小波变换的原理及matlab仿真程序讲解学习
小波变换及其matlab工具的应用

小波变换及其matlab工具的应用小波变换是信号处理领域中的一种基本方法,可以用于信号分析、压缩和去噪等应用。
通过对信号进行小波变换,我们能够将不同频率的信号分离出来,从而更好地了解信号的特性。
本文将介绍小波变换的基本概念以及其在matlab工具中的应用。
一、小波变换的基本概念小波变换是一种将信号分解成一组不同频率、不同时间的函数,以便于分析的方法。
它是基于多尺度分析理论而发展起来的,可以有效地捕捉信号的瞬时特征。
小波变换的核心思想是将信号进行局部变换,从而在不同时间和频率上获取不同的信息。
其中,小波基函数是用于局部变换的基本单元,它可以根据不同问题的需求而灵活选择。
小波基函数具有良好的局部特性和紧凑性,可以在不同频率范围内对信号进行分解。
对于一个实数信号x(t),它在小波分析后可以表示为:$$x(t) = \sum_{j=0}^{J} \sum_{k}^{} c_{jk}\psi_{jk}(t)$$其中,$J$表示小波分解的层数,$c_{jk}$是小波系数,表示信号在不同频率和不同时间段的能量贡献,$\psi_{jk}(t)$是小波基函数,它可以根据不同问题的需求而灵活选择。
matlab中提供了丰富的小波变换工具箱,可以方便地进行小波分析和处理。
下面介绍基于matlab的小波变换应用方法。
1. 小波变换函数matlab中有多种小波变换函数可供选择,其中最常用的是"wavelet"函数。
使用该函数需要输入以下参数:- 小波类型- 小波系数- 分解层数- 信号例如,我们可以使用db4小波对信号进行一层分解:```matlab[coeffs, l] = wavedec(x, 1, 'db4');```其中,"coeffs"是输出的小波系数,"l"是每层小波系数的长度。
小波分解后,我们需要对分解得到的小波系数进行重构,以便于分析和处理。
Matlab中的小波变换技术详解

Matlab中的小波变换技术详解1. 引言小波变换是一种数学工具,可将任意信号分解成不同尺度和频率成分。
它在信号处理、图像压缩等领域得到广泛应用。
Matlab作为一种功能强大的数值计算和数据可视化软件,提供了丰富的小波变换函数和工具箱。
本文将详细介绍Matlab中小波变换的原理、应用和实现方法。
2. 小波变换原理小波变换利用小波函数的一组基来表示信号。
小波函数是一种局部振荡函数,具有时域和频域局部化的特性。
通过将信号与小波函数进行内积运算,可以得到不同尺度和频率的小波系数,从而揭示信号的局部特征。
小波变换具有多分辨率分析的优势,能够在时间和频率上同时提供较好的分析结果。
3. 小波变换函数在Matlab中,可以使用wavelet工具箱提供的函数来进行小波变换。
最常用的函数是cwt,用于连续小波变换。
通过设置小波函数、尺度范围和采样频率等参数,可以得到连续小波系数矩阵。
另外,还有其他函数如dwt、idwt用于离散小波变换和反离散小波变换。
4. 小波函数小波变换的关键在于选择合适的小波函数。
常用的小波函数有多种,如哈尔、Daubechies、Symlets等。
这些小波函数在时域和频域上都有不同的特性,适用于不同类型的信号。
Matlab提供了丰富的小波函数库,可以根据需要选择合适的小波基函数。
5. 小波分析与信号处理小波变换在信号处理中有广泛的应用。
它可以用于信号去噪、特征提取、边缘检测等方面。
通过对小波系数进行阈值去噪,可以有效地去除信号中的噪声。
小波变换还能够提取信号的局部特征,捕捉信号的边缘信息。
此外,小波变换还可以用于图像压缩、图像分割等领域。
6. Matlab中的小波分析实例为了更好地理解Matlab中小波变换的应用,下面将给出一个实例。
假设我们有一个包含某种周期性成分和噪声的信号,我们希望通过小波变换将其分解成不同尺度的成分,并去除噪声。
首先,我们使用Matlab中的cwt函数对信号进行连续小波变换,并得到小波系数矩阵。
小波包变换及matlab程序编写

1 小波变换的基本理论信号分析是为了获得时间和频率之间的相互关系。
小波变换(DWT )是现代谱分析工具,他既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。
傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。
与傅立叶变换不同,小波变换能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为他消除了DCT 压缩普遍具有的方块效应。
通过缩放母小波(Mother wavelet )的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。
对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。
小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力工具。
它是以局部化函数所形成的小波基作为基底展开的,具有许多特殊的性能和优点,小波分析是一种更合理的进频表示和子带多分辨分析。
2小波包变换的基本理论和原理概论:由于正交小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号,但它不能很好地分解和表示包含大量细节信息(细小边缘或纹理)的信号,如非平稳机械振动信号、遥感图象、地震信号和生物医学信号等。
与之不同的是,小波包变换可以对高频部分提供更精细的分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中、高频信息的信号能够进行更好的时频局部化分析。
2.1小波包的定义:正交小波包的一般解释 仅考虑实系数滤波器.{}n n Z h ∈{}n n Zg ∈()11nn ng h -=-()()()()22k k Z kk Z t h t k t g t k φφψφ∈∈⎧=-⎪⎨=-⎪⎩为便于表示小波包函数,引入以下新的记号:通过,,h,g 在固定尺度下可定义一组成为小波包的函数。
Matlab中的小波变换与小波分析技术

Matlab中的小波变换与小波分析技术引言:小波变换(Wavelet Transform)是一种强大的信号分析技术,能够在时间与频率上同时提供信息。
与传统的傅里叶变换相比,小波变换可以应对非平稳信号,并在信号分析中提供更多的细节和局部特征。
在Matlab中,小波变换及其相关分析技术被广泛应用于各个领域,如图像处理、信号处理、数据压缩等。
本文将介绍Matlab中的小波变换与小波分析技术,并探讨其在实践中的应用。
一、小波变换的基本原理小波变换通过将信号与不同尺度和位移的小波基函数相乘,来获得信号在不同频率和时域上的表示。
与傅里叶变换可以提供整个频谱信息不同,小波变换能够提供信号的时间局部特征。
小波基函数具有紧凑支持,可以在时间和频率上实现局部化。
Matlab中提供了丰富的小波变换函数,如cwt、dwt、wt、swt等。
其中,cwt 函数实现了连续小波变换,dwt函数实现了离散小波变换,wt函数实现了小波变换的可视化分析,swt函数实现了离散小波变换的平移不变性。
二、小波变换的应用1. 图像处理小波变换在图像处理中具有广泛的应用。
通过对图像进行小波分解,可以将图像信号分解成不同频带的小波系数。
这些小波系数包含了图像的细节和轮廓信息,可以用于图像去噪、边缘检测、纹理分析等。
在Matlab中,可以使用wavedec2函数对图像进行二维小波分解,然后使用wrcoef函数对分解得到的小波系数进行重构,实现图像的去噪和增强等操作。
2. 信号处理小波变换在信号处理中也有广泛的应用。
通过对信号进行小波分解,可以将信号分解成不同频带的小波系数。
这些小波系数可以用于信号去噪、特征提取、模式识别等。
在Matlab中,可以使用dwt函数对信号进行离散小波分解,然后使用idwt函数对分解得到的小波系数进行重构,实现信号的去噪和分析等操作。
3. 数据压缩小波变换在数据压缩领域被广泛应用。
通过对信号或图像进行小波分解,可以将信号或图像的能量在频域上进行稀疏表示,然后通过舍弃部分系数进行数据压缩。
小波包变换matlab程序

小波包变换matlab程序小波包变换是一种信号分析的方法,可以对信号进行多尺度的分解与重构。
在Matlab中,我们可以使用Wavelet Toolbox来实现小波包变换。
本文将介绍小波包变换的原理以及如何在Matlab中进行实现。
我们来了解一下小波包变换的原理。
小波包变换是基于小波变换的一种扩展方法,它在小波变换的基础上进一步增加了尺度的变化。
小波包变换通过不断地分解和重构信号,可以得到信号的不同频率成分。
在小波包变换中,我们可以选择不同的小波基函数和分解层数,以得到适合信号特征的频率分解结果。
在Matlab中,我们可以使用Wavelet Toolbox中的函数实现小波包变换。
首先,我们需要通过调用`wavedec`函数对信号进行小波分解。
该函数的输入参数包括信号、小波基函数、分解层数等。
通过调用该函数,我们可以得到信号在不同频率尺度上的系数。
接下来,我们可以选择一些感兴趣的频率尺度,对系数进行进一步的分解。
在Matlab中,我们可以使用`wprcoef`函数对系数进行小波包分解。
该函数的输入参数包括小波包分析对象、系数所在的频率尺度等。
通过调用该函数,我们可以得到信号在指定频率尺度上的小波包系数。
除了分解,小波包变换还可以进行重构。
在Matlab中,我们可以使用`waverec`函数对系数进行小波重构。
该函数的输入参数包括小波包系数、小波基函数等。
通过调用该函数,我们可以得到信号的重构结果。
在实际应用中,小波包变换可以用于信号的特征提取、信号去噪等。
通过分解信号,我们可以得到不同频率尺度上的信号成分,从而对信号进行分析和处理。
在Matlab中,我们可以通过可视化小波包系数的方法,对信号进行频谱分析。
通过观察小波包系数的幅值和相位信息,我们可以了解信号的频率成分及其变化规律。
总结一下,在Matlab中实现小波包变换的步骤如下:1. 调用`wavedec`函数对信号进行小波分解,得到信号在不同频率尺度上的系数。
matlab离散小波变换dwt(小波分解)

小波变换是一种在信号处理领域广泛应用的数学工具,它可以将信号分解成不同尺度和频率成分,具有良好的局部化特性。
在Matlab中,离散小波变换(Discrete Wavelet Transform, DWT)是其中一种常用的小波变换方法,它广泛应用于图像处理、语音处理、数据压缩等领域。
本文将对Matlab中离散小波变换的原理、应用及实现方法进行详细介绍。
1. 离散小波变换的原理离散小波变换是通过将信号经过多级高通和低通滤波器的卷积运算,然后下采样,最终得到近似系数和细节系数的过程。
具体来说,设输入信号为x[n],高通滤波器为h[n],低通滤波器为g[n],则小波变换的原理可以表述为:\[a_{\text{scale},n} = x[n]*h_{\text{scale},n} \]\[d_{\text{scale},n} = x[n]*g_{\text{scale},n} \]其中,a为近似系数,d为细节系数,scale表示尺度,n表示离散时间序列。
2. Matlab中离散小波变换的应用离散小波变换在Matlab中有着广泛的应用,包括但不限于图像处理、语音处理、数据压缩等领域。
其中,图像处理是离散小波变换最为常见的应用之一。
通过对图像进行小波变换,可以将图像分解成不同尺度和频率的分量,实现图像的分析和处理。
在语音处理领域,离散小波变换可以用于信号降噪、语音特征提取等方面。
在数据压缩领域,离散小波变换可以实现对数据的降维和提取主要信息,从而实现数据的压缩存储。
3. Matlab中离散小波变换的实现方法在Matlab中,可以通过调用相关函数来实现离散小波变换。
其中,dwt函数是Matlab中常用的离散小波变换函数之一。
其调用格式为:\[cA = dwt(X,'wname','mode')\]\[cA, cD = dwt(X,'wname','mode')\]其中,X为输入信号,'wname'为小波基函数的名称,'mode'为信号的扩展模式。
小波变换(内附奇异值分析matlab程序)

2、算法及其应用实例
小波在信号的奇异性检测中的应用举例 信号的突变点和奇异点等不规则部分通常包含重要信息,一般信号 的奇异性分为两种情况: (1)信号在某一时刻其幅值发生突变,引起信号的非连续,这种类 型的突变称为第一类型的间断点; (2)信号在外观上很光滑,幅值没有发生突变,但是信号的一阶微 分有突变发生且一阶微分不连续,这种类型的突变称为第二类型的间 断点。 应用小波分析可以检测出信号中的突变点的位置、类型以及变 化的幅度。
程序代码
load nearbrk; x=nearbrk; %使用db4对信号进行2层分解 [c,l]=wavedec(x,2,‘db4’); subplot(411); subplot(4,1,i+2); plot(x); plot(d); ylabel('x'); ylabel(['d',num2str(3-i)]); %对分解的第六层低频系数进行重构 end a=wrcoef('a',c,l,'db4',2); subplot(412); plot(a); ylabel('a2'); for i=1:2 %对分解的第2层到第1层的高频系数 进行重构 a=wrcoef('a',c,l,'db4',3-i);
3、小波分析的优缺点
小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能 有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进 行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能 解决的许多困难问题。 小波变换存在以下几个优点: 小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不 同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分 辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分 析窗口) 。 (4)小波变换实现上有快速算法(Mallat小波分解算法)。
小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究2 小波分析基本理论设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。
当Ψ(t)满足条件[4,7]:2()Rt dw wCψψ=<∞⎰(1)时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列:,()()a bt bt aψ-=,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。
对于任意的函数f(t)∈L 2( R)的连续小波变换为:,(,),()()f a b Rt bW a b f f t dt aψψ-=<>=⎰(3) 其逆变换为:211()(,)()fR R t b f t W a b dadb C a aψψ+-=⎰⎰ (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。
小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。
使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。
3 小波降噪的原理和方法3.1 小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题。
尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。
由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=0.1…….n-1其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换的原理及m a t l a b仿真程序基于小波变换的信号降噪研究2 小波分析基本理论设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。
当Ψ(t)满足条件[4,7]:2()R t dw w C ψψ=<∞⎰ (1)时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列:,()()a b t b t aψ-= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。
对于任意的函数f(t)∈L 2( R)的连续小波变换为:,(,),()()f a b R t b W a b f f t dt aψψ-=<>=⎰(3) 其逆变换为:211()(,)()f R R t b f t W a b dadb C a aψψ+-=⎰⎰ (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。
小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。
使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。
3 小波降噪的原理和方法3.1 小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题。
尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。
由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。
假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。
3.2 降噪方法一般来说,一维信号的降噪过程可以分为 3个步骤进行[5,6]:1)一维信号的小波分解,选择一个小波并确定一个小波分解的层次N,然后对信号进行N层小波分解计算。
2)小波分解高频系数的阈值量化,对第1层到第N层的每一层高频系数,选择一个阈值进行软阈值量化处理.3)一维小波的重构。
根据小波分解的第 N层的低频系数和经过量化处理后的第1层到第N 层的高频系数,进行一维信号的小波重构。
在这 3个步骤中,最核心的就是如何选取阈值并对阈值进行量化,在某种程度上它关系到信号降噪的质量.在小波变换中,对各层系数所需的阈值一般根据原始信号的信号噪声比来选取,也即通过小波各层分解系数的标准差来求取,在得到信号噪声强度后,可以确定各层的阈值。
这里着重讨论了信号在两种不同小波恢复后信号质量的不同和对信号中的信号与噪声进行分离。
4.仿真实验本文采用Mtalab本身程序提供的noissin信号函数及初设原始信号f(x)为例进行Matlab分析[1,3],其中:()sin(0.03)f x te = noissin + 0.5*randn(size(e1));首先对noissin函数上叠加上随机噪声信号得到e,分别对比采用db10小波和sym8小波对信号e进行5层分解,并且细节系数选用minimaxi阈值模式和尺度噪声(db10)以及选用sure阈值模式和尺度噪声(sym8)。
在进行噪声消除后,还对原信号进行进一步分析,将原始信号和噪声信号分离开来,仿真结果如图所示:图1图2图3图1-1为原始信号图形,1-2为叠加随机噪声后的图形,而1-3和1-4为利用db10和sym8小波默认阈值降噪后的信号图形。
从图1-3和1-4可以看出利用db10和sym8小波降噪后的信号基本上恢复了原始信号,去噪效果明显。
但是滤波后的信号与原始信号也有不同,从图中可以很直观地看到采用阈值消噪后信号特征值较少无法准确还原原始信号这是由于为降噪过程中所用的分析小波和细节系数的阈值不恰当所致,如需要更好的恢复信号,还可以采用其它种类小波对其进行分析,通过选取不同的阈值,分析结果,得到一个合适的阈值。
从图2和图3中看出,在经过用db10对信号进行5层分解,然后分别对分解的第5层到第1层的低频系数和高频系数进行重构。
可以得出其主要基波函数和高频噪声函数的图形,其中小分波分解的细节信号是有白噪声分解得到的,而正弦信号可以在图2中的近似信号a5得到。
因为在这一层的影响已经可以忽略了,所以获得的信号就是初始信号的波形,从而把淹没在噪声中的有用信号有效地分离出来。
5 总结小波变换对平稳信号的去噪声,要比传统的滤波去噪声得到的效果好.用小波变换进行信号降噪处理,既降低了噪声同时又提高了信噪比,这说明小波降噪方法是切实可行的方案,但是由于小波函数很多,采用不同的小波进行分解,得到的结果可能相差很大,而变换前并不能预知哪一种小波降噪效果更好,需反复试验比较才能得到良好的效果,这也是小波变换的困难之处之一。
另外信号降噪过程中阀值的选取是十分重要的。
本文利用两个小波( sym8 ,db10 )以及将信号中的信噪分离开来,更加直观可行,通过分别进行信号降噪处理对所得结果与原始信号进行比较可以得出Sym8小波以及默认阈值处理后的重构信号与原始信号最为接近,与分离的结果相同。
小波分析是一种信号的视频分析方法,它具有多分辨率分析的特点 ,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,有效区分信号中的突变部分和噪声。
通过MATLAB编制程序进行给定信号的噪声抑制和非平稳信号的噪声消除实验表明:基于小波分析的消噪方法是一种提取有用信号、展示噪声和突变信号的优越方法 ,具有广阔的实用价值。
在这个越来月信息化的社会中,基于小波分析的应用前景必将越来越广泛。
N=10;t=1:10;f=sin(3.14*t).*exp(0.2*t)+20*sin(6.28*t).*exp(0.3*t)+5*sin(1.256* t).*exp(0.4*t);plot(t,f);f=sin(0.314*t).*exp(0.0002*t)+20*sin(0.628*t).*exp(0.0003*t)+5*si n(0.1256*t).*exp(0.0004*t);输出数据fid=fopen('E:1.txt','wt');>> fprintf(fid,'%f\n',L);[C,L]=wavedec(f,5,'db10');>> fid=fopen('E:1.txt','wt');>> fprintf(fid,'%f\n',L);>> fprintf(fid,'%f\n',C);>> [C,L]=wavedec(f,1,'db10');>> fid=fopen('E:2.txt','wt');>> fprintf(fid,'%f\n',C);>> [C,L]=dwt(f,'db10');>> fid=fopen('E:3.txt','wt');>> fprintf(fid,'%f\n',C);>> fprintf(fid,'%f\n',L);参考文献[1]徐明远,邵玉斌.MATALAB仿真在通信与电子工程中的应用[M].西安:西安电子科技大学出版社,2010.[2]张志涌,杨祖樱等编著.MATLAB教程(R2006a-R2007a)[M].北京:北京航空航天出版社,2006.[3]张德丰.详解MATLAB数字信号处理[M]北京:电子工业出版社,2010.[4]杨建国.小波分析及其工程应用[M]北京:机械工业出版社,2005.[5]冯毅,王香华.小波变换降噪处理及其MATLAB实现[J].数字采集与处理,2006,,21(12):37-39.[6]禹海兰,李天云.基于小波理论的噪声信号分析[J].东北电力学院学报.1997.17(3):36-40.[7]潘泉,张磊,孟晋丽,张洪才著,小波滤波方法及应用[M].北京:清华大学出版社,2005.附仿真源码如下:N=1000;t=1:1000;f=sin(0.03*t);load noissin;e1=noissin;init=2055615866;randn('seed',init);e = e1 + 0.5*randn(size(e1));subplot(2,2,1);plot(t,f);xlabel('1 样本序列'); //x轴标记ylabel('原始信号幅值'); //y轴标记grid ;subplot(2,2,2);plot(e) ;xlabel('2 测试样本序列' ) ;ylabel('含有已加噪声的信号幅值') ;grid ;s1=wden(e,'minimaxi','s','one',5,'db12'); subplot(2,2,3);plot(s1);xlabel('3 db10降噪后信号' ) ;ylabel ('db10小波降噪后的信号幅值');grid;s2=wden(e,'heursure','s','one',5,'sym8'); subplot(2,2,4);plot(s2);xlabel('4 sym降噪后信号');ylabel('sym8小波降噪后的信号幅值');grid;figure;subplot(6,1,1);plot(e);ylabel('e');[C,L]=wavedec(e,5,'db10');for i=1:5a=wrcoef('a',C,L,'db10',6-i);subplot(6,1,i+1); plot(a);ylabel(['a',num2str(6-i)]);endfigure;subplot(6,1,1);plot(e);ylabel('e');for i=1:5d=wrcoef('d',C,L,'db10',6-i);subplot(6,1,i+1);plot(d);ylabel(['d',num2str(6-i)]);end。