MATLAB小波变换指令及其功能介绍(超级有用)
Matlab中的小波变换与小波包分析方法详解

Matlab中的小波变换与小波包分析方法详解引言近年来,小波变换在信号处理领域中得到了广泛的应用。
小波变换是一种能够捕捉信号时频特性的有效工具,可以用来分析、压缩和去噪各种类型的信号。
本文将详细介绍Matlab中的小波变换和小波包分析方法,以帮助读者更好地理解和应用这一强大的信号处理技术。
一、小波变换(Wavelet Transform)小波变换是一种将信号分解成不同尺度的基函数的技术。
与传统的傅里叶变换相比,小波变换具有更好的时频局部化特性。
Matlab中提供了丰富的小波分析工具箱,可以方便地进行小波变换的计算。
1.1 小波基函数小波基函数是小波变换的基础。
不同类型的小波基函数适用于不同类型的信号。
在Matlab中,我们可以使用多种小波基函数,如Daubechies小波、Haar小波和Morlet小波等。
1.2 小波分解小波分解是指将信号分解成多个尺度的小波系数。
通过小波分解,我们可以获取信号在不同尺度上的时频特性。
Matlab中提供了方便的小波分解函数,例如'dwt'和'wavedec'。
1.3 小波重构小波重构是指根据小波系数重新构建原始信号。
通过小波重构,我们可以恢复原始信号的时域特性。
在Matlab中,可以使用'idwt'和'waverec'函数进行小波重构。
二、小波包分析(Wavelet Packet Analysis)小波包分析是对小波变换的进一步扩展,它允许对信号进行更精细的分解和重构。
小波包分析提供了一种更灵活的信号分析方法,能够获得更详细的时频特性。
2.1 小波包分解小波包分解是指将信号分解成具有不同频带的小波包系数。
与小波分解相比,小波包分解提供了更高的分辨率和更详细的频谱信息。
在Matlab中,可以使用'wavedec'函数进行小波包分解。
2.2 小波包重构小波包重构是根据小波包系数重新构建原始信号。
Matlab中的小波变换技术详解

Matlab中的小波变换技术详解1. 引言小波变换是一种数学工具,可将任意信号分解成不同尺度和频率成分。
它在信号处理、图像压缩等领域得到广泛应用。
Matlab作为一种功能强大的数值计算和数据可视化软件,提供了丰富的小波变换函数和工具箱。
本文将详细介绍Matlab中小波变换的原理、应用和实现方法。
2. 小波变换原理小波变换利用小波函数的一组基来表示信号。
小波函数是一种局部振荡函数,具有时域和频域局部化的特性。
通过将信号与小波函数进行内积运算,可以得到不同尺度和频率的小波系数,从而揭示信号的局部特征。
小波变换具有多分辨率分析的优势,能够在时间和频率上同时提供较好的分析结果。
3. 小波变换函数在Matlab中,可以使用wavelet工具箱提供的函数来进行小波变换。
最常用的函数是cwt,用于连续小波变换。
通过设置小波函数、尺度范围和采样频率等参数,可以得到连续小波系数矩阵。
另外,还有其他函数如dwt、idwt用于离散小波变换和反离散小波变换。
4. 小波函数小波变换的关键在于选择合适的小波函数。
常用的小波函数有多种,如哈尔、Daubechies、Symlets等。
这些小波函数在时域和频域上都有不同的特性,适用于不同类型的信号。
Matlab提供了丰富的小波函数库,可以根据需要选择合适的小波基函数。
5. 小波分析与信号处理小波变换在信号处理中有广泛的应用。
它可以用于信号去噪、特征提取、边缘检测等方面。
通过对小波系数进行阈值去噪,可以有效地去除信号中的噪声。
小波变换还能够提取信号的局部特征,捕捉信号的边缘信息。
此外,小波变换还可以用于图像压缩、图像分割等领域。
6. Matlab中的小波分析实例为了更好地理解Matlab中小波变换的应用,下面将给出一个实例。
假设我们有一个包含某种周期性成分和噪声的信号,我们希望通过小波变换将其分解成不同尺度的成分,并去除噪声。
首先,我们使用Matlab中的cwt函数对信号进行连续小波变换,并得到小波系数矩阵。
MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1 dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname'[cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2 idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname'X=idwt(cA,cD,Lo_R,Hi_RX=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能--------------------------------------------------- dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换 -----------------------------------------------------------(1 wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOLY=wcodemat(X,NB,OPTY=wcodemat(X,NBY=wcodemat(X说明:Y=wcodemat(X,NB,OPT,ABSOL 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB ,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分 ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X1. 离散傅立叶变换的 Matlab实现(2 dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname'[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D说明:[cA,cH,cV,cD]=dwt2(X,'wname'使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA ,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D 使用指定的分解低通和高通滤波器 Lo_D 和Hi_D 分解信号 X 。
matlab离散小波变换dwt(小波分解)

小波变换是一种在信号处理领域广泛应用的数学工具,它可以将信号分解成不同尺度和频率成分,具有良好的局部化特性。
在Matlab中,离散小波变换(Discrete Wavelet Transform, DWT)是其中一种常用的小波变换方法,它广泛应用于图像处理、语音处理、数据压缩等领域。
本文将对Matlab中离散小波变换的原理、应用及实现方法进行详细介绍。
1. 离散小波变换的原理离散小波变换是通过将信号经过多级高通和低通滤波器的卷积运算,然后下采样,最终得到近似系数和细节系数的过程。
具体来说,设输入信号为x[n],高通滤波器为h[n],低通滤波器为g[n],则小波变换的原理可以表述为:\[a_{\text{scale},n} = x[n]*h_{\text{scale},n} \]\[d_{\text{scale},n} = x[n]*g_{\text{scale},n} \]其中,a为近似系数,d为细节系数,scale表示尺度,n表示离散时间序列。
2. Matlab中离散小波变换的应用离散小波变换在Matlab中有着广泛的应用,包括但不限于图像处理、语音处理、数据压缩等领域。
其中,图像处理是离散小波变换最为常见的应用之一。
通过对图像进行小波变换,可以将图像分解成不同尺度和频率的分量,实现图像的分析和处理。
在语音处理领域,离散小波变换可以用于信号降噪、语音特征提取等方面。
在数据压缩领域,离散小波变换可以实现对数据的降维和提取主要信息,从而实现数据的压缩存储。
3. Matlab中离散小波变换的实现方法在Matlab中,可以通过调用相关函数来实现离散小波变换。
其中,dwt函数是Matlab中常用的离散小波变换函数之一。
其调用格式为:\[cA = dwt(X,'wname','mode')\]\[cA, cD = dwt(X,'wname','mode')\]其中,X为输入信号,'wname'为小波基函数的名称,'mode'为信号的扩展模式。
MATLAB小波变换指令及其功能介绍(超级有用)(可编辑修改word版)

MATLAB 小波变换指令及其功能介绍1一维小波变换的 Matlab 实现(1)dwt 函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号 X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2)idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换(1)wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab 实现(2)dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
在MATLAB中使用小波变换进行信号处理

在MATLAB中使用小波变换进行信号处理引言信号处理是一个非常重要的研究领域,它涉及到从传感器、通信系统、音频、视频等领域中提取、分析和处理信号的各种技术和方法。
小波变换作为一种强大的数学工具,被广泛应用于信号处理中,特别是在时频分析、信号压缩、噪声去除等方面。
本文将介绍在MATLAB中使用小波变换进行信号处理的基本原理和实际应用。
一、小波变换的基本原理小波变换是一种时频分析方法,它可以将时域信号通过一系列基函数进行分解,得到不同尺度和频率的信号分量。
在MATLAB中,可以使用Wavelet Toolbox来进行小波变换。
1. 小波函数族小波函数族是指一组基函数,它们具有尺度变换和平移变换的特性。
常用的小波函数族有Daubechies小波、Haar小波、Coiflet小波等。
这些小波函数族根据不同的尺度和频率特性,在信号处理中具有不同的应用。
2. 小波变换的计算在MATLAB中,可以使用函数``cwt(x,scales,'wavelet',wavename)``来进行小波变换的计算,其中x是输入信号,scales是尺度(尺度越大表示观测时间越长,对应低频成分),wavename是小波函数族的名称。
二、小波变换的实际应用小波变换在信号处理中有广泛的应用,下面将介绍一些常见的实际应用场景。
1. 信号去噪噪声是信号处理中一个常见的问题,它会影响信号的质量和可靠性。
小波变换可以将信号分解为不同尺度的成分,通过分析各个尺度的能量分布,可以有效地去除噪声。
通过调整小波变换的尺度参数,可以对不同频率和尺度的噪声进行去除。
2. 信号压缩信号压缩是在信号处理中另一个重要的应用,它可以减少数据存储和传输的成本。
小波变换可以将信号分解为不同尺度的成分,在某些尺度上,信号的能量可能会很小,可以将这些尺度上的系数设置为0,从而实现信号的压缩。
同时,小波变换还可以使用压缩算法如Lempel-Ziv-Welch(LZW)对小波系数进行进一步的编码压缩。
MATLAB 小波变换 指令及其功能介绍

MATLAB 小波变换指令及其功能介绍3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分析3.1 一维小波变换的 Matlab 实现(1) dwt 函数 Matlab功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
1. 离散傅立叶变换的 Matlab实现3.2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT-------------------------------------------------函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换 Matlabwaverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量1. 离散傅立叶变换的Matlab实现detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构1. 离散傅立叶变换的 Matlab实现dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-------------------------------------------------------------函数 fft、fft2 和 fftn 分(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
1. 离散傅立叶变换的 Matlab 实现(3) wavedec2 函数功能:二维信号的多层小波分解1. 离散傅立叶变换的 Matlab实现格式:[C,S]=wavedec2(X,N,'wname')[C,S]=wavedec2(X,N,Lo_D,Hi_D)说明:[C,S]=wavedec2(X,N,'wname') 使用小波基函数 'wname' 对二维信号 X 进行 N 层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
别可以实现一维、二维和 N 维 DFT(4) idwt2 函数功能:二维离散小波反变换函数 fft、fft2 和 fftn 分格式:X=idwt2(cA,cH,cV,cD,'wname')X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)X=idwt2(cA,cH,cV,cD,'wname',S)别可以实现一维、二维和 N 维 DFTX=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)说明:X=idwt2(cA,cH,cV,cD,'wname') 由信号小波分解的近似信号cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X ;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号 X ;X=idwt2(cA,cH,cV,cD,'wname',S) 和X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。
(5) waverec2 函数说明:二维信号的多层小波重构格式:X=waverec2(C,S,'wname')X=waverec2(C,S,Lo_R,Hi_R)说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果 C、S 重构原始信号 X ,'wname' 为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和Hi_R 重构原信号。
Allnodes 计算树结点函数 fft、fft2 和 fftn 分appcoef 提取一维小波变换低频系数appcoef2 提取二维小波分解低频系数bestlevt 计算完整最佳小波包树别可以实现一维、二维和 N 维 DFTbesttree 计算最佳(优)树* biorfilt 双正交样条小波滤波器组biorwavf 双正交样条小波滤波器* centfrq 求小波中心频率cgauwavf Complex Gaussian小波cmorwavf coiflets小波滤波器cwt 一维连续小波变换dbaux Daubechies小波滤波器计算dbwavf Daubechies小波滤波器 dbwavf(W) W='dbN' N=1,2,3,...,50 别可以实现一维、二维和 N 维 DFTddencmp 获取默认值阈值(软或硬)熵标准depo2ind 将深度-位置结点形式转化成索引结点形式detcoef 提取一维小波变换高频系数 Matlabdetcoef2 提取二维小波分解高频系数disp 显示文本或矩阵drawtree 画小波包分解树(GUI) 别可以实现一维、二维和 N 维 DFTdtree 构造DTREE类dwt 单尺度一维离散小波变换dwt2 单尺度二维离散小波变换别可以实现一维、二维和 N 维 DFTdwtmode 离散小波变换拓展模式* dyaddown 二元取样* dyadup 二元插值 1. 离散傅立叶变换的 Matlab实现entrupd 更新小波包的熵值fbspwavf B样条小波gauswavf Gaussian小波 Matlabget 获取对象属性值idwt 单尺度一维离散小波逆变换idwt2 单尺度二维离散小波逆变换ind2depo 将索引结点形式转化成深度—位置结点形式* intwave 积分小波数isnode 判断结点是否存在 Matlabistnode 判断结点是否是终结点并返回排列值iswt 一维逆SWT(Stationary Wavelet Transform)变换iswt2 二维逆SWT变换 Matlableaves Determine terminal nodesmexihat 墨西哥帽小波meyer Meyer小波别可以实现一维、二维和 N 维 DFTmeyeraux Meyer小波辅助函数morlet Morlet小波nodease 计算上溯结点nodedesc 计算下溯结点(子结点)nodejoin 重组结点nodepar 寻找父结点别可以实现一维、二维和 N 维 DFTnodesplt 分割(分解)结点noleaves Determine nonterminal nodesntnode Number of terminal nodes函数 fft、fft2 和fftn 分ntree Constructor for the class NTREE* orthfilt 正交小波滤波器组plot 绘制向量或矩阵的图形* qmf 镜像二次滤波器rbiowavf Reverse biorthogonal spline wavelet filtersread 读取二进制数据函数 fft、fft2 和 fftn 分readtree 读取小波包分解树* scal2frq Scale to frequencyset Matlabshanwavf Shannon waveletsswt 一维SWT(Stationary Wavelet Transform)变换swt2 二维SWT变换symaux Symlet wavelet filter computation.symwavf Symlets小波滤波器thselect 信号消噪的阈值选择thodes Referencestreedpth 求树的深度treeord 求树结构的叉数函数 fft、fft2 和 fftn 分upcoef 一维小波分解系数的直接重构upcoef2 二维小波分解系数的直接重构upwlev 单尺度一维小波分解的重构函数 fft、fft2 和 fftn 分upwlev2 单尺度二维小波分解的重构wavedec 单尺度一维小波分解wavedec2 多尺度二维小波分解 Matlabwavedemo 小波工具箱函数demo* wavefun 小波函数和尺度函数* wavefun2 二维小波函数和尺度函数别可以实现一维、二维和 N 维 DFTwavemenu 小波工具箱函数menu图形界面调用函数* wavemngr 小波管理函数waverec 多尺度一维小波重构waverec2 多尺度二维小波重构wbmpen Penalized threshold for wavelet 1-D or 2-D de-noisingwcodemat 对矩阵进行量化编码wdcbm Thresholds for wavelet 1-D using Birge-Massart strategywdcbm2 Thresholds for wavelet 2-D using Birge-Massart strategywden 用小波进行一维信号的消噪或压缩wdencmp De-noising or compression using waveletswentropy 计算小波包的熵wextend Extend a vector or a matrix* wfilters 小波滤波器wkeep 提取向量或矩阵中的一部分* wmaxlev 计算小波分解的最大尺度wnoise 产生含噪声的测试函数数据wnoisest 估计一维小波的系数的标准偏差wp2wtree 从小波包树中提取小波树wpcoef 计算小波包系数wpcutree 剪切小波包分解树wpdec 一维小波包的分解函数 fft、fft2 和 fftn 分wpdec2 二维小波包的分解wpdencmp 用小波包进行信号的消噪或压缩wpfun 小波包函数函数 fft、fft2 和 fftn 分wpjoin 重组小波包wprcoef 小波包分解系数的重构wprec 一维小波包分解的重构wprec2 二维小波包分解的重构wpsplt 分割(分解)小波包wpthcoef 进行小波包分解系数的阈值处理函数 fft、fft2 和 fftn 分wptree 显示小波包树结构wpviewcf Plot the colored wavelet packet coefficients.wrcoef 对一维小波系数进行单支重构别可以实现一维、二维和 N 维 DFTwrcoef2 对二维小波系数进行单支重构wrev 向量逆序write 向缓冲区内存写进数据wtbo Constructor for the class WTBOwthcoef 一维信号的小波系数阈值处理wthcoef2 二维信号的小波系数阈值处理wthresh 进行软阈值或硬阈值处理wthrmngr 阈值设置管理wtreemgr 管理树结构 Matlab。