关联速度
第五讲 关联速度

第五讲关联速度所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有:1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.3,线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同·类型1质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.图5-1 图5-2类型2绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度。
类型3直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为:AC=R·cotθ,代入前式中即可解得:ω=(vsin2θ)/(Rcosθ).例2如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2)vA1;v2=(/2)vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则vA1=v/2,vA2=(5/6)v,由此求得vB2=(/6)v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2)(vA2-vA1),代入前式可得vB2=(/6)v.两解殊途同归.例3如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心),绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心)的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα).例4如图5-12所示,半径为R的半圆凸轮以等速v0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则vA=v0tanα.故AB杆的速度为v0tanα.例5如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO 及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vO sinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14图5-15 rω-vO sinα=v.① 又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO =Rω,② 由①、②两式可解得vO =(Rv)/(r-Rsinα).若绳拉线轴使线轴逆时针转动,vO =(Rv)/(r-Rsinα),自行证明.例6如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17 分析与解设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn ,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn =ω·BC=ω·Rcot(α/2).①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vOsinα.②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r)=vO/R.③将②、③两式代入①式中,得ω=(1-cosα)/(R+r)v.例7如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为:vM=vMA=v·tanφ=10cm/s.例9如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。
连杆传动关联速度计算公式

连杆传动关联速度计算公式在工程学和机械设计中,连杆传动是一种常见的机械传动方式,它通过连接两个或多个连杆,将旋转运动转换为直线运动或者将直线运动转换为旋转运动。
在连杆传动中,我们经常需要计算其关联速度,以便确定传动装置的运行速度和性能。
本文将介绍连杆传动关联速度的计算公式及其应用。
连杆传动关联速度计算公式。
在连杆传动中,如果已知某一连杆的角速度和长度,我们可以通过以下公式计算其关联速度:V = ω r。
其中,V表示关联速度,ω表示连杆的角速度,r表示连杆的长度。
这个公式表明,关联速度与角速度和连杆长度成正比,角速度越大、连杆长度越长,关联速度就越大。
在实际工程中,我们经常需要计算多个连杆的关联速度。
在这种情况下,我们可以利用以下公式计算多个连杆的关联速度:V = ω1 r1 + ω2 r2 + ... + ωn rn。
其中,V表示多个连杆的关联速度,ω1、ω2、...、ωn分别表示各个连杆的角速度,r1、r2、...、rn分别表示各个连杆的长度。
这个公式表明,多个连杆的关联速度等于各个连杆的角速度与长度的乘积之和。
连杆传动关联速度计算的应用。
连杆传动关联速度的计算公式在机械设计和工程实践中有着广泛的应用。
首先,通过计算关联速度,我们可以确定传动装置的运行速度。
这对于机械设备的设计和优化非常重要,可以帮助工程师确定传动装置的工作性能和运行参数,从而确保设备的正常运行。
其次,通过计算关联速度,我们可以评估传动系统的稳定性和可靠性。
传动系统的稳定性和可靠性与关联速度密切相关,通过计算关联速度,我们可以评估传动系统的工作状态和性能,从而及时发现和解决潜在的问题,确保传动系统的安全运行。
此外,通过计算关联速度,我们还可以进行传动系统的优化设计。
在传动系统的设计过程中,我们可以通过调整连杆的长度和角速度,来实现传动系统的性能优化,提高传动效率和能量利用率,从而降低能源消耗和成本。
总之,连杆传动关联速度的计算公式在机械设计和工程实践中有着重要的应用。
“关联”速度问题模型归类例析

关联”速度问题模型归类例析绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不样的,但两端点的速度是有联系的,称之为“关联”速度。
关联速度”问题特点:沿杆或绳方向的速度分量大小相等。
绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。
②在绳或杆连体中,物体实际运动方向就是合速度的方向。
③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。
关联速度”问题常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果,以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。
、绳相关联问题1.一绳一物模型1)所拉的物体做匀速运动例 1 如图 1 所示,人在岸上拉船,已知船的质量为m,水的阻力恒为厂,当轻绳与水平面的夹角为e 时,船的速度为u,此时人的拉力大小为T,则此时小结人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。
即按图 3 所示进行分解,则水错选 B 选项.平分速度为船的速度,得人拉绳行走的速度为u /cos e ,会2)匀速拉动物体例2 如图 4 所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为a时,船的速度是多少?解析方法1——微元分析法取小角度e ,如图5所示,设角度变化e 方法2——运动等效法因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮右边绳上的 A 点的运动情况可以等效为:先以滑轮为网心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。
做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上 4 点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方2.两绳一物模型例3 如图7 所示,两绳通过等高的定滑轮共同对称地系住个物体 A ,两边以速度v 匀速地向下拉绳,当两根细绳与竖直方向的夹角都为60。
关联速度公式

关联速度公式
关联速度公式是指在数据分析中,用来计算两个变量之间的相关性的公式。
它可以帮助我们了解两个变量之间的关系,以及它们之间的强度和方向。
在本文中,我们将深入探讨关联速度公式的含义、计算方法和应用。
让我们来了解一下关联速度公式的含义。
关联速度公式是用来计算两个变量之间的相关性的公式。
它可以帮助我们了解两个变量之间的关系,以及它们之间的强度和方向。
在数据分析中,关联速度公式是非常重要的,因为它可以帮助我们预测未来的趋势和变化。
接下来,让我们来看一下关联速度公式的计算方法。
关联速度公式的计算方法非常简单,它可以用以下公式来表示:
r = (nΣxy - ΣxΣy) / sqrt((nΣx^2 - (Σx)^2)(nΣy^2 - (Σy)^2))
其中,r表示两个变量之间的相关系数,n表示样本数量,x和y 分别表示两个变量的值,Σ表示求和符号。
让我们来看一下关联速度公式的应用。
关联速度公式可以应用于各种领域,例如金融、医疗、市场营销等。
在金融领域,关联速度公式可以帮助我们预测股票价格的变化趋势。
在医疗领域,关联速度公式可以帮助我们了解不同因素对疾病的影响。
在市场营销领域,关联速度公式可以帮助我们了解不同营销策略对销售额的影响。
关联速度公式是数据分析中非常重要的工具,它可以帮助我们了解两个变量之间的关系,以及它们之间的强度和方向。
通过了解关联速度公式的含义、计算方法和应用,我们可以更好地应用它来解决实际问题。
高中物理专题关联速度

高中物理专题关联速度关联速度是指用绳、杆相连的物体,在运动过程中,其两个物体的速度通常不同,但物体沿绳或杆方向的速度分量大小相等,即连个物体有关联的速度。
解此类题的思路有两个:明确合运动即物体的实际运动速度和明确分运动,一般情况下,分运动表现在沿绳方向的伸长或收缩运动和垂直于绳方向的旋转运动。
解题的原则是速度的合成遵循平行四边形定则。
解题方法是把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
典例1描述了一个人以恒定速度v通过定滑轮竖直向下拉小车在水平面上运动的情形。
当细绳与水平面成60°角时,小车在水平面上做加速运动。
典例2描述了一个均匀直杆上连着两个小球A、B,不计一切摩擦。
当杆滑到某个位置时,B球水平速度为vB加速度为aB杆与竖直夹角为α,求此时A球速度和加速度大小。
根据公式,vAvBtanα,aAaBtanα。
专练提升中,问题1描述了一个人在岸上拉船的情形。
已知船的质量为m,水的阻力恒为Ff,当轻绳与水平面的夹角为θ时,船的速度为v,此时人的拉力大小为F,则人拉绳行走的速度为v/cosθ。
问题2描述了一个用一小车通过轻绳提升一货物的情形。
某一时刻,两段绳恰好垂直,且拴在小车一端的绳与水平方向的夹角为θ,此时货物的速度为v/sinθ。
问题3描述了两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上的情形。
若A车以速度v向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度为v(sinα+sinβ)。
最后一个问题描述了水平面上固定一个与水平面夹角为θ的斜杆A。
另一竖直杆B以速度v水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为沿A杆向上,大小为v/cosθ。
5.一根长度为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图4-7所示。
假设物块与地面的摩擦不计,求当物块以速度v向右运动时,小球A的线速度vA(此时杆与水平方向夹角为θ)。
(推荐)关联速度的问题

(推荐)关联速度的问题
关联速度是指在数据分析中,计算两个或多个变量之间关系的速度。
以下是几种提高关联速度的方法:
1. 数据压缩:对于大型数据集,可以使用数据压缩技术来减少数
据的体积,从而提高关联分析的速度。
2. 并行计算:使用并行计算技术可以将计算任务分配给多个处理
器或计算机进行并行处理,从而加快关联分析的速度。
3. 使用索引:在进行关联分析时,可以使用索引来加快数据的检
索速度,从而提高关联分析的效率。
4. 数据预处理:在进行关联分析之前,对数据进行预处理,如去
除重复项、缺失值处理等,可以减少数据的量,从而提高关联分
析的速度。
5. 采样方法:对于大型数据集,可以使用采样方法来获取一个较
小的数据子集,然后对子集进行关联分析,从而提高关联速度。
6. 使用高效的算法:选择适合的关联算法是提高关联速度的关键。
一些高效的关联算法如Apriori算法、FP-Growth算法等。
7. 数据分区:将数据划分为多个分区,然后对每个分区进行独立
的关联分析任务,最后将结果合并,可以提高关联速度。
8. 内存优化:合理利用内存可以减少磁盘读写的次数,从而提高
关联分析的速度。
关联速度伸长速度计算公式

关联速度伸长速度计算公式在物理学和工程学中,关联速度和伸长速度是两个重要的概念。
关联速度指的是两个物体之间的相对速度,而伸长速度则是指物体在某一方向上的速度变化率。
在很多情况下,我们需要计算这两个速度之间的关系,因此有必要了解它们之间的计算公式。
首先,让我们来看一下关联速度的定义。
关联速度是指两个物体相对于彼此的速度。
在一维空间中,如果物体A相对于物体B的速度是v1,而物体B相对于物体C的速度是v2,那么物体A相对于物体C的关联速度就是v1+v2。
在二维或三维空间中,我们可以使用矢量来表示物体的速度,关联速度的计算方法也是类似的。
接下来,让我们来看一下伸长速度的定义。
伸长速度是指物体在某一方向上的速度变化率。
如果一个物体在某一方向上的位移是Δx,时间是Δt,那么它在这个方向上的伸长速度就是Δx/Δt。
如果我们知道一个物体在某一方向上的伸长速度,我们就可以推算出它在这个方向上的位移和时间。
现在,让我们来看一下关联速度和伸长速度之间的计算公式。
假设有两个物体A和B,它们之间的关联速度是v,而物体A在某一方向上的伸长速度是u。
那么,根据定义,我们可以得到以下的计算公式:v = u + w。
其中,v是关联速度,u是伸长速度,w是另一个物体相对于物体A的速度。
这个公式告诉我们,一个物体在某一方向上的伸长速度和它与另一个物体的关联速度之间存在着简单的线性关系。
在实际应用中,我们经常需要根据关联速度和伸长速度来解决各种问题。
例如,当两个物体相互靠近或者远离时,我们需要计算它们之间的关联速度;当一个物体在某一方向上的速度发生变化时,我们需要计算它在这个方向上的伸长速度。
因此,了解关联速度和伸长速度之间的计算公式是非常重要的。
除了上面介绍的简单情况,实际问题中可能会涉及到更复杂的情况。
例如,当物体在不同方向上的速度都发生变化时,我们就需要使用矢量来表示它们的速度,然后再根据矢量的运算规则来计算它们的关联速度和伸长速度。
速度的关联讲解

所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有:1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.3,线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同·类型1 质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.(全国中学物理竞赛试题)图5-1 图5-2类型2 绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度.(全国中学生奥林匹克物理竞赛试题)类型3 直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1 杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2 接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3 线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1 如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为AC=R·cotθ,代入前式中即可解得ω=(vsin2θ/(Rcosθ.例2 如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2vA1;v2=(/2vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则vA1=v/2,vA2=(5/6v,由此求得vB2=(/6v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2(vA2-vA1),代入前式可得vB2=(/6v.两解殊途同归.例3 如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心,绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα.例4 如图5-12所示,半径为R的半圆凸轮以等速v0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则vA=v0tanα.故AB杆的速度为v0tanα.例5 如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vOsinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14 图5-15rω-vOsinα=v.①又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO=Rω,②由①、②两式可解得vO=(Rv/(r-Rsinα.若绳拉线轴使线轴逆时针转动,vO=(Rv/(r-Rsinα,请读者自行证明.例6 如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17分析与解设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn=ω·BC=ω·Rcot(α/2.①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vOsinα.②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r=vO/R.③将②、③两式代入①式中,得ω=(1-cosα/(R+rv.例7 如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8 如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为vM=vMA=v·tanφ=10cm/s.例9 如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014级高一物理竞赛培训第一讲关联速度(郭金朋2012年3月7日)所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有:1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.3,线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同·类型1质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.(全国中学物理竞赛试题)图5-1 图5-2类型2绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度.(全国中学生奥林匹克物理竞赛试题)类型3直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为AC=R·cotθ,代入前式中即可解得ω=(vsin2θ)/(Rcosθ).例2如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2)vA1;v2=(/2)vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则vA1=v/2,vA2=(5/6)v,由此求得vB2=(/6)v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2)(vA2-vA1),代入前式可得vB2=(/6)v.两解殊途同归.例3如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心),绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心)的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα).例4如图5-12所示,半径为R的半圆凸轮以等速v0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则vA=v0tanα.故AB杆的速度为v0tanα.例5如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vO sinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14 图5-15rω-vO sinα=v.①又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO =Rω,②由①、②两式可解得vO=(Rv)/(r-Rsinα).若绳拉线轴使线轴逆时针转动,vO=(Rv)/(r-Rsinα),请读者自行证明.例6如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17分析与解设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn=ω·BC=ω·Rcot(α/2).①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vO sinα.②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r)=vO/R.③将②、③两式代入①式中,得ω=(1-cosα)/(R+r)v.例7如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为vM=vMA=v·tanφ=10cm/s.例9如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。