实验1典型环节的MATLAB仿真

合集下载

MATLAB仿真实验项目

MATLAB仿真实验项目

二、实验设备
PC 机,MATLAB 仿真软件。
三、实验内容
10 ,运用串联校正方法,设计控制器,使 0.5s 2 s 系统的性能满足要求。
被控对象 G p ( s)
四、实验步骤
+ 校 正
阶跃信号
10 0.5s 2 s
1、作原系统的 bode 图,求出静态误差系数 K v 0 ,相位裕度 c 0 和开 环截止频率 c 0 。 2、作时域仿真,求出阶跃响应曲线,记录未校正系统的时域性能 Mp 和 ts,并记录下所选择的参数。 3、设计超前校正装置 Gc(s),实现希望的开环频率特性,即
s=-5。
(b)
G2 ( s )
s 2 0.5s 10 s 2 2s 10 ,分子分母多项式阶数相等,即 n=m=2。
(c) G3 ( s) (d) G4 ( s)
s 2 0.5s ,分子多项式零次项系数为零。 s 2 2s 10
s ,原响应的微分,微分系数为 1/10。 s 2s 10
1 修改参数,写出程序分别实现 n1 = n 0 和 n 2 =2 n 0 的响应曲线,并作记录。 2
% n 0 10 3、试作以下系统的脉冲响应,并比较与原系统响应曲线的差别与特点,作出 相应的实验分析结果 (a) G1 (s)
2s 10 ,有系统零点情况,即 s 2 2s 10
2
2、修改参数,分别实现 =1, =2 的响应曲线,并作记录。 程序为: n0=10;d0=[1 2 10];step(n0,d0 )
%原系统 =0.36 hold on %保持原曲线 n1=n0,d1=[1 6.32 10];step(n1,d1) % =1 n2=n0;d2=[1 12.64 10];step(n2,d2) % =2

实验一典型环节的MATLAB仿真

实验一典型环节的MATLAB仿真

实验一典型环节的MATLAB仿真第一篇:实验一典型环节的MATLAB仿真实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。

2.选择File菜单下New下的Model命令,新建一个simulink 仿真环境常规模板。

3.在simulink仿真环境下,创建所需要的系统。

图1-1SIMULINK仿真界面图1-2系统方框图以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。

2)改变模块参数。

在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math”右边窗口“Gain”的图标。

4)选取阶跃信号输入函数。

用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。

实验一指导书MATLAB在控制系统模型建立与仿真中应用

实验一指导书MATLAB在控制系统模型建立与仿真中应用

实验一MATLAB 在控制系统模型建立与仿真中地应用一、MATLAB 基本操作与使用1. 实验目地1)熟悉MATLAB工作环境平台及其各个窗口,掌握MATLAB 语言地基本规定,MATLAB图形绘制功能、M 文件程序设计.2) 学习使用MATLAB控制系统工具箱中线性控制系统传递函数模型地相关函数.2. 实验仪器PC计算机一台,MATLAB软件1套3. 实验内容1) MATLAB工作环境平台Command Window图1 在英文Windows 平台上地MATLAB6.5 MATLAB工作平台①命令窗口(Command Window)命令窗口是对 MATLAB 进行操作地主要载体,默认地情况下,启动MATLAB 时就会打开命令窗口,显示形式如图 1 所示.一般来说,MATLAB地所有函数和命令都可以在命令窗口中执行.掌握 MALAB 命令行操作是走入 MATLAB 世界地第一步.命令行操作实现了对程序设计而言简单而又重要地人机交互,通过对命令行操作,避免了编程序地麻烦,体现了MATLAB 所特有地灵活性.p1Ean。

在运行MATLAB后,当命令窗口为活动窗口时,将出现一个光标,光标地左侧还出现提示符“>>”,表示MATLAB正在等待执行命令.注意:每个命令行键入完后,都必须按回车键!DXDiT。

当需要处理相当繁琐地计算时,可能在一行之内无法写完表达式,可以换行表示,此时需要使用续行符“…”否则 MATLAB 将只计算一行地值,而不理会该行是否已输入完毕.使用续行符之后 MATLAB 会自动将前一行保留而不加以计算,并与下一行衔接,等待完整输入后再计算整个输入地结果.在 MATLAB 命令行操作中,有一些键盘按键可以提供特殊而方便地编辑操作.比如:“↑”可用于调出前一个命令行,“↓”可调出后一个命令行,避免了重新输入地麻烦.当然下面即将讲到地历史窗口也具有此功能.jLBHr。

②历史窗口(Command History)历史命令窗口是 MATLAB6 新增添地一个用户界面窗口,默认设置下历史命令窗口会保留自安装时起所有命令地历史记录,并标明使用时间,以方便使用者地查询.而且双击某一行命令,即在命令窗口中执行该命令.xHAQX。

MATLAB仿真技术实验教案

MATLAB仿真技术实验教案

MATLAB仿真技术实验教案第一篇:MATLAB仿真技术实验教案《MATLAB仿真技术》实验教案实验一实验名称:熟悉Matlab交互工作界面一、实验目的1、熟悉Matlab各种工作界面的操作要旨2、掌握Matlab的基本操作命令二、实验步骤1、命令窗口(1)体验命令窗口的菜单及各项功能(2)尝试命令窗口编辑特殊功能键和设置2、工作空间窗口与当前路径窗口(1)在工作空间窗口查看及修改变量(2)添加新的路径为Matlab路径3、图形窗口和文本编辑窗口(1)练习图形窗口中修改图形的方法(2)在文本编辑窗口调试程序4、体会Matlab的基本操作命令三、实验仪器PC机 MATLAB软件四、实验结果五、结论实验二实验名称:Matlab在符号计算方面的应用一、实验目的1、掌握标识符的生成和使用2、掌握矩阵及变量的赋值3、熟悉三类运算符及其功能二、实验内容1、标识符的生成和使用1)、计算y=x+(x-0.98)/(x+1.35)-5(x+1/x),当x=2和x=4时的值。

>>x=[2 4];y=x.^3+(x-0.98).^2./(x+1.35).^3-5*(x+1./x);y y = -4.4723 42.8096 32)、计算cos60-9-2。

ο323>> y=cos(pi/3)-(9-sqrt(2))^(1/3)y =-1.46492、矩阵及变量的赋值21)、已知a=3,A=4,b=a,B=b2-1,c=a+A-2B,C=a+2B+c,求C >> a=3;A=4;b=a^2;B=b^2-1;c=a+A-2*B;C=a+2*B+c;C C = 2)、创建3×4矩阵魔方阵和相应的随机矩阵,将两个矩阵并接起来,然后提取任意两个列向量。

>> A=magic(4);A(4,:)=[];B=rand(3,4);C=[A B];D=C(:,3);E=C(:,4);D,E D = 3 10 6E =8 12 3)、创建一个5×5随机阵并求其逆。

MATLAB仿真实验全部

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些?三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f 其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二) 分析系统稳定性有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1.系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 2.用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

典型环节时域特性的仿真实验

典型环节时域特性的仿真实验

典型环节时域特性的仿真实验1、通过观察典型环节在单位阶跃信号作用下的动态特性,熟悉各种典型环节的响应曲线。

2 、定性了解各参数变化对典型环节动态特性的影响。

3、初步了解Matlab中Simulink的使用方法。

研究典型环节(比例、积分、微分、惯性、二阶)在阶跃输入信号及白噪声干扰信号输入的响应。

1.1 运行Matlab,在命令窗口“Command Window”下键入“Simulink”后回车,则打开相应的系统模型库;或者点击菜单上的“Simulink”图标,进入系统仿真模型库。

然后点击左上角“创建新文件图标”,打开模型编辑窗口。

1.2 调出模块在系统仿真模型库中,把要求的模块都放置在模型编辑窗口里面。

从信号源模块包(Sources)中拖出1个阶跃信号(step)和1个白噪声信号发生器 (band-limited white noise) ;从输出模块包(Sinks)中拖出1个示波器(Scope);从连续系统典型环节模块包(Continuous) 中拖出1个微分环节(Derivative)和3个传函环节(Transfer Fcn);从数学运算模块包(Math Operations)中拖出1个比例环节(Gain)和1个加法器 (Sum) ;从信号与系统模块包(Signals Routing) 拖出1个汇流排(Mux);所有模块都放置在模型编辑窗口里面。

1.3 模块参数设置双击打开3个传函环节(Transfer Fcn),通过设定参数 (参照图1的数据),分别构成积分、惯性和二阶环节;打开比例环节,设定比例增益为2;打开白噪声信号发生器,设定功率(Noise power)为0.0001,采样时间(Sample time) 为0.05。

1.4 模块连接将各模块连接成如图1所示的仿真模型系统。

图1仿真模型系统22.1 双击Scope打开示波器,点击按钮“”启动仿真,画出输入信号波形图。

2.2 将比例环节的输出端接到汇流排(如图1所示),打开示波器, 点击按钮“”启动仿真,观察比例环节的阶跃响应及对白噪声信号是否敏感,然后画出波形图。

自动实验一——典型环节的MATLAB仿真报告

自动实验一——典型环节的MATLAB仿真报告

自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。

本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。

一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。

二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。

在本实验中,我们将重点研究一个惯性环节。

惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。

三、实验步骤1.建立典型环节的数学模型。

根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。

在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。

2.编写MATLAB程序进行仿真。

利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。

3.进行仿真实验。

选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。

4.分析实验结果。

根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。

四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。

通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。

惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。

随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。

2.稳态误差与控制增益的关系。

控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。

3.不同输入信号的影响。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。

实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型环节的MATLAB仿真
一、实验目的:
1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验内容
按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

①比例环节 G1(S)=-1和G2(S)=-2
②惯性环节 G1(S)=-「1/(S+1)」和G2(S)=-「1/(0.5S+1)」
③积分环节 G1(S)=-(1/S)和G2(S)=-(1/(0.5S)
④微分环节 G1(S)=-0.5S和G2(S)=-S
⑤比例微分环节 G1(S)=-(2+S)和G2(S)=-(1+2S)
⑥比例积分环节(PI)G1(S)=-(1+1/S)和G2(S)=-「2(1+1/2S)」
二、实验步骤及结果
启动MATLAB 6.0,进入Simulink后新建文档,分别在各文档绘制各典型环节的结构框图。

双击各传递函数模块,在出现的对话框内设置相应的参数。

然后
点击工具栏的按钮或simulation菜单下的start命令进行仿真,双击示波器模块观察仿真结果。

在仿真时设置各阶跃输入信号的幅度为1,开始时间为0(微分环节起始设为0.5,以便于观察)传递函数的参数设置为框图中的数值,自己可以修改为其他数值再仿真观察其响应结果。

1、比例环节G1(S)=-1和G2(S)=-2
2、惯性环节G1(S)=-「1/(S+1)」和G2(S)=-「1/(0.5S+1)」 10.5s+1Transfer Fcn11
s+1
Transfer Fcn Step1Scope1
3、积分环节G1(S)=-(1/S)和G2(S)=-(1/(0.5S ) 1
0.5s
Transfer Fcn1
1
s
Transfer Fcn Step1Scope
4、微分环节G1(S)=-0.5S 和G2(S)=-S
Step1Scope
0.5Gain
du/dt
Derivative1du/dt
Derivative
5、 比例微分环节: G 1(S)=-(2+S)和G 2(S)=-(1+2S)
Step1Scope
2
Gain2
1
Gain1
2Gain du/dt
Derivative1
du/dt
Derivative Add1Add
6、 比例积分:G 1(S )=-(1+1/S)和G 2(S )=-「2(1+1/2S )」 12s
Transfer Fcn1
1
s
Transfer Fcn
Step1Scope 1
Gain2
2
Gain1
Add1Add
四、实验结果分析:比较前后两个阶跃曲线的区别与联系,作出相应的实验分析结果。

相关文档
最新文档