-电磁振荡的周期和频率
电磁振荡知识点归纳总结

电磁振荡知识点归纳总结电磁振荡是电磁学中极为重要的概念,在电路、无线通信等领域有着广泛的应用。
本文将对电磁振荡的基本概念、特性以及相关知识点进行归纳总结。
一、电磁振荡的基本概念电磁振荡是指电荷和电磁场相互作用产生的周期性变化。
它是由电荷不断地在电磁场中来回运动而产生的,并且具有一定的频率和幅度。
电磁振荡可以通过建立起电容和电感的电路来实现,其中电容负责储存电荷,电感则负责储存磁场能量。
二、电磁振荡的特性1. 频率:电磁振荡的频率由振荡电路中的电感和电容决定。
频率的大小直接影响到振荡的周期和振幅,不同频率的电磁振荡在现实应用中有着不同的需求,例如无线通信中的频率选择。
2. 振幅:振荡电压或电流的峰值大小即为振幅,它决定了电磁振荡能量的大小。
振幅越大,表示振荡能量越强,对外界的影响也越明显。
3. 衰减:电磁振荡在振荡过程中会逐渐失去能量,这种现象称为衰减。
衰减程度取决于振荡电路中的电阻,电阻越大,衰减越明显。
4. 相位:电磁振荡中电压和电流的相对关系称为相位。
相位决定了电磁振荡的性质,例如同相位的电流和电压会增强振荡;反相位的电流和电压会减弱振荡。
三、电磁振荡的应用电磁振荡广泛应用于各个领域,包括电路、通信、雷达、电视、射频技术等。
1. 振荡器:电磁振荡在振荡器中得到应用,产生高频的电磁信号。
2. 收发器:无线通信中的收发器需要利用电磁振荡产生特定频率的信号,在发送和接收之间进行信号的变换和解调。
3. 激光器:激光器中的电磁振荡产生了一种相干光,从而形成了高强度、高单色性的激光光束。
4. 天线:天线是电磁场与自由空间之间的转换装置,它能够将电磁振荡转化为电磁波辐射出去,实现信号的传输和接收。
四、电磁振荡的关键实验1. RC振荡电路实验:通过连接一个电容和一个电阻组成的RC电路,可以观察到电容电压随时间的变化形成的振荡。
2. LC振荡电路实验:连接一个电感和一个电容组成的LC电路,可以观察到电流和电压之间形成振荡。
LC回路中电磁振荡的规律及周期和频率

LC 回路中电磁振荡的规律及周期和频率Wangqixue@ 邮编222100由自感线圈L 和电容器C 组成的电路,称为LC 回路,又称振荡电路.在LC 回路中,通过电容器的充电和放电及振荡线圈阻碍电流变化的作用,线圈中形成了周期性变化的振荡电流,电容器极板间形成了周期性变化的电荷,与电荷、电流对应的电场及磁场也做周期性变化.这种现象叫做电磁振荡.一、LC 回路的电磁振荡规律1.电荷q 、电流i 随时间t 的变化规律及两者之间的关系图1甲是电容器极板上电荷q 随时间t 做周期性变化的情况.图1乙是线圈中的电流i 随时间t 做周期性变化的情况,若电荷q 是按余弦(或正弦)规律变化的.电流i 则按正弦(或余弦)规律变化.二者之间是互余的的关系(如图1所示).— 因回路中的电荷一定,故当电容器极板上“聚集”电荷最多时,线圈中“流过”的电荷为零――电流为零,即max q q 0i ==时,;当电容器极板上“聚集”电荷减少(放电)时,线圈中“流过”的电荷增多――电流增大,即q ↓i ⇒↑;反之,当电容器极板上“聚集”电荷最少时,线圈中“流过”的电荷最多――电流最大.m ax q 0i i ==即时,;而当电容器极板上“聚集”的电荷增多(充电)时,线圈中“流过”的电荷减少――电流减小,即q ↑i ⇒↓. 2.电场能与磁场能的变化关系电磁振荡的过程实质上是电容器中的电场能和自感线圈中的磁场能相互转化的过程,若LC 回路中没有能量损失,在能量相互转化时,保持守恒.磁场能最弱时电场能最强,反之亦然.而且,电容器上的电荷q 、电压u 、两极板间的场强及电场能的变化步调一致,同增同减,同时达到最大或同时为零.而线圈中的电流i 、磁感应强度B 及磁场能的变化步调一致,同增同减,同时达到最大或同时为零.例1.LC 回路电容器两端的电压u 随时间t 变化的关系如图2所示,则( ) A. 在时刻t 1,电路中的 电流最大B. 在时刻t 2 ,电路中的磁场能最大C. 从时刻t 2至 t 3,电路中的电场能不断增大D. 从时刻t 3 至t 4,电容器的带电量不断增多解析:由LC 回路电磁振荡规律及图示可知,t 1时刻电容器两端电压u 最高⇒电容器极板上所带电量q 最大⇒电路中振荡电流i 最小;在t 2时刻电容器极板上两端电压u 为零⇒电容器极板上所带电量q 为零⇒电路中振荡电流i 最强⇒电路中的磁场能最大;在t 2至 t 3过程中,电容器两极板间电压u 在增大⇒电容器极板上所图1甲乙图2带电量q 在增多⇒电场能不断增大;在 t 3 至t 4的过程中,电容器两极板间电压u 在减小⇒电容器极板上所带电量q 在减小.正确选项为B 、C评注:这类问题应根据电荷与电流之间的变化关系判断.当max q q 0;i ==时,且 q ↓i ⇒↑;电容器上的电压u 、两极板间的场强及电场能与电荷q 变化步调一致.反之.当m ax q 0i i ==时;且 q ↑i ⇒↓,而线圈中磁感应强度B 及磁场能与电流i 的变化步调一致. 例2.某时刻LCA. 振荡电流i 在减小B. 振荡电流i 在增大C. 电场能正在向磁场能变化D. 磁场能正在向电场能变化解析:由图3中上极板带正电荷下极板带负电荷荷及电流的方向可判断出正电荷在向正极板聚集,说明电容器极板上电荷在增加,电容器正在充电.电容器充电的过程中电流减小,磁场能向电场能转化.正确选项为A 、D .评注:要判断电流是在增大还是在减小,可先判断出电容器是在充电还是在放电,而判断电容器是在充电还是在放电,不能单纯地由电流的方向决定,还应结合电容器两极板上电荷的分布情况.若图中电流的方向不变,而上极板带负电荷下极板带正电荷,则电容器是在放电(正、负电荷相互中和)例3.LC 振荡电路中,某时刻磁场方向如图4所示,则下列说法中错误的是( ) A. 若磁场正在减弱,则电容器上极板带正电 B. 若电容器正在放电,则电容器上极板带负电C. 若电容器上极板带正电,则线圈中电流正在增大D.若电容器正在放电,则自感电动势正在阻碍电流增大解析:由电流的磁场方向根据安培定则可判断出振荡电流在 回路中为顺时针方向,由于电容器极板的带电情况未知,必须 设出电容器带电的两种情况并结合电流的变化情况综合进行讨论.若该时刻电容器上极板带正电,则电容器在充电,电流减小,磁场减弱;若该时刻电容器上极板带负电,则电容器在放电;若电容器正在放电,则电荷减小,电流增大,由愣次定律知自感电动势阻碍电流增大.错误选项为C .评注:该题考查了安培定则、电磁振荡的规律及愣次定律,且电容器极板的带电情况未标明,故该题具有一定难度.例4.如图5所示电路中,L 是电阻不计的线圈,C 为电容器,R 为电阻,开关S 先是闭合的,现将开关S 断开,并从这一时刻开始计时,设电容器A 极板带正电时电荷为正,则电容器A 极板上的电荷q 随时间t 变化的图像是图6中的哪一个( )Ci图3A BL C S R图5 图4解析:开关S 闭合时,线圈中有自左向右的电流通过,由于线圈的电阻为零,线圈及电容器两端的电压为零.LC 回路的起始条件是线圈中电流最大,磁场能最大,电容器两极板的电荷为零,电场能为零.断开开关S 时,线圈中产生与电流方向相同的自感电动势,阻碍线圈中电流的减小,使LC 回路中电流方向沿瞬时针方向流动,从而对电容器充电,B 板带正电,A 板带负电,电荷逐渐增加,经4T 电量达最大,这时LC 回路中电流为零,由此可推知,电容器A 极板上的电荷q 随时间t 变化的图像是B 图.答案为B评注:该题中LC 回路产生电磁振荡的初始条件是线圈中电流最大,磁场能最大,电容器两极板的电荷为零,电场能为零.这种方式是先给回路提供磁场能.如果LC 回路的初始条件为电容器极板上的电量最大,而线圈中的电流为零,则电场能最大,磁场能为零.这种方式是先给回路提供电场能.二、电磁振荡的周期和频率电磁振荡完成一次周期性变化需要的时间叫做周期.一秒钟内完成的周期性变化的次数叫频率.如果没有能量损失,也不受其他外界的影响,这时电磁振荡的周期和频率叫做振荡电路的固有周期和固有频率.简称振荡电路的周期和频率.其公式分别为:T=2πf =两者之间是互为倒数的关系,即T=1f例5.LC 振荡电路的固有频率为f ,则( ) A. 电容器内电场变化的频率为f B. 电容器内电场变化的频率为2f C. 电场能和磁场能转化的频率为f D. 电场能和磁场能转化的频率为2f解析:电场能和磁场能是标量,只有大小在做周期性变化.所以电场能和磁场能转化的周期是电磁振荡周期的一半,转化的频率为电磁振荡频率的两倍.而电容器内电场变化ABCD图6的频率等于电磁振荡的频率.正确选项为A 、D .评注:LC 回路中的振荡电流、电压、电场强度、磁感应强度的方向和电容器极板上电荷的电性在电磁振荡的一个周期内改变两次.它们的频率与电磁振荡的固有频率相同.例6.如图7所示,LC 回路中振荡电流的周期为2×10-2s ,自振荡电流沿逆时针方向达最大值时开始计时,当t =3.4×10-2s 时,电容器正处于_______状态(填“充电”、“放电”、“充电完毕”或“放电完毕”).这时电容器的上极板________(填“带正电”、“带负电”或“不带电”). 解析:设t=3.4×10-2s =2×10-2s +1.4×10-2s =T+t ′, 则2T <t ′<34T ,且t 时刻和t ′时刻电路的振荡状态相同.做出振荡电流i -t 图象如图8,可知在2T ~34T 时间内,电流减小,电容器所带电荷增加,电容器处于充电状态,此时电流方向为顺时针方向,可判断出电容器的上极板带正电.答案:充电、带正电评注:根据电磁振荡具有周期性特点,在分析t >T 时刻的振荡情况时,可由变换式t =nT+ t ′求得t ′(n 为正整数,0<t ′<T ),再分析t ′时刻的振荡状态.L C 图7-图8。
高中物理电磁振荡和电磁波公式总结

高中物理电磁振荡和电磁波公式总结电磁振荡和电磁波是高中物理课程中非常重要的概念。
通过了解相关的公式,可以更好地理解电磁学的基本原理和应用。
本文将总结高中物理中与电磁振荡和电磁波相关的公式,并对其进行简要解释。
一、电磁振荡公式1. 阻尼振荡的周期公式:T = 2π√(m/k)T表示振荡的周期,m表示振荡体的质量,k表示弹簧的劲度系数。
2. 无阻尼振荡的周期公式:T = 2π√(L/C)T表示振荡的周期,L表示电感的感值,C表示电容的容值。
3. 能量守恒公式:E = 1/2kx² + 1/2mv²E表示振荡体的总能量,k表示弹簧的劲度系数,x表示振荡体的位移,m表示振荡体的质量,v表示振荡体的速度。
二、电磁波公式1. 电磁波的速度公式:v = fλv表示电磁波的传播速度,f表示频率,λ表示波长。
2. 电磁波的频率和周期公式:f = 1/Tf表示频率,T表示周期。
3. 电磁波的波长和频率公式:λ = v/fλ表示波长,v表示电磁波的速度,f表示频率。
4. 电磁波的能量公式:E = hfE表示电磁波的能量,h表示普朗克常数,f表示频率。
5. 光的频率和波长与介质的折射率公式:n₁/λ₁ = n₂/λ₂n₁和n₂分别表示两个介质的折射率,λ₁和λ₂分别表示入射光和折射光的波长。
三、简要解释1. 电磁振荡公式解释:阻尼振荡的周期公式说明了弹簧振子的周期与振子本身的质量和弹簧的劲度系数有关。
无阻尼振荡的周期公式说明了LC振荡电路的周期与电感的感值和电容的容值有关。
能量守恒公式表示了振荡体在振荡过程中机械能和动能之间的转换。
2. 电磁波公式解释:电磁波的速度公式是电磁波的基本特性,表示电磁波在真空和空气中的速度为光速。
电磁波的频率和周期公式表示电磁波的周期与频率之间的关系,频率是指单位时间内波的周期数。
电磁波的波长和频率公式表示波长与频率之间的关系。
电磁波的能量公式表示了电磁波的能量与频率之间的关系。
电磁振荡的周期和频率

一、电磁振荡的周期和频率 1.周期和频率:电磁振荡完成一次周期
性变化所需的时间叫做周期,一秒钟内 完成周期变化的次数叫做频率.
LC回路的周期和频率由回路本身的
特性决定.这种由振荡回路本身特性所 决定的振荡周期(或频率)叫做振荡电 路的固有周期(或固有频率),简称振 荡电路的周期(或频率).
2.在一个周期内,振荡电流的方向改 变两次;电场能(或磁场能)完成两次 周期性变化.
电容越大,容纳电荷就越多,充放电需 要的时间就越长,因而周期就长,频率 就低。线圈的电感L越大,阻碍电流变 化的延时作用就越强,使放电、充电的 时间就越长,
二、LC回路的周期和频率公式
• 大量实验表明: (1)电容增大时,周期变长(频率变低); (2)电感增大时,周期变长(频率变低); (3)电压升高时,周期不变(频率不变).
二、电磁振荡的周期 和频率
电磁振荡与简谐运动有很多相似之处, 它们运动都有周期性,我们知道振动的 周期只与其本身的条件有关,而电磁振 荡中的振荡电流周期又是由什么因素决 定的呢?电感L、电容C的大小对振荡的 快慢有怎样的影响?其它因素(q、i、U大 小)与周期有没有关系?
问题
(1)机械振动中,周期和频率的概念、意 义是什么?单摆周期由什么决定?
T 2 LC
f 1
2 LC
(1)式中各物理量T、L、C、f的单位分别
是s、H、F、Hz.
(2)适当地选择电容器和线圈,可使振荡 电路物周期和频率符合我们的需要.
结果表明,LC回路的周期和频率只与 电容C和自感L有关,跟电容器的带电多少和
回路电流大无关.
• 定性解释:
电容越大,电容器容纳电荷就越多, 充电和放电所需的时间就越长,因此周期 越长,频率越低;自感越大,线圈阻碍电 流变化的作用就越大,使电流的变化越缓 慢,因此周期越长,频率越低.
高中物理经典复习资料:电磁场和电磁波

【基础知识归纳】大小和方向都做周期性变化的电流叫做振荡电流.能产生振荡电流的电路叫振荡电路,L C 电路是最简振荡电路中产生振荡电流的过程中,线圈中的电流、电容器极板上的电量及其与之相联系的磁场能、1.振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能和磁场能的周期性2.振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零;电路中的电流和磁场能均增大,直到最大值.充电时,情况相反.电容器正反向充放电一次,便完成一次振荡的全过程.图13—2—1图13—2—13.周期和频率:电磁振荡完成一次周期性变化所用的时间叫做电磁振荡的周期.1 s 内完成电磁振荡的次数叫做电磁振荡的频率.对LCT =LCπ2 f =LCπ21三、电磁场和电磁波1(1(2)不仅电流能够产生磁场,变化的电场也能产生2变化的电场和磁场总是相互联系的,形成一个不可分割的统一体,即为电磁场,电磁场由近及远的传3在真空中,任何频率的电磁波的传播速度都等于光速c =3.00×108 m/s .其波速、波长、周期频率间关系为:c =Tλ=f λ(1)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验成功的证实了电磁波的存在. (2)在电磁波中,电场强度和磁感应强度是互相垂直的,且都和电磁波的传播方向垂直,所以电磁(3)电磁波的(41.调制:在无线电应用技术中,首先将声音、图象等信息通过声电转换、光电转换等方式转为电信号,这种电信号频率很低,不能用来直接发射电磁波.把要传递的低频率电信号“加”到高频电磁波上,1.电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最2.调谐:调谐电路的固有频率可以在一定范围内连续改变,将调谐电路的频率调节到与需要接收的某个频率的电磁波相同,即,使接收电路产生电谐振的过程叫做调谐.3.检波:从接收到的高频振荡中分离出所携带的信号的过程叫做检波.检波是调制的逆过程,也叫4.无线电的接收:天线接收到所有的电磁波,经调谐选择出所需要的电磁波,再经检波取出携带的电视系统主要由摄像机和接收机组成.把图象各个部位分成一系列小点,称为像素,每幅图象至少要有几十万个像素.摄像机将画面上各个部分的光点,根据明暗情况逐点逐行逐帧地变为强弱不同的信号电中国电视广播标准采用每1 s传送25帧画面,每帧由625雷达是利用无线电波来测定物体位置的无线电设备,一般由天线系统、发射装置、接收装置、输出装【方法解析】麦克斯韦电磁理论是理解电磁场和电磁波的关键所在,应注意领会以下内容:变化的磁场可产生电场,产生的电场的性质是由磁场的变化情况决定的,均匀变化的磁场产生稳定的电场,非均匀变化的磁场产生【典型例题精讲】[例1]L C振荡电路中,某时刻磁场方向如图13—2—2所示,则下列说法错误的是图13—2—2ABCD.若电容器【解析】先根据安培定则判断出电流的方向,若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B叙述正确,由楞次定律知D叙述亦正确.因而错误选项只有C【思考】(1)若磁场正在增强,则电场能和磁场能是如何转化的?电容器是充电还是放电?线圈两端的电压是增大还是减小?(2)若此时磁场最强(t=0),试画出振荡电流i和电容器上板带电量q随时间t变化的图象?(3)若使该振荡电路产生的电磁波的波长更短些,可采取什么措施?(包括:线圈匝数、铁芯、电介【思考提示】(1)磁场增强,磁场能增大,电场能减小,电容器放电,电容器两端电压降低,线圈(2LC,为减小λ,需减小L或C.(3)根据λ=cT和T=2π【设计意图】[例2]某电路中电场随时间变化的图象如图13—2—3所示,能发射电磁波的电场是图13—2—3【解析】变化的电场可产生磁场,产生的磁场的性质是由电场的变化情况决定的.均匀变化的电场图A中电场不随时间变化,不会产生磁场.图B和图C中电场都随时间做均匀的变化,在周围空间产生稳定的磁场,这个磁场不能再激发电场,所以不能激起电磁波.图D中电场随时间做不均匀的变化,能在周围空间产生变化的磁场,而这磁场的变化也是不均匀的,又能产生变化的电场,从而交织成一个不【设计意图】通过本例说明形成【达标训练】1.建立电磁场理论的科学家是_______.用实验证明电磁波存在的科学家是_______【答案】 麦克斯韦2 ABCD .电磁波的传播速度总是3.0×108m/s【答案】B3A .波长和频率BC .波长和波速D【答案】C4A .①③BC .①④D【答案】A5.关于电磁波,下列说法中正确的是 ABC.电磁波由真空进D【解析】 任何频率的电磁波在真空中的传播速度都是c ,故AB 都错.电磁波由真空进入介质,波速变小,而频率不变,C对.变化的电场、磁场由变化区域向外传播就形【答案】C6.无线电广播的中波段波长的范围是187 m ~560 m ,为了避免邻近电台的干扰,两个电台的频率范围至少应差104 Hz,则在此波段中最多能容纳的电台数约为多少个【解析】f max =1871038min⨯=λcHz =1.6×106Hzf min =5601038max⨯=λcHz =0.54×106Hzn =466min max 101054.0106.1⨯-⨯=-f f f ∆=106【答案】1067.某收音机接收电磁波的波长范围在577 m 到182 m【解析】 根据c =λff 1=57710381⨯=λcHz =5.20×105Hzf 2=18210382⨯=λcHz =1.65×106Hz所以,频率范围为5.20×105 Hz ~1.65×106Hz【答案】 5.20×105 Hz ~1.65×106Hz8.关于LCA BC D【答案】9.L C 振荡电路中,某时刻的电流方向如图13—2—4所示,则下列说法中正确的是A BCD .【答案】D10.在L C 振荡电路中,电容器C 的带电量随时间变化的图象如图13—2—5所示,在1×10-6 s 到2×10-6s 内,关于电容器的充(或放)电过程及因此产生的电磁波的波长,正确的结论是A .充电过程,波长为1200 m B .充电过程,波长为1500 m C .放电过程,波长为1200 m D .放电过程,波长为1500 m【解析】 在1×10-6s 到2×10-6s 内,电容器带电量增大,属充电过程.产生的电磁波周期T =4×10-6s ,波长λ=cT =3×108×4×10-6 m =1200 m【答案】 A11.L C 振荡电路中,某时刻磁场方向如图13—2—6所示,则下列说法错误的是图13—2—6A B C D【解析】 若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A 正确.若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B 正确,由楞次定律知D【答案】12.在L C 振荡电路中,电容C 两端的电压U C 随时间变化的图象如图13—2—7所示,根据图象可以确定振荡电路中电场能最大的时刻为_______,在T /2~3T /4时间内电容器处于_______状态,能量转化情况是_______【解析】 电容器两极板间电压最大时,电场能最大,由图可知电场能最大时刻为0,2T ,T .在2T ~43T 时间内,两极板间电压变小,电容器处于放电状态,电场能正转化为磁场能.T【答案】0,2,T;放电;电场能转化为磁场能。
第1节 电磁振荡

第1节 电磁振荡[学习目标要求] 1.知道什么是振荡电流和振荡电路。
2.知道LC 振荡电路中振荡电流的产生过程,知道电磁振荡过程中能量转化情况。
3.知道电磁振荡的周期和频率,知道LC 电路的周期和频率与哪些因素有关,并会进行相关的计算。
一、电磁振荡的产生1.要产生持续变化的电流,可以通过线圈和电容器组成的电路实现。
2.振荡电流:大小和方向都做周期性迅速变化的电流。
3.振荡电路:产生振荡电流的电路。
4.LC 振荡电路:由电感线圈L 和电容C 组成的电路就是最简单的振荡电路。
5.电磁振荡:在整个过程中,电路中的电流i 、电容器极板上的电荷量q 、电容器里的电场强度E 、线圈里的磁感应强度B ,都在周期地变化,这种现象就是电磁振荡。
二、电磁振荡中的能量变化 1.能量变化过程(1)电容器刚放电时:电场最强,电场能最大。
(2)开始放电后:电场能――→转化磁场能。
(3)放电完毕:电场能为零,磁场能最大。
(4)反向充电:磁场能――→转化电场能。
(5)反向充电完毕:电场能最大。
2.等幅振荡振荡电路的能量会逐渐减小,适时地把能量补充到振荡电路中就可以得到振幅不变的等幅振荡。
【判一判】(1)LC振荡电路的电容器放电完毕时,回路中磁场能最小。
(×)(2)LC振荡电路的电容器极板上电荷量最多时,电场能最大。
(√)(3)LC振荡电路中电流增大时,电容器上的电荷一定减少。
(√)(4)LC振荡电路的电流为零时,线圈中的自感电动势最大。
(√)三、电磁振荡的周期和频率1.周期:电磁振荡完成一次周期性变化需要的时间。
LC振荡电路的周期公式T =2πLC。
2.频率:电磁振荡完成周期性变化的次数与所用时间之比叫作它的频率。
数值上等于单位时间内完成的周期性变化的次数。
LC振荡电路的频率公式f=1,式中T、f、L、C的单位分别是秒(s)、赫兹(Hz)、亨利(H)、法拉(F)。
2πLC【判一判】(1)在振荡电路中,电容器充电完毕的瞬间磁场能全部转化为电场能。
电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
电磁振荡

物理现象
01 简介
03 类别
Байду номын сангаас目录
02 周期频率 04 特性
05 多谐振
07 LC电路
目录
06 的产生 08 术语
基本信息
电磁振荡是指在电路中,电荷和电流以及与之相的电场和磁场周期性地变化,同时相应的电场能和磁场能在 储能元件中不断转换的现象。
简介
1
举例
2
公式
3
原理
4
过程
5
电谐振
举例
例如,在由纯电容和纯电感组成的电路中,电流的大小和方向周期性地变化,电容器极板上的电荷也周期性 地变化,相应的电容内储存的电场能和电感内储存的磁场能不断相互转换。由于开始时储存的电场能或磁场能既 无损耗又无电源补充能量,电流和电荷的振幅都不会衰减。这种往复的电磁振荡称为自由振荡,相应的振荡频率 称为电磁振荡的固有频率,相应的周期称为电磁振荡的固有周期。
过程
电容器通过自感线圈放电,由于自感作用总是阻碍电流的变化,所以电路里的电流不能立刻达到最大值,而 是由零逐渐增大.这时,线圈周围的磁场逐渐增强,电容器里的电场因极板上电荷逐渐减少而逐渐减弱。这样, 电路里的电场能逐渐转化为磁场能.当电容器放电完毕,Q=0时,电路中的电流达到最大值,电场能全部转化为 磁场能.
术语
术语
在LC电路中,L代表电感,单位:亨利(H),C代表电容,单位:法拉(F)。 电磁振荡完成一次周期性变化需要的时间叫做周期,一秒内完成的周期性变化的次数叫做频率。 振荡电路中发生电磁振荡时,如果没有能量损失,也不受其他外界的影响,这是电磁振荡的周期和频率,叫 做振荡电路的固有频率和固有周期。固有周期可以用下式求得 其时间常数为L/R.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁振荡的周期和频率
一、教学目标
1.理解LC振荡电路的固有周期(或固有频率)的决定因素.
2.会应用公式定性分析讨论有关问题,并能正确应
用公式进行相关的计算.
3.通过演示实验(改变LC回路的电感L或电容C),观察振荡电流的周期、频率的变化情况,分析、归纳得到L大、C大周期长的结论,培养学生分析综合能力及理解能力.
二、重点、难点分析
1.LC振荡电路的周期公式、频率公式是教材的重点内容.通过实验现象的观察得到;电路中振荡电流的周期、浙率随着LC回路中的电感L或电容C的改变而改变,并定性地得到电感L大(小)、电容C大(小)周期长(短)的结论.如有条件可用秒表测量周期,进行简单测量、计算,用比例法进行估算T与L、C 值的关系,将会更有说服力.
2.分别从电容器的充放电作用和电感线圈的自感作用,对公式进
行定性分析.说明如何理解L大、C大周期长的结论.以利于加深对公式的理解,并有利于培养和提高学生的理解能力和分析能力.
3.应用公式或进行计算时,要强调公式中各个物理量
的单位;
各单位都要使用它们的国际单位制中的主单位.
三、教具
1.LC振荡回路示教板,准备两个以上电感不同的线圈(可拆变压器的2 20V 线圈)和电容器,如有条件可备用电压较高的直流电源(例如45V的干电池等),演示时阻尼振荡现象更明显.
2.大屏幕示波器(观察振荡电流周期变化情况)等.
四、主要教学过程
(-)引入新课
在以前研究弹簧振子、单摆在做简谐振动的过程中,已经知道振动的周期(或频率)只与其本身的条件有关,例如弹簧振子的周期只取决于轻弹簧的劲度系数足和振子的质量;单摆的周期只取于摆长l和当地的重力加速度g的大小,而与其它因素无关,那么LC回路中的振荡电流的周期(或频率)又是由什么因素决定的?电感L、电容C的大小对振荡的快慢有怎样的影响?与电容器带电量的多少(或电压的高低)有没有关系?下面就来研究这个问题.
(二)主要教学过程设计
1.提出问题.
(l)机械振动中,周期和频率的概念、意义是什么?单摆做简谐振动中,它的周期和频率由什么决定?
启发同学答出:
(2)电磁振荡或振荡电流变化的快慢如何来描述?那么,电磁振荡的周期
和频率的意义是什么?
在同学回答的基础上,归纳指出:振荡电路里发生无阻尼自由振荡时的周期和频率叫做振荡电路的固有周期和固有频率.
对比,联系单摆的振动,初步猜测一下电磁振荡的周期和频率与什么因素有关系?与LC回路中的电感L、电容C有何种关系(定性)?
2演示实验.
简介图1所示电路:多抽头带铁心的线圈,L值较大(可用可拆变压器的220 V或二个110 V线圈串联而成);2~3个电解电容器(100μF,500 μF,1000μF)·演示电流表(指针在表盘中央),H个电源(6 V、45 V)等.操作和观察:观察什么?(电流表指
针摆动的快慢)选用不同的L或C值,
发生电磁振荡时,电流表指针摆动的快
慢程度(周期和频率)与L、C值的初步
关系是什么?
启发同学根据实验现象,推理、分
析得到:①电容C不变时,电感L越大,
振荡周期T就越长,频率变低;②当电
感L不变时,电容C越大,振荡周期就越长,频率变低.
换用不同电压的电源,当L、C值不变时,表针摆动的快慢程度相同(仅摆动次数不同).
在同学回答的基础上.小结指出:
LC振荡电路的固有周期(T)和固有频率(f),决定干电路中线圈的电感L 和电容器的电容C.
提出问题:上述现象如何解释?
归纳指出:电容越大,容纳电荷就越多,充放电需要的时间就越长,因而周期就长,频率就低;线圈的电感L越大,阻碍电流变化的延时作用就越强,使放电、充电的时间就越长,因而周期就越长,频率就越低.总而言之,LC电路的周期和频率由电路本身的性质(L、C的值)决定,与电容器的带电量的多少、电流大小无关.
3.固有周期和固有频率公式.
大量精确的实验和电磁学理论都证明:电磁振荡的固有周期T,跟LC电路中电感L和电容C的乘积的平方根成正比,即.各物理量都用国际单位制单位,比例系数为2π则有公式
式中T、f、L、C的单位分别是秒、赫兹、亨利和法拉(单位符号是s、Hz、H、F).
上式表明:适当地选择电容C和电感L,就可以使电路的固有周期和频率符合我们的各种需要.通常应用中是用可变电容器和电感线圈组成LC电路.要得到不同周期和频率的振荡电流,可通过简便地改变可变电容器的电容C来实现,如图2所示;亦可通过改变电感L来实现,如图3所示.
4.巩固练习(含机动内容).
例1如图4所示的LC振荡电路中,可变电容器C的取值范围为10 PF~360 PF,线圈的电感L=0. 10 H.求此电路能获得的振荡电流的最高频率多大?最低频率又为多少?
解析:因为LC电路的固有频率为,当L不变时,则有,
可知当电容C
为最小值时(即C=10PF)振荡电流的频率最高,当电容C为最大值时(即C2=360 PF)振荡电流的频率最低.所以由题给条件,即可求得最高和最低频率.计算时注意各量要用相应的国际单位制的主单位;电容C1=10 PF=10×10-12F=1×10-11F,C2=360PF=360×10-12F=3.6×10-10F,则有
最高频率f1和最低频率f2分别为
例2有一LC振荡电路,当电容调节为C1=200 PF时,能产生频率为f1=500 kH z的振荡电流,要获得频率为f2=1.0×103 kH z的振荡电流,则可变容器应调至多大?(设电感L保持不变)
解析:在已知电容C;和固有频率人的条件下,根据公式入一1/27tVLC;可求出线圈电感L.则
再应用频率公式,即可求得f2=1.0×103 kH z时对应的电容C2值:因为1
所以
方法对,但较繁,是否有简便一些的方法?应用比例法求解较为简捷,由公式,可知,本题中则有
故有
例3在图5(甲)中,LC振荡电路中规定图示电流方向为电流i的正方向,则振荡电流随时间变化的图像如图5(乙)所示.
那么,电路中各物理量在一个周期内的情况是:
________时刻,电容器上带电量为零;
________时刻,线圈中的磁场最强;
________时刻,电容器两板间的电场强度值最大;
________时刻,电路中电流达到反向最大值;
在________时间内是对电容器的充电过程.
解析:分析这类问题的关键是要搞清电场能和磁场能相互转化的过程,以及它所对应的物理状态和物理量间的关系.由题图可知电容器C正在放电,当t=0时,C带电量最多,两板间电压最大,电场能也最大.而此时磁场能最小(为零).对应的电流i最小(为零);随着C放电的持续,带电量、电压、电场能将逐渐减小,而磁场能、电流i将逐渐变大.当C放电完毕时,电场能减为零,C带电量、电压也减为零,而磁场能、电流达到最大,之后由于电感L和电容C的作用,将对电容反向充电,直至最大.依此类推,故可得知,A、C时刻电流最大,磁场最强,电场为零,C带电量为零.当电流为零时(对应图中的O、B、D),电容器上带电量最多,相应的电场强度值为最大.同理可知C时刻电流达到最大,电容经过T/4放电完毕后,紧接着又对电容反向充电,又经T/4,充电到最大值,即带电量、电压、电场能达最大,磁场能、电流变为零,这个过程对应着图中的A B,类似的道理可知C D 也是对电容的充电过程.
(三)课堂小结
1.LC振荡电路的周期公式、频率公式要理解其物理含义,它只由电路本身的特性(L、C值)决定,所以叫做固有周期和固有频率,应用中,通过改变LC 回路中的电感L或电容C,周期和频率也随之改变,满足各种需要.
2.应用周期公式、频率公式进行计算时,要特别注意各物理量的单位,常用电容器的单位有微法(μF)和皮法(PF),代入公式时一定要换为法(F),电感L的单位有时是毫亨或微亨(mH或μH),代入公式时要换为亨(H),这样得到的周期和频率的单位才是正确的(秒和赫兹).
(四)布置作业
本节书后练习外加一个补充题(计算题或论述题).
五、教学说明
1.LC振荡电路的周期公式、频率公式,现阶段不能从其它知识推导出来,所以做好演示实验就显得尤为重要.改变电感L或电容C时,观察指针摆动的快慢,定性得到T、f随L、C值变化的关系.如果实验条件较好,能找到几个有准确值的电容器和电感线圈,再配合以秒表计时,就能得到粗略的函数关系(测
4次,用比例法,可归纳得出).
2.演示实验后,直接给出周期公式、频率公式后,可由电感和电容器的作用引导同学理解公式的含义:“只由本身的L、C值决定”.
3.应用公式计算时,一定要注意各量的单位(此处容易出错),在用比例法解题时,同一物理量的单位相同即可,不一定要换成国际单位制中的主单位.
(北京四中董连生)。