第5章 小波变换的matlab实现

合集下载

小波变换 频域 matlab

小波变换 频域 matlab

小波变换频域 matlab
小波变换是一种常用的信号分析工具,它将信号分解成不同频率的小波,可以用来处理非平稳的信号。

在 MATLAB 中使用小波变换进行频域分析,可以通过以下步骤来实现:
1. 加载信号数据,使用 load 命令将数据读入到 MATLAB 中。

2. 选择小波基函数,MATLAB 内置了多种小波基函数,如 haar、db1、db2 等,可根据具体需求选择不同的基函数。

3. 进行小波分解,使用 wavedec 命令对信号进行小波分解,可以得到不同频率的小波系数。

4. 对小波系数进行可视化,使用 plot 命令将小波系数绘制成图像,可以观察到不同频率的成分。

5. 进行小波重构,使用 waverec 命令对小波系数进行重构,得到复原后的信号。

6. 对复原后的信号进行频域分析,可以使用 fft 命令对信号进行傅里叶变换,得到信号的频谱图。

以上是使用小波变换进行频域分析的基本步骤和命令,需要根据具体信号和分析目的进行适当的调整和优化。

小波变换matlab

小波变换matlab

小波变换是一种在信号和图像处理中广泛应用的工具。

在Matlab 中,你可以使用内置的函数来进行小波变换。

以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。

接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。

最后,我们使用`wave2gray`函数显示小波分解的结果。

这只是使用Matlab进行小波变换的一个基本示例。

实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。

同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。

精品课件-基于MATLAB的小波分析应用-第5章

精品课件-基于MATLAB的小波分析应用-第5章

第5章 小波变换与信号处理
其中,COEFS为连续小波变换后的返回系数CWTx(a, b)矩 阵,系数以行方式存储在矩阵中。矩阵的行数为小波变换中 尺度的个数,列数为信号采样点的个数,即矩阵的第一行对 应第一个尺度变换后的系数,第二行对应第二个尺度变换后 的系数,依此类推。
第5章 小波变换与信号处理
第5章 小波变换与信号处理
2. 信号的连续小波分解实例 下面以信号noissin为例说明如何对一个信号进行连续小 波分解,信号noissin是一个含噪声的周期性信号。 程序代码如下:
%装载noissin信号 load noissin; x = noissin; figure(1); plot(x); figure(2);
第5章 小波变换与信号处理
plot(cA2); title('尺度2的低频系数'); %提取尺度1的高频系数 cD1 = detcoef(C,L,1); %提取尺度2的高频系数 cD2 = detcoef(C,L,2); figure(3); subplot(2,1,1); plot(cD1);
第5章 小波变换与信号处理
第5章 小波变换与信号处理
2) 多尺度一维离散小波变换 MATLAB中实现多尺度离散小波变换的函数为wavedec,其 调用格式有以下两种: (1) [C, L] = wavedec(X, N, 'wname') (2) [C, L] = wavedec(X, N, Lo_D, Hi_D) 其中,N为尺度,且必须为正整数,'wname'为小波名称, Lo_D和Hi_D分别为分解低通和高通滤波器。输出参数C由[cAj, cDj, cDj-1,…, cD1]组成,L由[cAj的长度,cDj的长度, cDj-1的长度,…,cD1的长度,X的长度]组成。例如,一个 三尺度的分解结构的组织形式如图5.4所示。

小波变换的原理及matlab仿真程序

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究2 小波分析基本理论设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。

当Ψ(t)满足条件[4,7]:2()Rt dw wCψψ=<∞⎰(1)时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列:,()()a bt bt aψ-=,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。

对于任意的函数f(t)∈L 2( R)的连续小波变换为:,(,),()()f a b Rt bW a b f f t dt aψψ-=<>=⎰(3) 其逆变换为:211()(,)()fR R t b f t W a b dadb C a aψψ+-=⎰⎰ (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。

小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。

使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。

3 小波降噪的原理和方法3.1 小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题。

尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。

由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=0.1…….n-1其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。

小波变换 matlab

小波变换 matlab

小波变换 matlab
沃兹·费莱特斯(Wavelet Toolbox)是MATLAB中常用的小波变换工具箱之一。

小波变换是一种基于信号分解和逼近的方法,它可以将信号分解成不同频率的小波系数。

这种变换在信号处理、数据分析和图像处理等领域具有广泛的应用。

MATLAB中的小波变换工具箱提供了丰富的函数和工具,可以进行小波分析、小波变换、小波重构等操作。

通过使用这些函数,我们可以实现信号的变换、滤波、降噪以及频域分析等操作。

同时,工具箱还提供了可视化界面,帮助用户更直观地进行小波分析和处理。

要进行小波变换,我们需要先将信号进行小波分解,得到小波系数。

然后,可以对这些小波系数进行进一步的处理,如滤波、阈值处理等。

最后,通过小波重构,我们可以将处理后的小波系数合成为重构信号。

MATLAB中的小波变换工具
箱提供了方便的函数和工具,帮助用户完成这些操作。

使用MATLAB进行小波变换,首先需要安装Wavelet Toolbox。

安装完成后,
我们可以使用相关函数,比如wavemngr、wavelet、wfilters等,来管理小波和滤波器,选择适合我们应用场景的小波基函数和滤波器。

在小波变换的过程中,我们还可以对小波系数进行阈值处理,用于信号降噪。

具体可以使用函数wden和wdencmp来实现具体的阈值处理方法,如Hard、Soft
和Rigour等。

总之,通过MATLAB中的小波变换工具箱,我们能够方便地进行小波分析和
处理,实现信号的变换、分析和降噪等操作。

这为我们在信号处理领域带来了很
大的便利和效益。

小波变换 函数 matlab

小波变换 函数 matlab

小波变换函数 matlab小波变换是一种信号处理方法,可以将信号分解成不同尺度的频谱成分。

它在许多领域中得到广泛的应用,如图像处理、音频处理、压缩编码等。

在Matlab中,我们可以使用小波变换函数来实现对信号的分析和处理。

我们需要了解小波变换的基本原理。

小波变换利用一组基函数,即小波函数,将信号分解成不同频率和不同时间的成分。

小波函数具有局部性和多尺度性的特点,可以更好地描述非平稳信号。

与傅里叶变换相比,小波变换能够提供更加详细的时间和频率信息。

在Matlab中,可以使用wavelet函数进行小波变换。

首先,我们需要选择合适的小波基函数和尺度。

常用的小波函数有Daubechies、Haar、Symlets等,每种小波函数都有不同的特性。

在选择小波基函数时,需要根据信号的特点和需求进行选择。

然后,我们可以使用wavedec函数对信号进行小波分解。

wavedec 函数将信号分解成不同尺度的频谱成分,并返回每个尺度的系数和小波基函数。

通过调整分解的尺度,可以得到不同精度的频谱信息。

接下来,我们可以使用waverec函数对分解后的信号进行重构。

waverec函数将小波系数和小波基函数作为输入,将信号重构回原始信号。

通过调整重构的尺度,可以得到不同精度的信号重构结果。

除了信号的分解和重构,小波变换还可以用于信号的去噪和压缩编码。

通过对小波系数的处理,可以去除信号中的噪声成分,提高信号的质量。

同时,由于小波变换具有多尺度分析的能力,可以对信号进行压缩编码,减小信号的存储空间。

在Matlab中,除了wavelet函数外,还提供了丰富的小波变换工具箱。

这些工具箱包含了各种小波函数和小波变换算法,可以方便地进行信号的分析和处理。

同时,Matlab还提供了图形界面工具,可以通过可视化界面来进行小波变换的操作和参数调整。

总结起来,小波变换是一种重要的信号处理方法,在Matlab中有着丰富的函数和工具箱支持。

通过小波变换,我们可以分析信号的频谱成分,并进行信号的分解、重构、去噪和压缩编码等操作。

matlab对信号小波变换

matlab对信号小波变换

matlab对信号小波变换(原创版)目录一、引言二、小波变换概述三、MATLAB 对信号进行小波变换的方法四、小波变换在信号处理中的应用五、结论正文一、引言在信号处理领域,小波变换被广泛应用于信号分析、特征提取、压缩等领域。

小波变换是一种时频分析方法,可以同时获取信号的频率信息和时间信息。

MATLAB 作为信号处理的常用软件,提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。

本文将介绍如何使用 MATLAB 对信号进行小波变换,以及小波变换在信号处理中的应用。

二、小波变换概述小波变换是一种短时傅里叶变换,它可以将信号分解为不同频率的小波函数,并获得信号在不同时间尺度上的频率信息。

小波变换具有良好的局部特性和多尺度特性,可以有效地分析信号的局部特征和多尺度特征。

三、MATLAB 对信号进行小波变换的方法在 MATLAB 中,可以使用 Wavelet Toolbox 提供的函数对信号进行小波变换。

以下是一个简单的示例:1.导入信号:使用 wavread 函数读取音频信号。

2.对信号进行小波分解:使用 wavedec 函数对信号进行小波分解,得到小波系数。

3.提取小波系数:使用 waveget 函数提取指定层数的小波系数。

4.对小波系数进行处理:例如,可以对小波系数进行幅度模长处理,得到信号的能量分布情况。

5.重构信号:使用 waverec 函数根据小波系数重构信号。

四、小波变换在信号处理中的应用小波变换在信号处理中有广泛的应用,例如:1.信号压缩:通过对信号进行小波分解,可以得到信号的频谱特征,然后根据频谱特征设计合适的量化方案,对信号进行压缩。

2.信号去噪:通过对信号进行小波分解,可以将信号中的噪声分离出来,然后对噪声进行抑制或去除,从而提高信号的质量。

3.信号特征提取:通过对信号进行小波分解,可以获得信号在不同时间尺度上的频率信息,从而提取信号的特征。

五、结论MATLAB 提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。

小波变换原理matlab

小波变换原理matlab

小波变换原理matlab摘要:I.引言- 介绍小波变换的基本概念- 介绍小波变换在信号处理中的应用- 引入MATLAB 工具在实现小波变换中的作用II.小波变换原理- 傅里叶变换与小波变换的对比- 小波基函数的概念和性质- 小波变换的分解与重构过程III.MATLAB 中小波变换的实现- MATLAB 中常用的小波函数介绍- 使用MATLAB 实现小波变换的步骤和示例- MATLAB 中实现小波变换的优势和应用案例IV.小波变换在信号处理中的应用- 去噪和压缩信号- 特征提取和模式识别- 其他应用案例V.总结- 总结小波变换的原理和应用- 强调MATLAB 在实现小波变换中的重要性正文:I.引言小波变换是一种在时频域上同时进行的信号分析方法,相较于傅里叶变换,它能够更好地处理非平稳信号。

在实际应用中,小波变换被广泛应用于信号处理、图像处理、语音识别等领域。

MATLAB 作为一种功能强大的数学软件,提供了丰富的工具箱和函数,可以方便地实现小波变换。

II.小波变换原理小波变换是一种多尺度分析方法,其基本原理是将信号分解成不同尺度的小波基函数的线性组合。

小波基函数是一类具有局部特性、具有不同尺度和位置参数的函数。

小波变换包括两个过程:分解和重构。

分解是将原始信号分解成一系列小波系数,每个小波系数对应信号的一个尺度;重构是将小波系数重新组合,得到重构信号。

III.MATLAB 中小波变换的实现MATLAB 提供了丰富的函数和工具箱用于实现小波变换,其中最常用的是小波分析工具箱(Wavelet Toolbox)。

在MATLAB 中实现小波变换主要包括以下步骤:1.选择合适的小波基函数和分解层数;2.使用dwt 函数进行小波分解;3.对分解得到的小波系数进行处理,如阈值去噪、特征提取等;4.使用wavedec 函数进行小波重构;5.分析重构信号与原始信号的差异,评估小波变换的效果。

MATLAB 中实现小波变换的优势在于,可以方便地调整小波基函数、分解层数等参数,以及实现各种小波变换后的信号处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
A3=wrcoef('a',C,L,'db1',3); D1=wrcoef('d',C,L,'db1',1); D2=wrcoef('d',C,L,'db1',2); D3=wrcoef('d',C,L,'db1',3);
Approximation A3 600
Detail D1 40
20 400
2000 1500 1000
500 0 0
50
Approximation cA3
200
400
600
Detail cD2
40 20
0 -20 -40
0
50
Detail cD1
500 1000 1500 2000 Detail cD3
0 0
-50
-50 0
-100
500
1000
0
200
400
600
18
重构系数 命令:wrcoef 格式:
50 100 150 200 250
50 100 150 200 250
Horizontal Detail H1
50 100 150 200 250
50 100 150 200 250
Diagonal Detail D1
50 100 150 200 250
50 100 150 200 250
32
二维逆变换 命令:idwt2 格式:
title('Vertical Detail V1')subplot(2,2,4);
image(wcodemat(D1,192));title('Diagonal Detail
D1')
31
Approximation A1
50 100 150 200 250
50 100 150 200 250
Vertical Detail V1
1. Y=upcoef(O,X,’wname’,N) 2. Y=upcoef(O,X,’wname’,N,L) 3. Y=upcoef(O,X,’Lo_R, Hi_R’,N) 4. Y=upcoef(O,X,’Lo_R,Hi_R’,N,L) 5. Y=upcoef(O,X,’wname’) 6. Y=upcoef(O,X,Lo_R,Hi_R)
应用:
Xsyn = idwt2(cA1,cH1,cV1,cD1,'bior3.7');
33
多尺度二维小波
命令:wavedec2 格式:
1. [C, S]=wavedec2(X,N,’wname’) 2.[C, S]=wavedec2(X,N,Lo_D,Hi_D)
34
[C,S] = wavedec2(X,2,'bior3.7');
一维连续小波
1. coefs = cwt(s,scale,’wname’)
2. coefs = cwt(s,scale,’wname’,’plot’)
c=cwt(noissin,1:48,'db4','plot');
1.5
1
0.5
0
-0.5
-1
-1.5 0
100 200 300 400 500 600 700 800 900 1000
1.X=waverec(C,L,’wname’) 2.X=waverec(C,L,Lo_R,Hi_R) 例子: A0=waverec(C,L,’db1’); 重构最大误差: Err=max(abs(s-A0))
21
original Level 3 Approximation Original Approximation
3
scales a
C=cwt(noissin,2:2:128,’db4’,’plot’)
Absolute Values of Ca,b Coefficients for a = 2 4 6 8 10 ...
122 114 106
98 90 82 74 66 58 50 42 34 26 18 10
2 100 200 300 400 500 600 700 800 900 1000 time (or space) b
4
图形接口方式(GUI) 命令:wavemenu
5
6
7
一维离散小波分解
命令:dwt 格式:
[cA1,cD1]=dwt(X,’wname’)
[cA1,cD1]=dwt(X,Lo_D,Hi_D)
Approximation A1 75
Detail D1 80
70
60
65 40
60 20
55 0
50 -20
45
-40 40
35
-60
30
-80
11
0
2
4
6
0
2
4
6
逆变换恢复信号 命令:idwt 格式:
1. X=idwt(cA,cD,’wname’) 2. X=idwt(cA,cD,Lo_R, Hi_R) 3. X=idwt(cA,cD,’wname’,L) 4. X=idwt(cA,cD, Lo_R, Hi_R, L)
12
举例:A0=idwt(cA1,cD1,'db1',ls);
550 500 450 400 350 300 250 200 150 100
0
500 1000 1500 2000 2500 3000 3500 4000
13
多尺度一维分解 命令:wavedec 格式:
[C, L]=wavedec(X,N,’wname’) [C, L]=wavedec(X,N,Lo_D,Hi_D)
举例:
load leleccum;
s=leleccum(1:3920);
ls=length(s);
[cA1,cD1]=dwt(s,’db1’);
8
550 500 450 400 350 300 250 200
低频系数 150 100 0 800
500 1000 1500 2000 2500 3000 3500 4000 30
1. X = idwt2(cA1,cH1,cV1,cD1,'bior3.7'); 2. X = idwt2(cA1,cH1,cV1,cD1,'bior3.7'); 3. X = idwt2(cA1,cH1,cV1,cD1,'bior3.7'); 4. X = idwt2(cA1,cH1,cV1,cD1,'bior3.7');
scales a
Absolute Values of Ca,b Coefficients for a = 1 2 3 4 5 ...
46 43 40 37 34 31 28 25 22 19 16 13 10
7 4 1
100 200 300 400 500 600 700 800 900 1000 time (or space) b
O=‘a’ 低频,O=‘d’ 高频
10
举例:
A1=upcoef('a','cA1','db1',1,ls); D1=upcoef('d','cD1','db1',1,ls);
subplot(1,2,1);plot(A1);title('Approximation A1')
subplot(1,2,2);plot(D1);title('Detail D1')
O:‘a’低频;‘h’水平;‘v’垂直;‘d’对
角 30
A1 = upcoef2('a',cA1,'bior3.7',1);
H1 = upcoef2('h',cH1,'bior3.7',1);
V1 = upcoef2('v',cV1,'bior3.7',1);
D1 = upcoef2('d',cD1,'bior3.7',1);
22
图形接口方式(GUI)
23
24
25
26
27
28
2. 二维离散小波
单尺度分解——dwt2 格式:
1. [cA1,cH1,cV1,cD1]=dwt2(X,’wname’)
2. [cA1,cH1,cV1,cD1]=dwt2(X,Lo_D,Hi_D)
cA1, cH1水平;cV1垂直;cD1对角 应用:
figure(2);colormap(map); subplot(2,2,1);
image(wcodemat(A1,192));
title('Approximation A1') subplot(2,2,2); image(wcodemat(H1,192));
title('Horizontal Detail H1') subplot(2,2,3); image(wcodemat(V1,192));
%图像的多尺度二维小波分解
35
提取低频系数
命令:appcoef2 格式:
1. A=appcoef2(C,S,’wname’,N) 2. A=appcoef2(C,S,’wname’) 3. A=appcoef2(C,S,Lo_R,Hi_R) 4. A=appcoef2(C,S,Lo_R,Hi_R,N)
load wbarb;
figure(1);
image(X); colormap(map); colorbar;
相关文档
最新文档