MATLAB仿真实验全部
matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。
⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。
x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。
z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。
参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。
Matlab实验仿真实验数据

附录实验二程序:(1)>> clear>> tic;>> t=-5:0.5:5;>> for n=1:size(t,2)if(t(n)<0)y(n)= 3*t(n)^2+5;elsey(n)= -3*t(n)^2+5;endend>> figure(1);>> plot(t,y);>> xlabel('x');>> ylabel('y');>> grid on;>> toc;(2)>> clear>> tic;>> t=[-5:0.5:5];>> b=t>=0;>> y(b)=-3*t(b).^2 + 5;>> y(~b)=3*t(~b).^2 + 5;>> figure(2);>> plot(t,y);>> xlabel('x');>> ylabel('y');>> grid on;>> toc;结果:(1)Elapsed time is 0.156000 seconds.(2)Elapsed time is 0.094000 seconds.实验三程序:(1)>> clear;>> n=input('ENTER A NUMBER:');>> sum=0;>> m=1;>> while m<nsum=sum+m;m=m+2;end>> fprintf('The result of all odd numbers within a given number is:%d\n',sum);(2)创建Fib.m文件% 函数功能: 计算斐波那契数列的第 n 个斐波那契数% 文件名: Fib.m% 含有 n 个数的斐波那契数列的定义如下:% f(1) = 1% f(2) = 2% f(n) = f(n-1) + f(n-2)function y=Fib(n);a(1)=1;a(2)=1;i=2;while i<=na(i+1)=a(i-1)+a(i);i=i+1;end;y=a(i);结果:(1)ENTER A NUMBER:6The result of all odd numbers within a given number is:9(2)>> Fib(7)ans =21实验四(1)程序:创建myfun.m文件% 函数功能: 计算x的双曲正弦、双曲余弦和双曲正切,并画出对应的图象。
MATLAB仿真实验项目

二、实验设备
PC 机,MATLAB 仿真软件。
三、实验内容
10 ,运用串联校正方法,设计控制器,使 0.5s 2 s 系统的性能满足要求。
被控对象 G p ( s)
四、实验步骤
+ 校 正
阶跃信号
10 0.5s 2 s
1、作原系统的 bode 图,求出静态误差系数 K v 0 ,相位裕度 c 0 和开 环截止频率 c 0 。 2、作时域仿真,求出阶跃响应曲线,记录未校正系统的时域性能 Mp 和 ts,并记录下所选择的参数。 3、设计超前校正装置 Gc(s),实现希望的开环频率特性,即
s=-5。
(b)
G2 ( s )
s 2 0.5s 10 s 2 2s 10 ,分子分母多项式阶数相等,即 n=m=2。
(c) G3 ( s) (d) G4 ( s)
s 2 0.5s ,分子多项式零次项系数为零。 s 2 2s 10
s ,原响应的微分,微分系数为 1/10。 s 2s 10
1 修改参数,写出程序分别实现 n1 = n 0 和 n 2 =2 n 0 的响应曲线,并作记录。 2
% n 0 10 3、试作以下系统的脉冲响应,并比较与原系统响应曲线的差别与特点,作出 相应的实验分析结果 (a) G1 (s)
2s 10 ,有系统零点情况,即 s 2 2s 10
2
2、修改参数,分别实现 =1, =2 的响应曲线,并作记录。 程序为: n0=10;d0=[1 2 10];step(n0,d0 )
%原系统 =0.36 hold on %保持原曲线 n1=n0,d1=[1 6.32 10];step(n1,d1) % =1 n2=n0;d2=[1 12.64 10];step(n2,d2) % =2
自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
matlab仿真实验报告

matlab仿真实验报告Matlab仿真实验报告引言:Matlab是一种广泛应用于科学和工程领域的数值计算软件,它提供了强大的数学和图形处理功能,可用于解决各种实际问题。
本文将通过一个具体的Matlab 仿真实验来展示其在工程领域中的应用。
实验背景:本次实验的目标是通过Matlab仿真分析一个电路的性能。
该电路是一个简单的放大器电路,由一个输入电阻、一个输出电阻和一个放大倍数组成。
我们将通过Matlab对该电路进行仿真,以了解其放大性能。
实验步骤:1. 定义电路参数:首先,我们需要定义电路的各个参数,包括输入电阻、输出电阻和放大倍数。
这些参数将作为Matlab仿真的输入。
2. 构建电路模型:接下来,我们需要在Matlab中构建电路模型。
可以使用电路元件的模型来表示电路的行为,并使用Matlab的电路分析工具进行仿真。
3. 仿真分析:在电路模型构建完成后,我们可以通过Matlab进行仿真分析。
可以通过输入不同的信号波形,观察电路的输出响应,并计算放大倍数。
4. 结果可视化:为了更直观地观察仿真结果,我们可以使用Matlab的图形处理功能将仿真结果可视化。
可以绘制输入信号波形、输出信号波形和放大倍数的变化曲线图。
实验结果:通过仿真分析,我们得到了以下实验结果:1. 输入信号波形与输出信号波形的对比图:通过绘制输入信号波形和输出信号波形的变化曲线,我们可以观察到电路的放大效果。
可以看到输出信号的幅度大于输入信号,说明电路具有放大功能。
2. 放大倍数的计算结果:通过对输出信号和输入信号的幅度进行计算,我们可以得到电路的放大倍数。
通过比较不同输入信号幅度下的输出信号幅度,可以得到放大倍数的变化情况。
讨论与分析:通过对实验结果的讨论和分析,我们可以得出以下结论:1. 电路的放大性能:根据实验结果,我们可以评估电路的放大性能。
通过观察输出信号的幅度和输入信号的幅度之间的比值,可以判断电路的放大效果是否符合设计要求。
MATLAB仿真实验报告

MATLAB仿真实验报告MATLAB仿真实验报告实验三PID控制仿真实验一、实验目的1.掌握MATLAB6.5软件的使用方法。
2.完成直流伺服电机PID典型控制系统结构图设计及调试。
二、实验内容1.熟悉MATLAB6.5软件各菜单作用。
2.完成直流伺服电机PID典型系统结构图设计并调试成功。
三、实验设备微型计算机1台四、实验步骤1.双击桌面MATLAB6.5快捷图标,进入MATLAB仿真环境。
2.单击菜单simulink选项,进入其界面。
单击filenew--model进入新建文件界面。
3.在新建文件界面中,通过simulink选项的下拉菜单中选择仿真需要的函数及器件,组成仿真系统结构图。
4.仿真调试:鼠标单击“黑三角”图标,再双击“SCOPE”示波器,即可显示仿真结果。
5.改变参数,观察调试结果。
五、实验报告要求1.写出实验具体过程。
2.画出仿真结果图和仿真系统结构图。
实验四直流电机双闭环系统仿真实验一、实验目的1.掌握MATLAB6.5软件的使用方法。
2.完成双闭环典型系统结构图设计及调试。
二、实验内容1.熟悉MATLAB6.5软件各菜单作用。
2.完成PID典型系统结构图设计并调试成功。
三、实验设备微型计算机1台四、实验步骤1.双击桌面MATLAB6.5快捷图标,进入MATLAB仿真环境。
2.单击菜单simulink选项,进入其界面。
单击filenewmodel进入新建文件界面。
3.在新建文件界面中,通过simulink选项的下拉菜单中选择仿真需要的函数及器件,组成仿真系统结构图。
4.仿真调试:鼠标单击“黑三角”图标,再双击“SCOPE”示波器,即可显示仿真结果。
5.改变参数,观察调试结果。
五、实验报告要求1.写出实验具体过程。
2.画出仿真结果图和仿真系统结构图。
实验五直流电机控制模型仿真实验一、实验目的1.掌握MATLAB6.5软件的使用方法。
2.完成直流电机仿真系统结构图设计及调试。
二、实验内容1.熟悉MATLAB6.5软件各菜单作用。
MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些?三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f 其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二) 分析系统稳定性有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1.系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 2.用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
Matlab仿真实验教程

MATLAB的实验仿真目录实验一MATLAB在控制系统模型建立与仿真中的应用 (1)实验二典型系统的时域响应分析 (13)实验三线性控制系统的根轨迹与频域分析 (17)实验四线性系统的校正 (22)附录一 MATLAB6.5 控制系统工具箱函数和结构化的控制语句 (30)附录二 SIMULINK 基本模块介绍 (34)实验一MATLAB 在控制系统模型建立与仿真中的应用一、MATLAB 基本操作与使用1. 实验目的1) 掌握MATLAB 仿真软件的安装及启动,熟悉MATLAB工作环境平台。
2) MATLAB 命令窗口,包括工具条以及菜单选项的使用;MATLAB 语言的基本规定,包括数值的表示、变量命名规定、基本运算符、预定义变量以及表达式等。
3) MATLAB图形绘制功能、M 文件程序设计和线性控制系统传递函数模型的建立等。
2. 实验仪器PC计算机一台,MATLAB软件1套3. 实验内容1) MATLAB 的启动这里介绍MATLAB 装入硬盘后,如何创建MATLAB 的工作环境。
方法一MATLAB 的工作环境由matlab.exe 创建,该程序驻留在文件夹matlab\bin\中。
它的图标是matlab。
只要从<我的电脑>或<资源管理器>中去找这个程序,然后双击此图标,就会自动创建如图1所示的MATLAB6.5 版的工作平台。
Command Window图1 在英文Windows 平台上的MATLAB6.5 MATLAB工作平台方法二假如经常使用MATLAB,则可以在Windows 桌面上创建一个MATLAB 快捷方式图标。
具体办法为:把<我的电脑>中的matlab 图标用鼠标点亮,然后直接把此图标拖到Windows桌面上即可。
此后,直接双击Windows 桌面上的matlab 图标,就可建立图1所示的MATLAB工作平台。
2) MATLAB工作环境平台桌面平台是各桌面组件的展示平台,默认设置情况下的桌面平台包括 6 个窗口,具体如下:① MATLAB 窗口MATLAB6 比早期版本增加了一个窗口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f 其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二) 分析系统稳定性有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1.系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 2.用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序%求取极点num=[1 2 2];den=[1 7 3 5 2];p=roots(den)(二)阶跃响应1. 二阶系统()102102++=s s s G 1)键入程序,观察并记录单位阶跃响应曲线2)计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录3)记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:由图1-3及其相关理论知识可填下表:3//πωπ==d p t =4)修改参数,分别实现1=ζ和2=ζ的响应曲线,并记录5)修改参数,分别写出程序实现0121w w n =和022w w n =的响应曲线,并记录 %Matlab 计算程序第1)题:4.52%(00.9)3.55%n s n t ζωζζω⎧∆=⎪⎪=<<⎨⎪∆=⎪⎩%单位阶跃响应曲线clcclearnum=[10];den=[1 2 10];step(num,den);title('Step Response of G(s)=10/(s^2+2s+10)');hold ont=[0::6];y1=;plot(t,y1)第2)题:%计算系统的闭环根、阻尼比、无阻尼振荡频率num=[10];den=[1 2 10];G=tf(num,den);[wn,z,p]=damp(G);第4)题:%kosi=1阶跃响应曲线wn=sqrt(10);kosi=1;G=tf([wn*wn],[1 2*kosi*wn wn*wn]);step(G);title('Step Response of kosi=1');%kosi=2的阶跃响应曲线wn=sqrt(10);kosi=2;G=tf([wn*wn],[1 2*kosi*wn wn*wn]);step(G);title('Step Response of kosi=2');第5)题:%wn1=的阶跃响应曲线w0=sqrt(10);kosi=1/sqrt(10);wn1=*w0;G=tf([wn1*wn1],[1 2*kosi*wn1 wn1*wn1]);step(G);title('Step Response of wn1=');%wn2=2w0的阶跃响应曲线w0=sqrt(10);kosi=1/sqrt(10);wn2=2*w0;G=tf([wn2*wn2],[1 2*kosi*wn2 wn2*wn2]);step(G);title('Step Response of wn2=2w0');2. 作出以下系统的阶跃响应,并与原系统响应曲线进行比较,作出相应的实验分析结果(1)()10210221+++=s s s s G ,有系统零点的情况 (2)()102105.0222++++=s s s s s G ,分子、分母多项式阶数相等(3)()1025.0222+++=s s s s s G ,分子多项式零次项为零 (4)()10222++=s s ss G ,原响应的微分,微分系数为1/10%各系统阶跃响应曲线比较G0=tf([10],[1 2 10]);G1=tf([2 10],[1 2 10]);G2=tf([1 10],[1 2 10]);G3=tf([1 0],[1 2 10]);G4=tf([1 0 ],[1 2 10]);step(G0,G1,G2,G3,G4);grid on;title('实验 Step Response 曲线比较');3. 单位阶跃响应:25425)()(2++=s s s R s C 求该系统单位阶跃响应曲线,并在所得图形上加网格线和标题%单位阶跃响应G=tf([25],[1 4 25]);step(G);grid on;title('实验 Step Response of G(s)=25/(s^2+4s+25)');(三)系统动态特性分析用Matlab 求二阶系统12012120)(2++=s s s G 和01.0002.001.0)(2++=s s s G 的峰值时间p t 上升时间r t 调整时间s t 超调量%σ。
%G1阶跃响应G1=tf([120],[1 12 120]);step(G1);grid on;title(' Step Response of G1(s)=120/(s^2+12s+120)');% G2单位阶跃响应G2=tf([],[1 ]);step(G2);grid on;title(' Step Response of G2(s)=(s^2++');、实验二 MATLAB 及仿真实验(控制系统的根轨迹分析)一 实验目的1.利用计算机完成控制系统的根轨迹作图2.了解控制系统根轨迹图的一般规律3.利用根轨迹图进行系统分析二 预习要点1. 预习什么是系统根轨迹2. 闭环系统根轨迹绘制规则。
三 实验方法(一) 方法:当系统中的开环增益k 从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。
设系统的开环传函为:)()()(0s Q s N k s G =,则系统的闭环特征方程为:0)()(1)(10=+=+s Q s N k s G 根轨迹即是描述上面方程的根,随k 变化在复平面的分布。
(二) MATLAB 画根轨迹的函数常用格式:利用Matlab 绘制控制系统的根轨迹主要用pzmap ,rlocus ,rlocfind ,sgrid 函数。
1、零极点图绘制[p,z]=pzmap(a,b,c,d):返回状态空间描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
[p,z]=pzmap(num,den):返回传递函数描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
pzmap(a,b,c,d)或pzmap(num,den):不带输出参数项,则直接在s 复平面上绘制出系统对应的零极点位置,极点用×表示,零点用o 表示。
pzmap(p,z):根据系统已知的零极点列向量或行向量直接在s 复平面上绘制出对应的零极点位置,极点用×表示,零点用o 表示。
2、根轨迹图绘制rlocus(a,b,c,d)或者rlocus(num,den):根据SISO 开环系统的状态空间描述模型和传递函数模型,直接在屏幕上绘制出系统的根轨迹图。
开环增益的值从零到无穷大变化。
rlocus(a,b,c,d,k)或rlocus(num,den,k): 通过指定开环增益k 的变化范围来绘制系统的根轨迹图。
r=rlocus(num,den,k) 或者[r,k]=rlocus(num,den) :不在屏幕上直接绘出系统的根轨迹图,而根据开环增益变化矢量k ,返回闭环系统特征方程1+k*num(s)/den(s)=0的根r ,它有length(k)行,length(den)-1列,每行对应某个k 值时的所有闭环极点。
或者同时返回k 与r 。
若给出传递函数描述系统的分子项num 为负,则利用rlocus 函数绘制的是系统的零度根轨迹。
(正反馈系统或非最小相位系统)3、rlocfind()函数[k,p]=rlocfind(a,b,c,d)或者[k,p]=rlocfind(num,den)它要求在屏幕上先已经绘制好有关的根轨迹图。
然后,此命令将产生一个光标以用来选择希望的闭环极点。
命令执行结果:k 为对应选择点处根轨迹开环增益;p 为此点处的系统闭环特征根。
不带输出参数项[k,p]时,同样可以执行,只是此时只将k 的值返回到缺省变量ans 中。
4、sgrid()函数sgrid :在现存的屏幕根轨迹或零极点图上绘制出自然振荡频率wn 、阻尼比矢量z 对应的格线。
sgrid(‘new’):是先清屏,再画格线。
sgrid(z,wn):则绘制由用户指定的阻尼比矢量z 、自然振荡频率wn 的格线。
四 实验内容1. ()()()21++=s s s k s G g要求:A . 记录根轨迹的起点、终点与根轨迹的条数;B . 确定根轨迹的分离点与相应的根轨迹增益;C . 确定临界稳定时的根轨迹增益gL k%Matlab 计算程序z=[];p=[0 -1 -2];k=1;G=zpk(z,p,k);figure(1);pzmap(G)figure(2);rlocus(G)title('实验所作曲线');%求临界稳定时的根轨迹增益Kglz=[];p=[0 -1 -2];k=1;G=zpk(z,p,k);rlocus(G)title('实验 临界稳定时的根轨迹增益Kgl');[k,p]=rlocfind(G)%求取根轨迹的分离点与相应的根轨迹增益z=[];p=[0 -1 -2];k=1;G=zpk(z,p,k);rlocus(G)title('实验 根轨迹的分离点与相应的根轨迹增益曲线图');[k,p]=rlocfind(G)2.()()23)(++=s s s K s G g 要求:确定系统具有最大超调量时的根轨迹增益;解:当Kg=时,系统具有最大超调量%σ=% ,% Matlab 程序num=*[1 3];den=[1 2 0];G0=tf(num,den);G=feedback(G0,1,-1); step(G)title('实验 系统阶跃响应曲线');3.绘制下列各系统根轨迹图。