全等三角形是研究图形相等的重要工具,所以这一部分内容也是学好其它几何知识的基础.本章虽然内容较多,但各部分知识之间的联系密切,既要注意了解各部分知识之间的联系,又要保持各部分知识相对的独立性.本章的难点是推理入门.以前在第一册中已了解了推理证明,以及证明几何命题的一般方法步骤,是为现在正规练习证明做准备的.证明要求掌握有理有据地推理,精练准确地表达过程,有一定难度.一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为_____ .3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ .4.三角形ABC中,∠A=40°,顶点C处的外角为110°,那么∠B=_____ .5.锐角三角形任意两锐角的和必大于_____.6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形.7.在三角形ABC中,已知∠A=80°,∠B=50°,那么∠C 的度数是.8.已知∠A= 1 2∠B=3∠C,则∠A= .9.已知,如图7-1,∠ACD=130°,∠A=∠B,那么∠A的度数是.10.如图7-2,根据图形填空:(1)AD是△ABC中∠BAC的角平分线,则∠=∠=∠.(2)AE是△ABC中线,则==.(3)AF是△ABC的高,则∠=∠=90°.11.如图7-3所示,图中有个三角形,个直角三角形.12.在四边形的四个外角中,最多有个钝角,最多有个锐角,最多有个直角.13.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C=.14.一个多边形的每个外角都为30°,则这个多边形的边数为;一个多边形的每个内角都为135°,则图7-1 图7-2 图7-3这个多边形的边数为.15.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.16.若一个n边形的边数增加一倍,则内角和将.17.在一个顶点处,若此正n边形的内角和为,则此正多边形可以铺满地面.18.如图7-4,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .19.如图7-5,由平面上五个点A、B、C、D、E连结而成,则∠A+∠B+∠C+∠D+∠E= .20.以长度为5cm、7cm、9cm、13cm的线段中的三条为边,能够组成三角形的情况有种,分别是.二、选择题21.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形().A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形22.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为().A.4:3:2 B.3:2:4C.5:3:1 D.3:1:523.三角形中至少有一个内角大于或等于().A.45°B.55°C.60°D.65°24.如图7-6,下列说法中错误的是().A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B25.如图7-7,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为().A.50°B.60°C.70°D.80°26.下列叙述中错误的一项是().A.三角形的中线、角平分线、高都是线段.B.三角形的三条高线中至少存在一条在三角形内部.C.只有一条高在三角形内部的三角形一定是钝角三角形.D.三角形的三条角平分线都在三角形内部.27.下列长度的三条线段中,能组成三角形的是().图7-4 图7-5图7-6图7-7A .1,5,7B .3,4,7C .7,4,1D .5,5,528.如果三角形的两边长为3和5,那么第三边长可以是下面的( ). A .1 B .9 C .3 D .1029.三条线段a =5,b =3,c 的值为整数,由a 、b 、c 为边可组成三角形( ). A .1个 B .3个 C .5个 D .无数个 30.四边形的四个内角可以都是( ). A .锐角 B .直角C .钝角D .以上答案都不对 31.下列判断中正确的是( ). A .四边形的外角和大于内角和B .若多边形边数从3增加到n (n 为大于3的自然数),它们外角和的度数不变C .一个多边形的内角中,锐角的个数可以任意多D .一个多边形的内角和为1880°32.一个五边形有三个角是直角,另两个角都等于n ,则n 的值为( ). A .108° B .125° C .135° D .150° 33.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( ). A .7条 B .8条 C .9条 D .10条34.如图7-9,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( ). A .高 B .角平分线 C .中线 D .不能确定35.如图7-10,已知∠1=∠2,则AH 必为三角形ABC 的( ). A .角平分线 B .中线C .一角的平分线D .角平分线所在射线36.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ). A . 1 B . 2 C . 3 D . 437.如图7-11,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )38.如图7-12,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线. (3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个图7-9 图7-10 图7-11 图7-12三、解答题39.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?40.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?41.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID的大小.42.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?43.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?44.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.45.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?46.某同学在计算多边形的内角和时,得到的答案是1125°,老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少?47.把边长为2cm的正方形剪成四个一样的直角三角形,如图所示.请用这四个直角三角形拼成符合下列条件的图形:(1)不是正方形的菱形;(2)不是正方形的长方形;(3)梯形;(4)不是长方形、菱形的的平行四边形.48.下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题.“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经过片刻的思考与交流后,李明同学举手说: “其余两角是30°和120°”;王华同学说:“其余两角是75°和75°.” 还有一些同学也提出了自己的看法…(1)假如你也在课堂中, 你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受?(用一句话表示)49.如图,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?参考解析一、填空题1.直角2.15°3.60°,180°4.70°5.90°6.锐角7.∠C=180°-80°-50°=50°.8.设∠A的度数为x.则∠B=2x,∠C=x.所以x+2x+x=180°,解得x=54°.所以∠A=54°.9.∠A=∠B=∠ACD=65°.10.(1)BAD,CAD,BAC;(2)BE,CE,BC;(3)AFB,AFC.11.解:有5个三角形,分别是△ABD,△ADE,△CDE,△ADC,△ABC;有4个直角三角形,分别是△ABD,△ADE,△CDE,△ADC.12.3,2,413.120°14.12,815.正三角形和正四边形、正三角形和正六边形、正四边形和正八边形中任选两种即可.16.增加(n-4)×180°17.360°或720°或180°18.解:因为∠BED=∠A+∠D=47°,所以∠B=180°-90°-47°=43°.所以∠BCD=27°+43°=70°.所以∠ACB=180°-70°=110°.19.解:连结BC,如图,则∠DBC+∠ECB=∠D+∠E.所以∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠DBC+∠ECB=180°.20.解:有3种.分别以长为5cm,7cm,9cm;7cm,9cm13cm;5cm,9cm,13cm的线段为边能组成三角形.二、选择题21.A22.C23.C24.D25.C26.C27.D28.C29.C30.B31.B32.C33.C34.C(点拨:可能会错选A或B.有的同学一看到面积就认为与高相关,故错选A;有的同学认为平分内角必平分三角形的面积,故错选B.其实,因为△ABD与△ACD同高h,又S△ABD=S△ADC,即BD×h=·CD×h,所以,BD=CD,由此可知,AD为三角形ABC中BC边的中线.)35.D(点拨:可能会错选A或选C.错选A的同学,只注重平分内角而忽视了三角形的角平分线为一线段这一条件;而错选C的同学,实质上与错选A的同学犯的是同一个错误,显然这里“角平分线”与“一角的平分线”是一个意思,因为前提条件是说“AH必为三角形ABC的”.)36.A(点拨:由三角形的三边关系知:若长度分别为2cm、4cm、6cm,不可以组成三角形;若长度分别为4cm、6cm、8cm,则可以组成三角形;若长度分别为2cm、4cm、8cm,则不可以组成三角形;若长度分别为2cm、6cm、8cm,则不可以组成三角形.即分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为1,故应选A.)37.C(点拨:因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-,在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-[180°-(∠2+∠3)]=(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=(∠3+∠2)-∠2=(∠3-∠2).)38.A(点拨:由∠1=∠2,知AD平分∠BAE,但AD不是三角形ABE内的线段,所以(1)不正确;同理,BE 虽然经过三角形ABD边AD的中点G,但BE不是三角形ABD内的线段,故(2)不正确;由于CH⊥AD 于H,故CH是三角形ACD边AD上的高,(3)正确.应选A.)三、解答题39.解析:要想求∠EDF的度数,我们可以利用平角定义,只要能求出∠EDB即可.而∠EDB在三角形BDE中,只要能求出∠B就可以利用三角形内角和求∠EDB.而∠B又等于∠C,题中告诉了三角形DFC 的一个外角∠AFD=140°,所以我们能得出∠C的度数.解:因为∠AFD是三角形DCF的一个外角.所以∠AFD=∠C+∠FDC.即140°=∠C+90°.解得∠C=50°.所以∠B=∠C=50°.所以∠EDB=180°-90°-50°=40°.所以∠FDE=180°-90°-40°=50°.40.解析:我们可以用字母代替甲、乙、丙、丁,用角度代表方向.把题中数据与图形一一对应,利用各方向的关系可求出丁岛分别在甲岛和乙岛的方向.解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.如图:因为丁岛在丙岛的正北方,所以CD⊥AB.因为甲岛在丁岛的南偏西52°方向,所以∠ACD=52°.所以∠CAD=180°-90°-52°=38°.所以丁岛在甲岛的东偏北38°方向.因为乙岛在丁岛的南偏东40°方向,所以∠BCD=40°.所以∠CBD=180°-90°-40°=50°.所以丁岛在乙岛的西偏北50°方向.41.解析:利用角平分线的性质解.解:因为AI、BI、CI为三角形ABC的角平分线,所以∠BAD=∠BAC,∠ABI=∠ABC,∠HCI=∠ACB.所以∠BAD+∠ABI+∠HCI=∠BAC+∠ABC+∠ACB=(∠BAC+∠ABC+∠ACB)=×180°=90°.所以∠BAD+∠ABI=90°-∠HCI.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.所以∠BID和∠CIH是相等的关系.42.解析:本题已知一边长和三条高,我们可以利用三角形的面积公式求得另外两边长,三边相加即可得到三角形的周长.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.43.解析:本题要求AC与AB的边长的差,且AC与AB的长度都不知道,不少同学感到无从下手.其实,只要我们仔细分析分析题中条件:三角形ABD的周长比三角形ACD的周长小5,即AC-AB+CD-BD=5,又AD是BC边上的中线,所以BD=CD.所以AC-AB=5.解:AC-AB=5.44.解析:在第(1)和第(2)问中,没有说明所给边长是腰长还是底边长,因此我们要进行分类讨论.在第(3)问中,只给出了三边长都是整数,而此三角形又是等腰三角形,所以其最长边小于8cm,我们可以用列表法一一列出各组边长.解:(1)如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16-4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm.(2)如果腰长为6cm,则底边长为16-6-6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16-6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm.(3)因为周长为16cm,且三边都是整数,所以三角形的最长边不会超过8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.45.解析:要想BE与DF平行,就要找平行的条件.题中只给出了∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.那么我们是利用同位角相等呢还是利用同旁内角互补?经过仔细观察图形我们知道∠BFD是三角形ADF的外角,则∠BFD=∠A+∠ADF.而∠ADF是∠ADC的一半,∠ABE是∠ABC的一半,所以我们选择用同旁内角互补来证平行.解:BE与DF平行.理由如下:由n边形内角和公式可得四边形内角和为(4-2)×180°=360°.因为∠A=∠C=90°,所以∠ADC+∠ABC=180°.因为BE平分∠ABC,DF平分∠ADC,所以∠ADF=∠ADC,∠ABE=∠ABC.因为∠BFD是三角形ADF的外角,所以∠BFD=∠A+∠ADF.所以∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)=90°+90°=180°.所以BE与DF平行.46.解析:我们发现1125°不能被180°整除,所以老师说少加了一个角的度数.我们可设少加的度数为x,利用整除求解.解:设少加的度数为x.则1125°=180°×7-135°.因为0°<x<180°,所以x=135°.所以此多边形的内角和为1125°+135°=1260°.设多边形的边数为n,则(n-2)×180°=1260°,解得n=9.所以此多边形是九边形,少加的那个内角的度数是135°.47.解析:题中告诉了我们按要求拼成.解:如图:48.解析:本题首先要求考生在阅读数学课堂的一个学习片断后,对两名学生的说法提出自己的看法,这时考生应抓住题中条件“等腰三角形ABC的角A等于30°”这个不确定条件进行分析研究.当∠A是顶角时,设底角是α,∴30°+α+α=180°,α=75°,∴其余两底角是75°和75°.当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°,∴其余两角是30°和120°.由此说明李明和王华两同学都犯了以偏概全的答题的错误.对于第(2)问应在第(1)问的解答的基础上,可总结出“根据图形位置关系,实施分类讨论思想方法解多解型问题”,“考虑问题要全面”等.小结:三角形的中线、角平分线、高(线)是三角形中三条十分重要的线段,初学者常因不能准确理解其概念的实质内涵,而出现这样或那样的错误,现举例分析如下,以达到亡羊补牢或未雨绸缪的目的.49.解析:要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠PAF=60°,延长EF,得到的∠PFA=60°,两条直线相交形成三角形APF,在三角形APF中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,FA=PA=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.小结:本题解题的关键是利用多边形和三角形的关系,通过添加辅助线,利用六边形构造出等边三角形,从而利用转化的思想,把多边形问题转化为和三角形有关的问题,利用三角形的性质、定理来解答多边形的问题.方程思想是我们学习数学的重要思想方法之一.用方程思想求解数学问题时,应从题中的已知量与未知量的关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程,再通过解方程,使问题得到解决.方程思想应用非常广泛.我们不但能用方程思想解决代数问题,而且还能够解决有关的几何问题.第7章 三角形整章同步测试(时间45分钟 满分100分)班级 ______________ 学号 姓名 ____ 得分____一、填空题(每小题2分,共20分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 . 2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是 . (写出两种即可)8.如图所示,∠A+∠B +∠C +∠D +∠E +∠F +∠G 的度数为 .9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: . 10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 二、选择题(每题3分,共24分)11.三角形的三条高所在的直线相交于一点,这个交点的位置在( )(第2题)(第4题)(第6题)30°30° 30°A(第7题)GFE D CBA(第9题)EDCBA(第3题)(第5题)DCBAA.三角形内B.三角形外C.三角形边上D.要根据三角形的形状才能定12.下列长度的各组线段中,能组成三角形的是()A.1、2、3 B.1、4、2 C.2、3、4 D.6、2、313.一批相同的正六边形地砖铺满地面的图案中,每个顶点处由几块正六边形组成A.2块B.3块C.4块D.6块14.一个多边形只有27条对角线,则这个多边形的边数为()A.8 B.9 C.10 D.1115.下列正多边形的组合中,能够铺满地面(即平面镶嵌)的是A.正三角形和正四边形B.正四边形和正五边形C.正五边形和正六边形D.正六边形和正八边形16.已知一个多边形的内角和为540°,则这个多边形为A.三角形B.四边形C.五边形D.六边形17.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是().A.①B.②C.③D.④18.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()A.①5或7 B.7 C.9 D.7或9三、解答题(共56分)19.(5分)在△ABC中,∠C=900,BD是∠ABC的平分线,∠A=200,求∠BDC的度数.20.(5分)小明在求一个多边形的内角和时,由于疏忽,把一个内角加了两遍,而求出的结果为20040,请问这个内角是多少度?这个多边形是几边形?21.(5分)一个凸多边形的内角的度数从小到大排列,恰好依次增加相同的度数,其中最小角是1000,最大角是1400,求这个多边形的边数.22.(5分)如图所示,在△ABC 中,O 是高AD 和BE 的交点,观察图形,试猜想∠C 和∠DOE 之间具有怎样的数量关系?并证明你的猜想结论.23.(5分)分别测量如图所示的△ABC 和△DEF 的内角 (1)你发现了什么? (2)你有何猜想?(3第23题DE FF ED CB A 24.(5分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?25.(6分)如图所示,BE 、CD 交于A 点,∠C 和∠E 的平分线相交于F . (1)试求:∠F 与∠B ,∠D 有何等量关系? (2)当∠B ﹕∠D ﹕∠F=2﹕4﹕x 时,x 为多少?∠4∠3∠2∠1FEABCD第25题图26.(6分)如图所示,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.27.(6分)已知,如图,∠XOY =900,点A 、B 分别在射线OX 、OY 上移动,BE 是∠ABY 的平分线,BE的反向延长线与∠OAB 的平分线相交于点C ,试问∠ACB 的大小是否发生变化.如果保持不变,请给出证明,如果随点A 、B 移动发生变化,请求出变化范围.YXOABCE28.(8分)(1)AD 是△ABC 的中线,那么△ABD 与△ACD 的面积有什么关系?为什么? (2)你能用三种不同的方法把一个三角形的面积四等分吗?请画出图形.参考答案一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A=2∠D 10.130° 二、选择题11.D 12.C 13.B 14.B 15.A 16.C 17.C 18.D 三、解答题19.550 20.240,十三边形 21.6 22.∠C+∠DOE=1800 23.(1)两个三角形的内角和都等于或接近1800;(2)任意三角形的内角和等于1800;(3)方法很多(略) 24.六边形 25.(1)∠F=21(∠B+∠D );(2)3 26.360° 27.∠C 的大小保持不变 28.(1)相等;(2)略第7章 三角形(中考试题演练)1.(包头)用火柴棒按下图的方式搭三角形,照这样的规律搭下去,搭第10个图形需要_____根火柴棒.2.(陕西)如图所示,在锐角△ABC 中,BE 分别是AB ,AC 边上的高,且CD ,BE交于一点P ,若∠A=50°,则∠BPC 的度数是( ).A.150° B.130° C.120° D.100°3.(南安)若一个多边形的每一个外角都等于30°,•则这个多边形的内角和等于_______.4.(南充)一个三角形的两个内角分别是55°和65°,•这个三角形的外角不可能是().A.115° B.120° C.125° D.130°5.(哈尔滨)以下面各组线段为边,能组成三角形的是().A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm6.(云南)若n边形的内角和是1260°,则边数n为().A.8 B.9 C.10 D.117.(南通)在下列角度中,是多边形内角和的是().A.270° B.560° C.630° D.1800°8.(临沂)在多边形的内角中,锐角的个数最多有().A.1个 B.2个 C.3个 D.4个9.(天津)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=•158•°,•则∠EDF=________.10.(潍坊)某人到瓷砖店去购买一种多边形形状的瓷砖,用来铺设无缝地板,•他购买的瓷砖形状不可以是().A.正三角形 B.矩形(长方形) C.正八边形 D.正六边形答案:1.21 (点拨:第n个图形有2n+1根火柴)2.B 3.1800°4.D (点拨:利用三角形外角性质判断)5.B (点拨:利用三角形三边关系来判断)6.B (点拨:利用三角形内角和公式)7.D 8.C 9.68° 10.C第7章三角形综合测试(时间90分钟,满分120分)一、填空题.(每小题2分,共28分)1.三角形的三个外角中,钝角的个数最多有______个,锐角最多_____个.2.造房子时屋顶常用三角结构,从数学角度来看,是应用了_______,而活动挂架则用了四边形的________.3.用长度为8cm,9cm,10cm的三条线段_______构成三角形.(•填“能”或“不能”)4.要使五边形木架不变形,则至少要钉上_______根木条.5.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.6.如图1所示,AB∥CD,∠A=45°,∠C=29°,则∠E=______.(1) (2) (3)7.如图2所示,∠α=_______.8.正十边形的内角和等于______,每个内角等于_______.9.一个多边形的内角和是外角和的一半,则它的边数是_______.10.把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要____个正三角形才可以镶嵌.11.等腰三角形的周长为20cm,一边长为6cm,则底边长为______.12.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有_____•条对角线.13.如图3所示,共有_____个三角形,其中以AB为边的三角形有_____,以∠C•为一个内角的三角形有______.14.如图4所示,∠A+∠B+∠C+∠D+∠E=________.(4) (5) (6)二、选择题:(每小题3分,共24分)15.下列说法错误的是().A.锐角三角形的三条高线,三条中线,三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线,三条中线,三条角平分线16.在下列正多边形材料中,不能单独用来铺满地面的是().A.正三角形 B.正四边形 C.正五边形 D.正六边形17.如图5所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为(). A.30° B.36° C.45° D.72°18.D是△ABC内一点,那么,在下列结论中错误的是().A.BD+CD>BC B.∠BDC>∠A C.BD>CD D.AB+AC>BD+CD19.正多边形的一个内角等于144°,则该多边形是正()边形.A.8 B.9 C.10 D.1120.如图6所示,BO,CO分别是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为(). A.80° B.90° C.120° D.140°21.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.k B.2k+1 C.2k+2 D.2k-222.如图所示,在长为5cm,宽为3cm的长方形内部有一平行四边形,则平行四边形的面积为().A.7cm2B.8cm2C.9cm2D.10cm2三、解答题:(共48分)23.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(3分)(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.(5分)24.(8分)如图所示,BE平分∠ABD,DE平分∠CDB,BE和DE相交于AC上一点E,•如果∠BED=90°,试说明AB∥CD.25.(8分)如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,•求∠A和∠D.26.(1)若多边形的内角和为2340°,求此多边形的边数.(4分)(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为13:12,求这个多边形的边数.(4分)27.(8分)一个零件的形状如图所示,按规定∠A应等于90°,∠B与∠C•应分别是32°和21°,检验工人量得∠BDC=148°,就判断这个零件不合格,试用三角形有关知识说明理由.28.(8分)园艺师从土地上收集了许多大理石的边角料,•准备给公共绿地的甬道铺地面,其中最多的一种边角材料形状如图所示,你能否用这种边角料铺满地面?•如果能,请设计出至少两种方案.四、思维拓展题:(共10分)29.请完成下面的说明:(1)如图①所示,△ABC的外角平分线交于G,试说明∠BGC=90°-12∠A.说明:根据三角形内角和等于180°,可知∠ABC+∠ACB=180°-∠_____.根据平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180•°+•∠______.根据角平分线的意义,可知∠2+∠3=12(∠EBC+∠FCB)=12(180°+∠_____)=90°+12∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____.(2)如图②所示,若△ABC的内角平分线交于点I,试说明∠BIC=90°+12∠A.(3)用(1),(2)的结论,你能说出∠BGC和∠BIC的关系吗?①②五、合作探究题:(共10分)30.如图所示,分别在三角形,四边形,五边形的广场各角修建半径为R•的扇形草坪(图中阴影部分).(1)图①中草坪的面积为_____;(2)图②中草坪的面积为_____;(3)图③中草坪的面积为_____;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为_____.答案:一、1.3 12.三角形的稳定性不稳定性3.能 4.两 5.90° 50° 6.16°7.75° 8.1440° 144° 9.3 10.311.8cm或6cm 12.613.3 △ABD,△ABC △ACD,△ACB14.180°二、15.C 16.C 17.B 18.C 19.C 20.D 21.C 22.A三、23.(1)如答图所示.(2)∠BAD=60°,∠CAD=40°.24.证明:在△BDE中,∵∠BED=90°,∠BED+∠EBD+∠EDB=180°,∴∠EBD+∠EDB=180°-∠BED=180°-90°=90°.又∵BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠EBD,∠CDB=2∠EDB,∴∠ABD+∠CDB=2(∠EBD+∠EDB)=2×90°=180°,∴AB∥CD.25.解:∵∠AOC是△AOB的一个外角.∴∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∵∠AOC=95°,∠B=50°,∴∠A=∠AOC-∠B=95°-50°=45°.∵AB∥CD,∴∠D=∠A(两直线平行,内错角相等)∴∠D=45°.26.解:(1)设边数为n,则(n-2)·180°=2340,n=15.答:边数为15.(2)每个外角度数为180°×215=24°.∴多边形边数为36024︒︒=15.答:边数为15.27.解:延长BD交AC于点E,∠CDB=90°+32°+21°=143°,所以不合格.28.能:如答图所示.四、29.(1)A A A A A A(2)说明:根据三角形内角和等于180°,可得∠ABC+∠ACB=180°-∠A,根据角平分线的意义,有∠6+∠8=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,所以∠BIC=180°-(∠6+∠8)=180°-(90°-12∠A)=90°+12∠A,。
人教版七年级数学下册数学第七章三角形测试题

ABD C E(第3题)ABAB CDP12第7题ABCD第10题人教版七年级数学下册数学第七章三角形测试题一、选择题(每小题3分,共 30 分)1、下列三条线段,能组成三角形的是()A、3,3,3B、3,3,6C、3,2,5D、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A、锐角三角形B、钝角三角形C、直角三角形D、都有可能3、如图所示,AD是△ABC的高,延长BC至E,使CE=BC,△ABC的面积为S1,△ACE的面积为S2,那么()A、S1>S2B、S1=S2C、S1<S2D、不能确定4、下列图形中有稳定性的是()A、正方形B、长方形C、直角三角形D、平行四边形5、如图,正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图形所示,C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1个平方单位,则点C的个数为()A、3个B、4个C、5个D、6个6、已知△ABC中,∠A、∠B、∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:27、点P是△ABC内一点,连结BP并延长交AC于D,连结PC,则图中∠1、∠2、∠A的大小关系是()A、∠A>∠2>∠1B、∠A>∠2>∠1C、∠2>∠1>∠AD、∠1>∠2>∠A8、在△ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD、CE相交于点O,则∠BOC等于()A、140°B、100°C、50°D、130°9、下列正多边形的地砖中,不能铺满地面的正多边形是()A、正三角形B、正四边形C、正五边形D、正六边形10、在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD等于()A、40°B、50°C、45°D、60°二、填空题(本大题共6小题,每小题3分,共18分)11、P为△ABC中BC边的延长线上一点,∠A=50°,∠B=70°,则∠ACP=_____。
(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( )A. ()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定 8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。
第七章《图形的相似与解直角三角形》自我测评

4
宇轩图书
解析:已知 AB= AC,得∠ ABC=∠ ACB, 由∠ CBD =∠ A,∠ DCE=∠ CBD,∠ EDF=∠ DCE,得 △ ABC∽△ BDC, △ BCD∽△ CED, △ CDE∽△ DFE,利 4 b 用相似三角形的性质,可得 EF= 3 . 故选 C. a 答案: C
宇轩图书
宇轩图书
BD 在 Rt△ BDC 中, tan∠ BCD= ,∴ CD= CD BD 4.455 ≈ ≈23.447(km).∴ AC= AD+ CD≈3.245 tan∠ BCD 0.19 + 23.447=26.692(km).∴航行的时间为 26.692÷30≈0.89(h). 答:需要约 0.89 小时到达.
宇轩图书
解析:在 Rt△ ABC 中, ∠ACB= 90° , BC= 6, 3 BC BC sin A= , ∵ sin A= , ∴ AB= =10, ∴ AC 5 AB sin A = AB - BC = 10 - 6 = 8.∵ D 是 AB 的中点, ∴ AD = 5.∵∠ADE = ∠ C = 90°, ∠ A 是 公 共 角 , DE AD DE 5 ∴△ ADE∽△ACB,∴ = ,即 = ,解得 DE 6 8 BC AC 15 = . 4
宇轩图书
15.(8 分 )(2013· 济宁 )钓鱼岛及其附属岛屿是中国固 有领土(如图① ),A,B,C 分别是钓鱼岛、南小岛、 黄尾屿上的点(如图② ),点 C 在点 A 的北偏东 47° 方向,点 B 在点 A 的南偏东 79° 方向,且 A,B 两 点的距离约为 5.5 km;
图①
图②
宇轩图书
宇轩图书
8. (2013· 雅安)如图, DE 是△ ABC 的中位线,延 长 DE 至 F 使 EF= DE, 连结 CF, 则 S△ 的值为 ( )
七年级下《三角形》检测试题

第七章三角形单元测试卷、姓名学号一、选择题(4分×8=32分)1.一个三角形的三个内角中() A 、至少有一个钝角 B 、至少有一个直角C 、至多有一个锐角 D、至少有两个锐角2.下列长度的三条线段中,能组成三角形的是()A、3cm,5cm ,8cmB、8cm,8cm,18cmC、0.1cm,0.1cm,0.1cmD、3cm,40cm,8cm3.如图1,点P有△ABC内,则下列叙述正确的是()A、︒=︒yx B、x°>y° C、x°<y° D、不能确定4.已知,如图2,AB∥CD,∠A=700,∠B=400,则∠ACD=()A、 550B、 700C、 400D、 11005.下列图形中具有稳定性有()A、 2个B、 3个C、 4个D、 5个6.一个多边形内角和是10800,则这个多边形的边数为()A、 6B、 7C、 8D、 97.如图3所示,已知△ABC为直角三角形,∠C=90,若烟图中虚线剪去∠C,则∠1+∠2 等于()(1)(2)(3)(4)(5)(6)图2DCBA图1Py0x0CBA图3A 、90°B 、135°C 、270°D 、315°8. 如图4所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500 ,则 ∠BPC 等于( ) A 、90° B 、130° C 、270° D 、315°二、 填空题(3分×10=30分)9.用正三角形和正方形能够铺满地面,每个顶点周围有 个正三角形和 个正方形。
10.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|=_____________。
11.等腰三角形的两边的长分别为2cm 和7cm ,则三角形的周长是 .12.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=90°-∠B ,④∠A=∠B=∠C 中,能确定△ABC 是直角三角形的条件有 13.一个四边形的四个内角中最多有 个钝角,最多有 个锐角。
第七章三角形练习题3套有答案

七年级数学第七章《三角形》练习题(1)一、细心选择:(每题3分,共15分) 1.下列图形能说明∠1>∠2的是( )12121212AB C D 2.以下列各组线段长为边能组成三角形的是( )A 、1cm ,2cm ,4cmB 、8cm ,6cm ,4cmC 、12cm ,5cm ,6cmD 、2cm ,3cm ,6cm3.一个三角形的三条角平分线的交点在( )A 、三角形内B 、三角形外C 、三角形的某边上D 、以上三种情形都有可能4.若一个三角形的两边长是9和4且周长是偶数,则第三边长是( ) A 、5 B 、7 C 、8D 、13 5.等腰三角形的边长为1和2,那么它的周长为( )A 、5B 、4C 、5或4D 、以上都不对6.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( )A 、正三角形B 、矩形C 、正八边形D 、正六边形 7.在三角形的三个外角中,锐角最多只有( ) A 、3个B 、2个C 、1个D 、0个8.(n+1)边形的内角和比n 边形的内角和大( )A 、180°B 、360°C 、n ·180°D 、n ·360° 9.将一个正方形桌面砍下一个角后,桌子剩下的角的个数是( )A 、3个B 、4个C 、5个D 、3个或4个或5个10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律,你发现的规律是( )A 、∠1+∠2=2∠AB 、∠1+∠2=∠AC 、∠A=2(∠1+∠2)D 、∠1+∠2=21∠A二、潜心填空(每题3分,共15分)11.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是 12.某一个三角形的外角中有一个角是锐角,那么这个三角形是 角三角形 13.一个多边形的内角和是外角和的一半,则它的边数是 14.把边长为a 的正三角形和正方形组合镶嵌,若用2个正方形,则还需个正三角形才可以镶嵌。
初中七年级数学三角形单元测试(含答案)

第七章 三角形单元测试姓名:时间: 90 分钟满分: 100 分 评分:一、选择题( 本大题共 10小题,每小题 3 分,共 30分. ?在每小题所给出的四个选项中, 只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是( )A .2cm , 3cm , 5cmB . 5cm ,6cm , 10cmC .1cm , 1cm , 3cmD . 3cm ,4cm , 9cm2.等腰三角形的一边长等于 4,一边长等于 9,则它的周长是( )A . 17B . 22C . 17 或 22D .13113.适合条件∠ A= ∠B= ∠C 的△ ABC 是( )23A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 4.已知等腰三角形的一个角为 75 °,则其顶角为( )A . 30°B .75°C . 105°D .30°或 75°5.一个多边形的内角和比它的外角的和的 2 倍还大 180°,这个多边形的边数是( )A .5B .6C .7D . 86.三角形的一个外角是锐角,则此三角形的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .无法确定 7.下列命题正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于 60 °C .直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半 8.能构成如图所示的基本图形是()10.如图 1,把△ ABC 纸片沿 DE 折叠,当点 A 落在四边形 BCDE 内部时,则∠ A 与∠ 1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ? )A .∠A=∠1+∠2B .2∠ A=∠1+∠ 2C .3∠A=2∠1+∠2D .3∠ A=2(∠ 1+∠2)9.A . 10cm 或 6cmB .10cmC . 6cm=2cm ,则腰 AC 的长为( D . 8cm 或 6cm二、填空题(本大题共8 小题,每小题3分,共24分.把答案填在题中横线上)11.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 _______________ .12.四条线段的长分别为5cm、6cm、8cm、13cm,?以其中任意三条线段为边可以构成______ 个三角形.13.如下图2:∠ A+∠B+∠C+∠D+∠E+∠F等于_______ .14.如果一个正多边形的内角和是900°,则这个正多边形是正______ 边形.15.n 边形的每个外角都等于45°,则n= _________ .16.乘火车从A站出发,沿途经过 3 个车站方可到达B站,那么A、B两站之间需要安排种不同的车票.17 .将一个正六边形纸片对折,并完全重合,那么,得到的图形是_________ 边形,?它的内角和(按一层计算)是 ______ 度.18.如图3,已知∠ 1=20°,∠ 2=25 °,∠ A=55°,则∠ BOC的度数是___ .三、解答题(本大题共 6 小题,共46 分,解答应写出文字说明,?证明过程或演算步骤)19.(6分)如图,BD平分∠ ABC,DA⊥AB,∠ 1=60°,∠ BDC=80°,求∠ C的度数.20.(8 分)如图:(1)画△ ABC的外角∠ BCD,再画∠ BCD的平分线CE.(2)若∠ A=∠B,请完成下面的证明:已知:△ ABC中,∠ A=∠B,CE是外角∠ BCD的平分线.求证:CE∥ AB.21.(8 分)(1)如图4,有一块直角三角形XYZ放置在△ ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ ABC中,∠ A=30°,则∠ ABC+∠ACB= _____ ,∠XBC+∠ XCB= _______ .(4)(5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ?仍然分别经过B、C,那么∠ ABX+∠ ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ ABX+∠ ACX的大小.22.(8 分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的 4 根火柴,使之留下 5 个正方形,?且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.24.( 8分)如图, BC ⊥CD ,∠1=∠2=∠3,∠4=60°,∠ 5=∠6.1) CO 是△ BCD 的高吗?为什么? 2)∠5 的度数是多少?3)求四边形 ABCD 各内角的度数.23.( 8分)在平面内,分别用 3根、5根、6 根⋯⋯火柴首尾..依次相接, ?能搭成什么形 状的三角形呢?通过尝试,列表如下所示: 问:( 1) 4 根火柴能拾成三角形吗? (2)8 根、 12 根火柴能搭成几种不同答案:1.B2.B 点拨:由题意知,三角形的三边长可能为4,4,9 或4,9,9.但4+4<9,说明以4,4,9 为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.3.B 点拨:设∠ A=x°,则∠ B=2x°,∠C=3x°,由三角形内角和定理,?得x+?2x+3x=180.解得x=30.∴ 3x=3× 30=90.故选B.4. D 点拨:分顶角为75°和底角为75°两种情况讨论.5.C 点拨:据题意,得(n-2 )·180=2×360+180.解得n=7.故选C.6.B7.B 点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,?与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.8.B9.A 点拨:∵ BC=8cm,│AC-BC│ =2cm,∴ AC=10cm或6cm.?经检验以10cm,?10cm,8cm,或6cm,6cm,8cm 为边长均能构成三角形.故选A.10. B 点拨:可根据三角形、四边形内角和定理推证.11.1<x<6 点拨:8-5<1+2x<8+5 ,解得1<x<6.12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.13.360° 点拨:∵图中正好有两个三角形:△AEC,△ BDF,∴∠ A+∠ B+∠C+∠D+∠ E+∠F=360°.14.七36015.8 点拨:n= =8.4516.1017.四;36018.100° 点拨:连接AO并延长,易知∠ BOC=∠BAC+∠1+∠ 2=55°+20°+25?° =100°.19.解:在△ ABD中,∵∠ A=90°,∠ 1=60°,∴∠ ABD=90° - ∠ 1=30°.∵ BD平分∠ ABC,∴∠ CBD=∠ ABD=30°.在△ BDC中,∠ C=180° - (∠BDC+∠CBD)=180°- (80°+30°)=70°.20.(1)如答图(2)证明:∵∠ A=∠B,∠ BCD是△ ABC的外角,∴∠ BCD=∠ A+?∠ B=2∠ B,∵ CE是外角∠ BCD的平分线,11∴∠ BCE= ∠BCD= × 2∠B=∠B,22∴CE∥AB(?内错角相等,两直线平行)点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠ BCE即可.21.(1)150°;90°(2)不变化.∵∠ A=30°,∴∠ ABC+∠ ACB=150°,∵∠ X=?90°,∴∠ XBC+∠ XCB=90°,∴∠ ABX+∠ACX=(∠ ABC-∠XBC)+(∠ ACB-∠XCB)=(∠ ABC+?∠ ACB)- (∠ XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.22.如答图7-2 .23.解:(1) 4 根火柴不能搭成三角形;(2)8 根火柴能搭成一种三角形(3,3,2);12 根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△ BCD的高.理由:在△ BDC中,∵∠ BCD=90°,∠ 1=∠ 2,∴∠ 1=∠2=90°÷ 2=45°.又∵∠ 1=∠ 3,∴∠ 3=45°.∴∠ DOC=180°- (∠ 1+∠3)=180°-2×45°=90°,∴ CO⊥DB.∴ CO是△ BCD的高.(2)∠ 5=90°- ∠4=90°-60°=30°.(3)∠ CDA=∠1+∠4=45°+60°=105°,∠ DCB=90°,∠ DAB=∠ 5+∠6=30°+30°=60°,∠ABC=105°.。
第七章 三角形综合测试题

第七章 三角形测试题一、选择题(本题共8 小题,每小题 3分,共24 分,每小题只有一个正确答案):1、图1中三角形的个数是( )A .8 ;B .9 ;C .10 ;D .11. 2、如图3,下面四个图形中,线段BE 是⊿ABC 的高的图是( )3、以下列各组线段长为边能组成三角形的是( )A 、1cm ,2cm ,4cmB 、8cm ,6cm ,4cm C、12cm ,5cm ,6cmD 、2cm ,3cm ,6cm4、三角形的一个外角小于与它相邻的内角,这个三角形( )A 、是直角三角形;B、是锐角三角形; C 、是钝角三角形;D 、属于哪一类不能确定。
5、如图,在直角三角形ABC 中,AC ≠AB,AD 是斜边上的高,DE ⊥AC,DF ⊥AB,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( )。
A .5 ;B .4 ;C .3 ;D .2 。
(第5题)6、下面各角能成为某多边形的内角的和的是( )。
A .430 °; B .4343° ; C .4320 °; D .4360° 。
7、某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( )A 、正三角形B 、矩形C 、正八边形D 、正六边形8、如图,△ABC 纸片DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是 ( )A. ∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题(本题共6 小题,每题4 分,共24 分)9、如图4,在⊿ABC 中,AD 是中线,则⊿ABD 的面积______⊿ACD 的面积(填“>”“<”“=”)。
( 第10题)10、如图,在⊿ABC 中, ∠A=40 , ∠B=72 ,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE 于F,则∠CDF= 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章《三角形》测试题
班别___________ 姓名_______________
一、选择题
1、有下列长度的三条线段,能组成三角形的是( )
A 、 2cm ,3cm ,4cm
B 、 1cm ,4cm ,2cm
C 、1cm ,2cm ,3cm
D 、 6cm ,2cm ,3cm
2、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻 店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去
B. 带②去
C. 带③去
D. 带①和②去
3、右图中三角形的个数是( ) A .6 B .7 C .8 D .9
4、能把一个任意三角形分成面积相等的两部分是( ) A.角平分线 B.中线 C.高 D.A 、B 、C 都可以
5、下列不能够镶嵌的正多边形组合是( )
A.正三角形与正六边形
B.正方形与正六边形
C.正三角形与正方形
D.正五边形与正十边形
6.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形
7、三角形的一个外角是锐角,则此三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无
8、 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形, ④直角三角形中两锐角的和为900,其中判断正确的有( ) A.1个 B.2个 C.3个 D.4个
9、在下列正多边形材料中,不能单独用来铺满地面的是( ). A .正三角形 B .正四边形 C .正五边形 D .正六边形 10、正多边形的一个内角等于144°,则该多边形是正( )边形. A .8 B .9 C .10 D .11 11、六边形的对角线的条数是( ) A. 7 B. 8 C. 9 D. 10
12、如图所示,在长为5cm ,宽为3cm 的长方形内部有一平行四边形,则平行四边形的面积为( ).
A .7cm 2
B .8cm 2
C .9cm 2
D .10cm 2
② ① ③ 2题
C D
A B
E F
3题
13、.如图所示,BO,CO分别是∠ABC,∠ACB的两条角平分线,∠A=100°,则
∠BOC的度数为().
A.80° B.90° C.120° D.140°
二、填空题:
14.造房子时屋顶常用三角结构,从数学角度来看,是应用了____________________,而活动挂架则用了四边形的________________________.
15.用长度为8cm,9cm,10cm的三条线段_______构成三角形.(•填“能”或“不能”)
16.要使五边形木架不变形,则至少要钉上_______根木条.
17.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.18.如图1所示,AB∥CD,∠A=45°,∠C=29°,则∠E=______.
(1) (2) (3) 19.如图2所示,∠α=_______.
20.如图3所示,共有_____个三角形,其中以AB为边的三角形有_____,以∠C•为一个内角的三角形有______.
21.正十边形的内角和等于______,每个内角等于_______.
22.等腰三角形的周长为20cm,一边长为6cm,则底边长为______.
23.如图4所示,
∠A+∠B+∠C+∠D+∠E=________.
24.若一个等腰三角形的两边长分别是 3 cm和 5 cm,则它的周长是___________cm。
25.在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A=________,∠B=________∠C=________
三、解答题:
26.(1)一个多边形的内角和是外角和的3倍,则它的边数是多少?
B C
A
O
【第13题图】
(2)一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是多少?
27.如图所示,在△ABC中:
(1)画出BC边上的高AD和中线AE.
(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.
28.如图所示,BE平分∠ABD,DE平分∠CDB,BE和DE相交于AC上一点E,•如果∠BED=90°,试说明AB∥CD.
29.如图所示,直线AD 和BC 相交于O ,AB ∥CD ,∠AOC=95°,∠B=50°,•求∠A 和∠D .
30、如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠A =60º,
∠C =70º,求∠CAD ,∠BOA 。
A
B C E D
F O
【第30题图】。