浅谈红外线传感器的原理和应用

合集下载

红外线传感器的原理及应用

红外线传感器的原理及应用

红外线传感器的原理及应用红外线传感器是一种常见的电子设备,广泛应用于许多领域,包括安防监控、自动化控制、人机交互等。

本文将介绍红外线传感器的工作原理以及其在不同领域的应用。

一、红外线传感器的工作原理红外线传感器通过感知、接收和解读环境中的红外辐射来完成测量和控制的任务。

它的工作原理基于红外辐射的特性,主要分为两种类型:主动式红外线传感器和被动式红外线传感器。

1. 主动式红外线传感器主动式红外线传感器通过自身发射红外辐射来进行目标检测。

其内部包含红外发射器和红外接收器两个重要组件。

红外发射器会以特定频率发射红外光束,而红外接收器则用于接收反射回来的红外信号。

当有物体进入红外光束的传感范围时,部分光束会被该物体反射回来,经过红外接收器接收后,被转换成电信号。

通过对接收到的信号进行处理,主动式红外线传感器可以判断物体的存在与否、位置以及运动状态。

2. 被动式红外线传感器被动式红外线传感器是通过接收环境中的红外辐射来进行目标检测。

它不发射红外光束,而是依靠接收器来接收周围物体本身发出的红外辐射。

被动式红外线传感器内部包含红外接收器和信号处理器。

红外接收器接收环境中物体发出的红外辐射,并将其转换成相应的电信号。

信号处理器会对接收到的信号进行滤波、放大和解码等处理,从而得出环境中物体的信息。

二、红外线传感器的应用红外线传感器由于其特殊的工作原理和灵敏度,被广泛应用于各个领域。

以下是一些常见的应用场景:1. 安防监控红外线传感器在安防监控系统中扮演重要角色。

通过布置红外传感器,可以实时监测和检测人体的活动,当有人闯入禁区时,系统会及时发出警报。

2. 自动化控制红外线传感器在自动化控制系统中起到关键作用。

例如,智能家居系统中的灯光和自动门禁系统中的门都可以根据红外传感器接收到的信号进行自动开关。

3. 人机交互红外线传感器在人机交互领域有着广泛的应用。

例如,触摸屏、手势识别和虚拟现实设备等都使用红外传感器来感知用户的操作和动作。

红外线传感器的工作原理

红外线传感器的工作原理

红外线传感器的工作原理红外线传感器是一种能够感知红外线辐射并将其转化成电信号的设备。

它广泛应用于无人机导航、安防系统、人体检测等领域。

本文将介绍红外线传感器的工作原理及其应用。

一、工作原理红外线传感器基于材料的电磁特性,利用红外线辐射与物体之间的相互作用,实现对红外线的探测。

其工作原理主要涉及热辐射、红外敏感材料和电信号转化。

1. 热辐射物体的热辐射是指在一定温度下,物体所发出的能量辐射。

根据斯特藩-玻尔兹曼定律,热辐射功率与物体的温度的四次方成正比。

因此,通过测量红外线接收器接收到的热辐射功率,可以间接测量物体的温度.2. 红外敏感材料红外线传感器的核心部件是红外敏感材料,其具有较高的红外辐射吸收能力。

常见的红外敏感材料有硫化镉、硫化铟等。

这些材料能够将红外辐射吸收后,产生电荷分离,并产生相应的电信号。

3. 电信号转化红外敏感材料吸收红外辐射后,会产生电信号。

这些电信号通过传感器内部的电路进行放大和过滤,然后转化成可以被控制器或处理器读取的电压信号。

控制器或处理器通过读取电压信号的大小,可以判断红外线的强度,从而实现对物体的探测。

二、应用领域1. 无人机导航红外线传感器在无人机导航中起到关键作用。

通过安装红外线传感器,无人机可以准确感知周围的障碍物、地形变化等,并将这些信息传递给控制系统,以实现自主飞行和避障。

2. 安防系统红外线传感器被广泛应用于安防系统中,用于检测人体的活动。

当有人进入安装有红外线传感器的区域时,传感器会感知到人体发出的红外辐射,从而触发报警系统。

这种应用能够在一定程度上提高安防系统的准确性和可靠性。

3. 温度测量红外线传感器还可以用于非接触式温度测量。

由于红外辐射与物体温度相关,所以通过测量红外线辐射能量的大小,可以获得物体的表面温度。

这种测量方式非常适用于高温或无法直接接触的环境,例如火山喷发监测、工业生产等领域。

4. 自动化控制红外线传感器也被广泛应用于自动化控制系统中,例如自动门、自动马桶等。

红外线传感器的应用及工作原理

红外线传感器的应用及工作原理

红外线传感器的应用及工作原理一、引言红外线传感器是一种能够感知红外线并将其转换为电信号的装置。

它在许多领域中得到广泛应用,如安防系统、电子设备、自动化控制等。

本文将介绍红外线传感器的应用领域和工作原理。

二、红外线传感器的应用红外线传感器在以下领域中经常被使用:1. 安防领域红外线传感器常用于安防系统中,用于检测人体或物体的移动。

当传感器检测到红外线信号时,可以触发警报或其他安全措施。

这种应用广泛应用于家庭安防系统、办公室安保系统等。

2. 电子设备红外线传感器也被广泛应用于电子设备中,如智能手机、电视遥控器等。

智能手机中的红外传感器可以用于红外线遥控器,使用户可以通过手机控制电视、空调等电子设备。

3. 自动化控制红外线传感器在自动化控制系统中也有重要的应用。

例如,在自动门系统中,红外线传感器可以检测门口的人员,当有人靠近门口时,传感器会向系统发送信号,触发门的开启。

这种应用也可以在自动售货机、自动灯光控制等领域中看到。

4. 温度检测红外线传感器还可以用于温度检测。

红外线辐射是物体温度的一种表现,红外线传感器可以通过检测物体辐射的红外线来计算物体的温度。

这种应用在工业生产中非常常见,用于监测设备的温度以及工艺过程中的温度控制。

三、红外线传感器的工作原理红外线传感器的工作原理基于物体对红外线的辐射和反射。

其基本原理如下:1.发射红外线:红外线传感器中包含一个红外线发射器,通过电流的作用,发射器会产生红外线的辐射。

2.接收反射红外线:红外线传感器中还包含一个红外线接收器,用于接收物体反射的红外线。

3.转换为电信号:当红外线接收器接收到红外线时,会将其转换为电信号。

转换的方法通常是通过光敏电阻或光敏二极管等光传感器件。

4.信号处理:红外线传感器通过信号处理电路对接收到的电信号进行处理,得到相应的输出信号。

这些输出信号可以是数字信号或模拟信号,具体取决于传感器的类型和应用场景。

5.应用和控制:处理后的信号可以被用来触发相关的应用或控制系统。

红外线传感器的工作原理

红外线传感器的工作原理

红外线传感器的工作原理红外线传感器是一种常见的电子设备,用于检测和感应周围环境中的红外线信号。

它广泛应用于安防系统、自动化控制、家用电器、机器人等领域。

本文将介绍红外线传感器的工作原理及其应用。

一、红外线传感器的基本原理红外线是一种电磁波,其波长范围大致在0.75至1000微米之间。

红外线传感器利用物体在特定波长范围内的热辐射来感知物体的存在和位置。

一般来说,红外线传感器包括发射器和接收器两部分。

1. 发射器:发射器通常使用红外二极管,以频率为大约38kHz的脉冲信号作为源发射红外线。

红外线发射器将电能转化为红外线能量,并向周围环境发射红外线信号。

2. 接收器:接收器通常使用光电二极管或红外线传感器芯片,用于接收从物体反射回来的红外线信号。

当红外线信号照射到接收器上时,光电二极管或红外线传感器芯片将其转换为电能信号。

二、红外线传感器的工作过程红外线传感器的工作过程可以总结为以下几个步骤:1. 发射红外线信号:红外线传感器中的发射器产生一个特定频率的脉冲信号,将电能转化为红外线信号。

这些红外线信号以一定的范围散射到周围环境中。

2. 接收红外线信号:接收器接收周围环境中反射回来的红外线信号。

当有物体进入传感器的感应范围内时,物体会反射一部分红外线信号,并被接收器接收到。

3. 转换为电信号:接收器中的光电二极管或红外线传感器芯片将接收到的红外线信号转换为相应的电信号。

信号的强度和频率将被转化为电压或频率的变化。

4. 预处理和信号处理:接收到的电信号将进一步进行预处理,如放大、滤波和去噪。

然后,信号经过处理电路进行分析和解码。

5. 结果输出:最终,红外线传感器将根据所接收到的信号进行输出。

根据不同的应用需求,输出信号可以是模拟信号或数字信号。

三、红外线传感器的应用领域红外线传感器凭借其便捷、高效和可靠的特性,在许多领域得到了广泛应用。

1. 安防系统:红外线传感器被广泛应用于安防系统,用于检测人体或其他物体的存在。

红外线传感器原理及应用

红外线传感器原理及应用

红外线传感器原理及应用红外线传感器是一种能够感知和测量红外辐射的设备。

它通过接收和分析物体所发射或反射的红外辐射来实现目标检测和测距。

红外线传感器的工作原理主要基于物体的热能辐射特性,利用红外线的特定波长范围进行探测。

红外线传感器主要由发射器和接收器两部分组成。

发射器会产生一定波长的红外线,然后将红外线照射到目标物体上。

目标物体会根据其温度和性质发射出不同强度和频率的红外辐射。

接收器会接收到目标物体发射或反射的红外线,并将其转化为电信号。

通过分析接收到的电信号,红外线传感器可以判断目标物体的存在、距离、形状等信息。

红外线传感器广泛应用于许多领域。

以下是几个常见的应用领域:1. 运动检测与人体检测:红外线传感器可以用于监控系统、安防系统等,通过检测目标物体的红外辐射来实现运动检测和人体检测。

当有人或动物进入监测范围时,红外线传感器会立即发出信号,从而触发相应的警报或控制系统。

2. 温度测量与控制:红外线传感器可以用于测量物体的表面温度。

通过测量红外辐射的强度和频率,红外线传感器可以准确地获取物体的温度信息。

这在工业自动化控制、医疗器械等领域有着广泛的应用。

3. 遥控与通信:红外线传感器也被广泛应用于遥控和通信领域。

例如,遥控器中的红外发射器可以发射特定频率的红外线信号,从而实现对电视、空调、音响等设备的控制。

此外,红外线传感器还可以用于无线通信,例如红外线数据传输、红外遥测等。

4. 智能家居与自动化系统:红外线传感器在智能家居和自动化系统中也发挥着重要作用。

它可以用于检测房间内是否有人,从而实现智能照明、智能安防等功能。

此外,红外线传感器还可以用于控制家电设备的开关,提高家居生活的便利性和舒适度。

总结起来,红外线传感器是一种基于物体红外辐射特性的设备,可以用于目标检测、测距和温度测量等应用。

它在运动检测、温度控制、遥控通信以及智能家居等领域具有广泛的应用前景。

随着科技的发展和创新,红外线传感器的性能将不断提升,应用范围也将更加广泛。

红外线传感器的应用及原理

红外线传感器的应用及原理

红外线传感器的应用及原理一、引言红外线传感器是一种重要的电子元件,它能够探测和测量周围环境中的红外辐射。

红外线传感器常见于许多应用领域,如安防系统、自动化控制、远程通信等。

本文将介绍红外线传感器的基本原理以及其在各个领域中的应用。

二、红外线传感器的原理红外线传感器基于物质的红外辐射特性工作。

红外线是一种电磁辐射,其波长介于可见光和微波之间,无法被肉眼直接看到。

红外线传感器通过检测周围环境中的红外辐射来实现不同的功能。

红外线传感器主要由以下几个部分组成:1.发射器:发射红外线辐射的装置。

2.接收器:接收并转换周围环境中的红外辐射。

3.过滤器:用于滤除其他频段的辐射,只保留红外线。

4.信号处理电路:将接收到的红外信号转换成电信号进行处理。

红外线传感器的工作原理如下:1.发射器发出红外线辐射,经过过滤器滤除其他频段的辐射。

2.环境中的物体反射或发射红外线辐射,一部分红外线辐射被接收器接收。

3.接收器将接收到的红外线辐射转换成电信号。

4.信号处理电路对接收到的电信号进行分析和处理。

5.根据处理后的信号,判断是否存在目标物体、目标物体的距离或其它特征。

三、红外线传感器的应用红外线传感器在各个领域中有广泛的应用。

下面列举一些常见的应用场景:1. 安防系统红外线传感器在家庭和工业安防系统中广泛应用。

它可以用作入侵报警器的一部分,当有人或其它动物进入监控区域时,红外线传感器可以及时检测到其存在。

此外,红外线传感器可以用于监控烟雾和火焰的存在,提高家庭和工业环境的安全性。

2. 自动化控制红外线传感器在自动化控制领域有重要应用。

例如,自动门控制系统中的红外线传感器可以检测到人员的接近,并自动打开门。

此外,红外线传感器还可以用于自动照明系统,根据环境亮度和人员活动来实现灯光的自动开关。

3. 远程通信红外线传感器可以用于远程通信,如红外线遥控器。

红外线遥控器通过发射红外线信号来控制设备,如电视、空调等。

此外,红外线通信还广泛用于红外线无线数据传输,如红外线数据传输设备和红外线数据收发器。

红外式传感器的原理及应用

红外式传感器的原理及应用

红外式传感器的原理及应用1. 引言红外式传感器是一种用于检测周围环境中红外辐射的装置。

它能够通过接收和解析入射红外光的信号,实现对目标物体的检测和测量。

本文将介绍红外式传感器的原理以及其在不同领域的应用。

2. 红外辐射原理红外辐射是一种电磁辐射,波长介于可见光和微波之间。

红外辐射能够被物体产生和吸收。

红外式传感器利用物体产生的红外辐射来实现对物体的检测。

红外式传感器主要基于以下两个原理工作:2.1 热辐射原理根据维恩位移定律,温度越高的物体产生的红外辐射能量越大,且波长越短。

红外式传感器通过测量从目标物体发射出的红外辐射,实现对目标物体的检测。

2.2 反射原理物体在红外辐射的照射下,会反射部分红外光。

红外式传感器可以通过接收反射的红外光来判断物体的位置、形状和距离。

3. 红外式传感器的组成红外式传感器主要由以下几个组件构成:3.1 发射器发射器负责发射红外光,通常使用红外发光二极管作为发光源。

3.2 接收器接收器用于接收目标物体发射的或反射的红外光。

它通常采用光敏二极管作为接收元件。

3.3 滤波器滤波器用于过滤掉非红外波段的光线。

它可以让只有特定波长的红外光通过,提高传感器的信噪比。

3.4 放大器与处理电路放大器用于放大接收到的红外光信号,然后经过处理电路的处理,得到最终的输出结果。

4. 红外式传感器的应用红外式传感器在各行各业中都有广泛的应用。

以下列举了一些常见的应用领域:4.1 安防系统红外式传感器可以通过检测周围环境中的红外辐射,实现安防系统的入侵检测。

它可以检测到目标人员的活动,并及时发出警报,从而起到保卫安全的作用。

4.2 自动化控制红外式传感器可以用于自动化控制系统中,实现物体的检测和识别。

例如,在自动门系统中,红外式传感器可以检测到有人靠近门口,然后触发门的自动打开。

4.3 温度测量红外式传感器可以测量物体表面的温度。

通过测量物体发射的红外辐射,红外式传感器可以计算出物体的温度。

这种技术可以应用在工业领域中,实现对设备温度的监测和控制。

红外线传感器工作原理

红外线传感器工作原理

红外线传感器工作原理红外线传感器是一种常见的电子元件,广泛应用于安防、智能家居、机器人等领域。

它通过感知和接收红外线辐射来实现物体检测和距离测量。

本文将介绍红外线传感器的工作原理,以及其在实际应用中的作用。

一、红外线的概述红外线是一种电磁辐射,它的波长范围在可见光和微波之间。

与可见光不同,人眼无法直接感知红外线,但它的能量仍然可以被物体吸收和辐射。

红外线具有很强的穿透力,可以在一定范围内穿透透明材料如玻璃和塑料。

二、红外线传感器的组成红外线传感器通常由发射器和接收器两部分组成。

发射器负责发射红外线辐射,而接收器则接收这些辐射并进行信号处理。

1. 发射器红外线传感器的发射器通常由红外发光二极管(IR LED)构成。

当发射器受到电流驱动时,它会发出红外线信号,并将其辐射到周围环境中。

2. 接收器红外线传感器的接收器通常由一种叫做红外光敏二极管(IR photodiode)的元件构成。

接收器对红外线辐射非常敏感,当接收到红外线信号时,会产生电流变化的响应。

这个电流变化可以被放大和处理,以产生与探测目标相关的输出信号。

三、红外线传感器的工作原理红外线传感器利用物体对红外线的吸收和辐射特性来实现目标检测和测量。

接下来将详细介绍红外线传感器的工作原理。

1. 目标检测当发射器发出红外线信号后,这些信号会被周围的物体吸收或反射。

如果有目标物体出现在传感器的感知范围内,该物体会吸收或反射一部分红外线信号,并将其反射回传感器面前的接收器。

2. 信号检测接收器接收到反射回来的红外线信号后,会产生一个电流变化的响应。

这个响应可以通过电路放大,并经过滤波和去噪等处理,以消除干扰。

3. 信号处理经过电路处理后的信号,可以被转换为数字信号或模拟信号,用于接收到的红外线信号的解析和输出。

这样,我们可以获得与目标物体相关的信息,如距离、位置等。

四、红外线传感器的应用红外线传感器由于其灵敏度高、反应速度快、成本低等优点,在多个领域得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈红外线传感器的原理与应用第一章绪论• 1.1引言•宇宙间的任何物体只要其温度超过零度就能产生红外辐射,事实上同可见光一样,其辐射能够进行折射和反射,这样便产生了红外技术,利用红外光探测器因其独有的优越性而得到广泛的重视,并在军事和民用领域得到了广泛的应用。

军事上,红外探测用于制导、火控跟踪、警戒、目标侦查、武器热瞄准器、舰船导航等;在民用领域,广泛应用与工业设备监控、安全监视、救灾、遥感、交通管理以及医学诊断技术等。

红外探测就是用仪器接受被探测物发出或者反射的红外线,从而掌握被测物所处位置的技术。

作为红外探测系统的核心期间,红外传感器(也称为红外探测器)的研究成为一个热点。

第二章红外传感器控制的理论依据• 2.1红外传感器概念•定义:红外传感器(也称为红外探测器)是能将红外辐射能转换成电能的光敏器件。

• 2.22红外传感系统分类•红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:•1)辐射计,用于辐射和光谱测量;•2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;•3)热成像系统,可产生整个目标红外辐射的分布图像;•4)红外测距和通信系统;•5)混合系统,是指以上各类系统中的两个或者多个的组合。

• 2.23红外光简介•红外光是太阳光谱的一部分,红外光的最大特点就是具有光热效应,辐射热量,它是光谱中最大光热效应区。

红外光一种不可见光,与所有电磁波一样,具有反射、折射、散射、干涉、吸收等性质。

红外光在真空中的传播速度为3×108m/s。

红外光在介质中传播会产生衰减,在金属中传播衰减很大,但红外辐射能透过大部分半导体和一些塑料,大部分液体对红外辐射吸收非常大。

•不同的气体对其吸收程度各不相同,大气层对不同波长的红外光存在不同的吸收带。

红外辐射的物理本质是热辐射。

物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。

研究发现,太阳光谱各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红外辐射的频率范围内,因此人们又将红外辐射称为热辐射或热射线。

第三章红外线传感器的工作原理• 3.1红外线传感器分类及其原理•红外线传感器依动作可分为:•(1)将红外线一部份变换为热,藉热取出电阻值变化及电动势等输出信号之热型。

•(2)利用半导体迁徙现象吸收能量差之光电效果及利用因PN接合之光电动势效果的量子型。

热型的现象俗称为焦热效应,其中最具代表性者有测辐射热器,热电堆及热电元件。

•利用红外线的物理性质来进行测量的传感器。

红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。

任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。

红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。

•红外线传感器包括光学系统、检测元件和转换电路。

光学系统按结构不同可分为透射式和反射式两类。

检测元件按工作原理可分为热敏检测元件和光电检测元件。

热敏元件应用最多的是热敏电阻。

热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。

光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。

• 3.2红外传感器•红外传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。

例如采用红外线传感器远距离测量•人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。

其中红光的波长范围为0。

62~0。

76μm;紫光的波长范围为0。

38~0。

46μm。

比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。

• 3.21人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性•一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。

人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。

红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。

•1)这种探头是以探测人体辐射为目标的。

所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。

•2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。

•3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。

而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

•4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处3.22照相机中的红外线传感器•夜视功能红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。

索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。

这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。

• 3.23红外线轴套扫描器•通过光机系统扫描视场,并且无需任何光学调整。

它精确测量线材、棒材等生产线的活套大小,甚至对特殊钢或有色金属以及在水汽、烟雾严重的情况下也能可靠工作。

DELTA 的红外传感器TS2006 可用于活套控制、热带材或热板材的对中控制以及在其它很广的应用中提供位置信息。

3.3红外传感器延伸实际应用—遥感技术•狭义上定义为:远远地去感觉某一定对象的技术。

•广义地讲,遥感是不直接接触地收集关于某一定对象的某种或某些特定的信息,从而了解这个对象的性质。

很早以前,人们就希望从空中来观察地球,当时人们使用的是普通的照相机,后来发展成为专门的航空照相机。

•现在,遥感技术在军事上得到很大的应用。

遥感中收集到的信息,就是物体发射或者被它反射的电磁波。

这些电磁波包括近紫外、红外线、可见光、微波等。

收集电磁波信息的装置叫做传感器。

装载传感器的地方,称为平台。

遥感就是用装在平台上的传感器来收集(测定)由对象辐射或(和)反射来的电磁波,再通过对这些数据进行分析和处理,获得对象信息的技术。

遥感技术的迅速发展,一个重要的因素是它应用于我们所生活的环境。

•遥感主要原理:传感器装载在平台上,遥感中可以使用可见光和近红外区的电磁波进行遥感,这是利用了对象的反射特性,这种方式是航空摄影发展而来的结果,也是最为广泛应用的一种,在月球上观察地球就是这样的。

•另外在雷达研究的方面主要是利用了物体的辐射特性。

主动式的微波遥感器主要是测试雷达。

它是在50年代为军事侦察目的而发展的。

它目前的重要应用主要在于快速取得大片有云地区的地面资源情报数据。

被动式微波遥感器感受的是它们视场内的自然可利用的微波能量,其工作方式和热辐射计或热扫描仪非常相似,但是能够接受到的信号也比热红外区微弱得多,同时信号所伴随的噪声也大得多。

因此这种信号的判释问题也要比其他各种遥感器困难得多。

但和侧视雷达一样也有全天候的特性。

依靠选择适合的工作波长,可以用它或者穿透大气,或者观察大气。

通常来说,微波遥感用在大气的各项数据的测量上,在海洋学、油污探测、融雪测定等方面都有应用。

遥感在军事科学上的应用是显然的,因为可以远距离地观察目标,而且可以获得相对宏观的分析数据。

第四章红外传感器的实际应用• 4.1火电厂的应用•火电厂采用红外线传感器来检测锅炉的火焰。

红外线传感器的探测器是光敏电阻(光电导)探测器。

燃烧器火焰的一次燃烧区域所产生的红外线辐射,经由光导纤维转送到探头,通过探头中的光敏电阻转换成电信号后,再由放大器放大。

该火焰信号经由屏蔽电缆送到机箱,通过频率响应开头和一个放大器后,再同一个参考电压(可调)进行比较,若火焰信号大于参考信号,则对应的触发器置位,触发器输出信号使红色火焰指示灯点亮,表明锅炉有火焰;反之表示锅炉无火焰。

锅炉有无火焰是关系到锅炉运行安全的重要参数,因此,红外线传感器也是FSSS(锅炉炉膛安全监控系统)的眼睛。

感知人体最简单的方法是红外线传感器。

因为人体比其他物体温度高,故可根据红外线的辐射能量进行检测。

人体产生的红外线波长为10μm左右,因此,用远红外线传感器最为合适。

•在日常生活中使用人体红外线传感器的实例有:人进门后门厅灯和走廊灯自动点亮;自动抽水厕所;手放在水龙头下面能自动出水的自动水龙头;此外还有防盗报警装置。

•基于光生伏特效应而工作的光电池,在有光线作用下实质上就是一个电源。

电路中有了这种光电元件就不需外加电源,将来的手机或掌上电脑如采用光电池的话,就无须充电或外加电池了,一旦无电,只要放到太阳下面晒一晒就会又有电了。

光电池属于自发电型传感器,是全世界科技人员竞相研究的有环保概念的新投术领域。

4.2在军事上的应用•在美国空袭伊拉克时,伊拉克首都大部分地区都处于停电状态,这时除了防空曳光弹和导弹爆炸引起的火光以外就只有月光或星光照明了,能见度极差。

我们在电视新闻上看到的从现场传回来的录像片的画面都呈现绿色,说明电视记者在拍摄时使用了红外线夜视仪,导致影像是绿色的,如果不使用红外摄像技术,那么我们从电视画面上将只能听到声音,而看不到任何影响了。

4.3机器人自动避障•红外传感器是一种比较有效的接近觉传感器,经常被国内外学者应用在多关节机器人避障系统中,用来构成大面积机器人“敏感皮肤”,覆盖在机器人手臂表面,可以检测机器人手臂运行过程中的各种物体。

传感器发出的光的波长大约在几百纳米范围内,是短波长的电磁波。

红外传感器具有以下特点:不受电磁波的干扰、非噪声源、可实现非接触性测量。

另外,红外线(指中、远红外线)不受周围可见光的影响,故可在昼夜进行测量。

同声纳传感器相似,红外线传感器工作处于发射/接收状态。

这种传感器由同一发射源发射红外线,并用两个光检测器测量反射回来的光量。

由于这些仪器测量光的差异,它们受环境的影响非常大,物体的颜色、方向、周围的光线都能导致测量误差。

但由于发射光线是光而不是声音,可以希望在相当短的时间内获得较多的红外线传感器测量值。

相关文档
最新文档