对数与对数函数重难点突破

合集下载

对数函数及其性质重点难点创新突破

对数函数及其性质重点难点创新突破

际出发,解释两个变量之 间的关系,把解析式概括 到 y=logax 形式。
1、 让学生很自然地从指 数式过度到对数式。
2、 清楚了函数研究的 过程,为对数函数 的研究做作好铺 垫。
通过在指数函数一 节曾经做过的一道习题 改编入手,以旧代新逐 层递进,不仅可以检测 学生指数式和对数式互 化的学习情况,而且能 激发学生的好奇心,开 拓学生的知识面,自然 引出对数函数的概念, 从而引入课题
情 的细胞分裂多少次后,得到细胞个数
境 x?你能否用细胞个数 x 把分裂次数 y
、 表示出来?
复 引例 2、用清水漂洗含 1 个单位质量污垢的 生:回答问题 1。

衣服,若每次能洗去污垢的四分之

三,试写出残留污垢 x 与漂洗次数 y

的关系式.
师:引导学生从函数的实
问题 1、上述两个问题中的函数解析式有什 么共同特征你能归纳出这类函数的一般式
二、教学重难点: 教学重点:理解对数函数的定义,掌握对数函数图象和性质; 教学难点:底数 a 对函数值变化的影响及对数函数性质的应用。
三`教学方法: 通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点
四、课堂结构设计: 本节课是概念、图象及性质的新授课,为了使学生更好的达成学习目标我设计了以学
环 活动五:
师:分析函数的定义域必
节 例 1、求下列函数的定义域:。
三 (1) y log a x 2

(2) y loga (4 x)
须使函数的解析式有意 义,并板书解读过程。 生:认真听讲,积极思
通过对数函数图象的观 察,分析总结出对数函 数的性质,有利于加深 学生对性质的理解和掌 握,使学生经历从特殊 到一般的过程,体验知 识的产生形成过程,逐 步培养学生的抽象概括 能力。

对数及对数函数要点及解题技巧讲解

对数及对数函数要点及解题技巧讲解

学习!为了追寻更好的自己.................
学习!为了追寻更好的自己.................
对数的运算与性质
[例 1] (2011·苏北四市二模)(lg2)2+lg2lg5+lg5= ________.
分析:注意到 lg2+lg5=1,可通过提取公因式产生 lg2+lg5 求解.
答案:D
(理)设 a>0 且 a≠1,函数 f(x)=logax 在区间[a,2a]上
的最大值与最小值之差为12,则 a 等于( )
A. 2
B.2 或12
C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意 得,logaa-loga2a=12,∴loga2=-12,∴a=14.
2.(1)同底数的对数比较大小用单调性. (2)同真数的对数比较大小用图象或换底或转化为指 数式. (3)作差或作商法 (4)利用中间量 0、1 比较.
3.对数函数图象在第一象限内底数越小,图象越靠 近 y 轴(逆时针底数依次变小),在直线 x=1 右侧,底大 图低(区分 x 轴上方与下方).
4.在对数运算中,常常先利用幂的运算把底数或真 数进行变形,化成分数指数幂的形式,使幂的底数最简, 然后再运用对数运算法则化简合并,在运算中要注意化 同底和指对互化的运用.
(2)logaMN= logaM-logaN

(3)logaNn= nlogaN ;
1
n
(4)loga
N=
nlogaN
.
(其中 M>0,N>0,a>0 且 a≠1,n∈N*)

对数函数(重难点突破)

对数函数(重难点突破)

对数函数重难点突破一、知识梳理二、知识精讲知识点一对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a >10<a <1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log aM-log a N;③log a M n=n log a M(n∈R);④log a m M n=nmlog a M(m,n∈R,且m≠0).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1).三、例题讲解(一)对数函数的概念与图像例1、给出下列函数:①y=x2;②y=log3(x﹣1);③y=log x+1x;④y=logπx.其中是对数函数的有()A.1个B.2个C.3个D.4个【答案】解:①y=x2的真数为x2,故不是对数函数;②y=log3(x﹣1)的真数为x﹣1,故不是对数函数;③y=log x+1x的底数为x+1,故不是对数函数;④y=logπx是对数函数;故选:A.【变式训练1-1】.函数f(x)=log a|x|+1(0<a<1)的图象大致为()【答案】A【解析】选A由函数f(x)的解析式可确定该函数为偶函数,图象关于y轴对称.设g(x)=log a|x|,先画出x>0时,g(x)的图象,然后根据g(x)的图象关于y轴对称画出x<0时g(x)的图象,最后由函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合图象知选A.【变式训练1-2】.函数f (x)=的图象可能是()A.B.C .D.【答案】解:∵f (x )=,∴函数定义域为(﹣∞,0)∪(0,+∞),∵,∴函数f (x )为奇函数,图象关于原点对称,故排除B 、C ,∵当0<x <1时,lnx <0,∴f (x )=<0,x ∈(0,1)故排除D .故选:A .【变式训练1-3】.函数y =|lg (x +1)|的图象是()A.B.C .D.故函数y =lg (x +1)的图象与X 轴的交点是(0,0),即函数y =|lg (x +1)|的图象与X 轴的公共点是(0,0),考察四个选项中的图象只有A 选项符合题意故选:A .【变式训练1-4】.计算:13278-⎛⎫⎪⎝⎭+log 2(log 216)=________.【解析】:原式=13323⎛⎫-⨯- ⎪⎝⎭⎛⎫⎪⎝⎭+log 24=23+2=83.例2.函数y =⎪⎩⎪⎨⎧≥-<0,120,2x x x x 的图象大致是()【答案】B【变式训练2-1】.已知0a >,0b >且1a ≠,1b ≠,若log 1a b >,则下列不等式可能正确的是().A .(1)()0b b a -->B .(1)()0a a b -->C .(1)(1)0a b --<D .(1)()0a b a -->【答案】AD【解析】∵log 1log a a b a >=,∴若1a >,则b a >,即1b a >>.∴(1)()0b b a -->,故A 正确.(1)()0a b a -->,故D 正确.若01a <<,则01b a <<<,∴(1)()0a a b --<,(1)(1)0a b -->,故BC 错误,【变式训练2-2】.已知函数22,1()log (1),1x x f x x x -⎧≥-=⎨-<-⎩,则(0)(3)f f --=_______.【解析】[]02(0)(3)2log 1(3)121f f ---=---=-=-.故答案为:-1【变式训练2-3】.图中曲线是对数函数log a y x =的图象,已知a 取3,43,35,110四个值,则相应于1C ,2C ,3C ,4C 的a 值依次为()A 343,35,110B 3,43,110,35C .43335,110D .433,110,35【答案】A 可得1C ,2C ,3C ,4C 的a 值从小到大依次为:4C ,3C ,2C ,1C ,(二)比较大小例3.(2019·浙江湖州高一期中)下列各式中错误..的是()A .70.80.33>B .0.50.5log 0.4log 0.6>C .0.10.10.750.75-<D .23log log >【答案】C【变式训练3-1】.(2020·全国高一课时练习)设323log ,log log a b c π===)A .a >b >cB .a >c >bC .b >a >cD .b >c >a【答案】A【解析】33331log log 31,log log ,2a c π=>==>=2221log log log 212b =<=<=,a bc ∴>>.故选:A.【变式训练3-2】.(2019秋•沙坪坝区校级月考)已知a =log 30.3,b =30.3,c =0.30.2,则()A .a <b <cB .a <c <bC .c <a <bD .b <c <a【分析】容易得出,从而可得出a ,b ,c 的大小关系.【答案】解:∵log 30.3<log 31=0,30.3>30=1,0<0.30.2<0.30=1∴a <c <b .故选:B .【变式训练3-3】.(2019•西湖区校级模拟)下列关系式中,成立的是()A .B .C .D .【答案】解:∵log 34>log 33=1,0<0.31.7<0.30=1,log 0.310<log 0.31=0,∴.故选:A .(三)对数函数过定点问题例4.(2019秋•水富县校级月考)已知函数y =3+log a (2x +3)(a >0,a ≠1)的图象必经过定点P ,则P 点坐标是()A .(1,3)B .(﹣,4)C .(﹣1,3)D .(﹣1,4)【分析】令2x +3=1,求得x 的值,从而求得P 点的坐标.【答案】解:令2x +3=1,可得x =﹣1,此时y =3.即函数y =3+log a (2x +3)(a >0,a ≠1))的图象必经过定点P 的坐标为(﹣1,3).故选:C .【点睛】本题主要考查对数函数的单调性和特殊点,属于基础题.【变式训练4-1】.函数y =log a (x +2)+a x +1+2(a >0,且a ≠1)的图象必经过的点是()A .(0,2)B .(2,2)C .(﹣1,2)D .(﹣1,3)【分析】根据log a 1=0,a 0=1,求出定点的坐标即可.【答案】解:令x +2=1,解得:x =﹣1,故y =0+1+2=3,故图象过(﹣1,3),故选:D .【点睛】本题考查了对数函数,指数函数的性质,根据log a 1=0,a 0=1是解题的关键.【变式训练4-2】.已知a >0,a ≠1,则f (x )=log a的图象恒过点()A .(1,0)B .(﹣2,0)C .(﹣1,0)D .(1,4)【分析】令=1,解得x =﹣2,y =0,进而得到f (x )=log a的图象恒过点的坐标.【答案】解:令=1,解得:x =﹣2,故f (﹣2)=log a 1=0恒成立,即f (x )=log a的图象恒过点(﹣2,0),故选:B .(四)有关对数函数奇偶性问题例5.(多选题)下列函数中,是奇函数且存在零点的是()A .y =x 3+xB .y =log 2xC .y =2x 2-3D .y =x |x |【答案】AD【解析】A 中,y =x 3+x 为奇函数,且存在零点x =0,与题意相符;B 中,y =log 2x 为非奇非偶函数,与题意不符;C【变式训练5-1】.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .c b a<<D .c a b<<【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<.本题选择C 选项.【变式训练5-2】.对于函数,下列说法正确的是()A .f (x )是奇函数B .f (x )是偶函数C .f (x )是非奇非偶函数D .f (x )既是奇函数又是偶函数【分析】根据函数奇偶性的定义判断函数的奇偶性即可.【答案】解:由>0,解得:﹣1<x <1,故函数f (x )的定义域是(﹣1,1),关于原点对称,而f (﹣x )=log 2=﹣log 2=﹣f (x ),故f (x )是奇函数,故选:A .(五)有关对数函数定义域问题例6.函数y =21log (2)x -的定义域为()A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)【答案】C【解析】:选C 根据题意得220,log (2)0x x ->⎧⎨-≠⎩解得x >2且x ≠3,故选C.【变式训练6-1】.(2018秋•宜宾期末)函数y =的定义域是()A .(,+∞)B .(,1]C .(﹣∞,1]D .[1,+∞)【分析】首先由根式有意义得到log 0.5(4x ﹣3)≥0,然后求解对数不等式得到原函数的定义域.【答案】解:要使原函数有意义,则log 0.5(4x ﹣3)≥0,即0<4x ﹣3≤1,解得.所以原函数的定义域为(].故选:B .【变式训练6-2】.(2018春•连城县校级月考)函数y =的定义域是()A .[1,+∞)B .(,+∞)C .(1,+∞)D .(,1]【分析】利用对数的性质求解.【答案】解:函数y =的定义域满足:,解得.故选:D .【变式训练6-3】.函数()21log 2y x =-的定义域是__________.【答案】()()2,33,+∞ 【解析】由题意可得()320log 20x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,解得2x >且3x ≠.因此,函数()21log 2y x =-的定义域是()()2,33,+∞ .故答案为:()()2,33,+∞ .【变式训练6-4】.函数()()212log 23f x x x =--+的定义域为______,最小值为______.【答案】()3,1-2-【解析】由题意得2230x x --+>,解得31x -<<,所以函数()f x 的定义域为()3,1-,令()(]2223140,4t x x x =--+=-++∈,所以()12log g t t =在(]0,4递减,且()124log 42g ==-.因此函数()f x 的值域为[2,)-+∞,最小值为2-.(六)有关对数函数值域问题及最值问题例7.函数f (x )=131+x的值域是()A .(-∞,1)B .(0,1)C .(1,+∞)D .(-∞,1)∪(1,+∞)【答案】B【解析】∵3x +1>1,∴0<131+x<1,∴函数的值域为(0,1).【变式训练7-1】.(2019秋•南昌校级期中)函数y =log 4(2x +3﹣x 2)值域为.【分析】运用复合函数的单调性分析函数最值,再通过配方求得值域.【答案】解:设u (x )=2x +3﹣x 2=﹣(x ﹣1)2+4,当x =1时,u (x )取得最大值4,∵函数y =log 4x 为(0,+∞)上的增函数,∴当u (x )取得最大值时,原函数取得最大值,即y max =log 4u (x )max =log 44=1,因此,函数y =log 4(2x +3﹣x 2)的值域为(﹣∞,1],故填:(﹣∞,1].【变式训练7-2】.已知函数()2()lg 2f x x x a =++,若它的定义域为R ,则a _________,若它的值域为R ,则a __________.【答案】1>1≤【解析】函数()2()lg 2f x x x a =++的定义域为R ,则220x x a ++>恒成立,故440a ∆=-<,即1a >;函数()2()lg 2f x x x a =++为R ,则()0,∞+是函数22y x x a =++值域的子集,则440a ∆=-≥,即1a ≤.故答案为:1>;1≤.【变式训练7-3】.)已知f (x )=log 2(1-x )+log 2(x +3),求f (x )的定义域、值城.【答案】定义域为()3,1-,值域为(],2-∞.【解析】由函数()f x 有意义得1030x x ->⎧⎨+>⎩,解得31x -<<,所以函数()f x 的定义域为()3,1-.因为()22log (1)log (3)f x x x =-++()()2log 13x x =-+⎡⎤⎣⎦()22log 23x x =--+()22log 14x ⎡⎤=-++⎣⎦,31x -<<,又因为()214t x =-++在(3,1)--上递增,在(1,1)-上递减,所以(]0,4∈t ,所以(]2log ,2t ∈-∞.所以函数()f x 的值域为(],2-∞.【变式训练7-4】.设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =.(1)求a 的值及()f x 的定义域;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)2a =,定义域为()1,3-;(2)2【解析】(1)()1log 2log l 242og a a a f =+==,解得2a =.故()()22log 1)g 3(lo f x x x =++-,则1030x x +>⎧⎨->⎩,解得13x -<<,故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦,由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减.故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==.(七)对数函数的概念与图像例8.画出下列函数的图象:(1)y =lg|x -1|.(2)lg(1)y x =-.(八)对数型复合函数的单调性问题例9.函数12()log (2)f x x =-的单调递增区间是()A .(,2)-∞B .(,0)-∞C .(2,)+∞D .(0,)+∞【答案】A【解析】由20x ->,得到2x <,令2t x =-,则2t x =-在(,2)-∞上递减,而12log y t =在(0,)+∞上递减,由复合函数单调性同增异减法则,得到12()log (2)f x x =-在(,2)-∞上递增,故选:A【变式训练9-1】.函数()()log 6a f x ax =-在[]0,2上为减函数,则a 的取值范围是()A .()0,1B .()1,3C .(]1,3D .[)3,+∞【答案】B【解析】若函数在上为减函数,则,计算得出,所以B 选项是正确的.【变式训练9-2】.已知函数()2()log log 2(0,1)a a f x x x a a =-->≠.(1)当2a =时,求(2)f ;(2)求解关于x 的不等式()0f x >;(3)若[2,4],()4x f x ∀∈≥恒成立,求实数a 的取值范围.【答案】(1)2-;(2)见解析;(3)(,12⎫⎪⎪⎣⎭ 【解析】(1)当2a =时,()()222log log 2f x x x =--()21122f ∴=--=-(2)由()0f x >得:()()()2log log 2log 2log 10a a a a x x x x --=-+>log 1a x ∴<-或log 2a x >当1a >时,解不等式可得:10x a <<或2x a >当01a <<时,解不等式可得:1x a >或20x a <<综上所述:当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭ ;当01a <<时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭ (3)由()4f x ≥得:()()()2log log 6log 3log 20a a a a x x x x --=-+≥log 2a x ∴≤-或log 3a x ≥①当1a >时,()max log log 4a a x =,()min log log 2a a x =2log 42loga a a -∴≤-=或3log 23log a a a ≥=,解得:1a <≤②当01a <<时,()max log log 2a a x =,()min log log 4a a x =2log 22log a a a -∴≤-=或3log 43log a a a ≥=,解得:212a ≤<综上所述:a 的取值范围为(2,12⎫⎪⎪⎣⎭ (九)对数型复合函数的最值问题例10.(2019·内蒙古集宁一中高三月考)已知()()1log 011ax f x a a x +=>≠-,(1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明;(3)求使()0f x >的x 的取值范围.【答案】(1)()1,1-;(2)见解析;(3)见解析.【解析】(1)由>0,解得x∈(-1,1).(2)f(-x)=log a =-f(x),且x∈(-1,1),∴函数y=f(x)是奇函数.(3)若a>1,f(x)>0,则>1,解得0<x<1;若0<a<1,f(x)>0,则0<<1,解得-1<x<0.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1为偶函数,1-为奇函数).【变式训练10-1】..(2019·浙江高一期中)已知函数2328()log 1mx x n f x x ++=+.(Ⅰ)若4,4m n ==,求函数()f x 的定义域和值域;(Ⅱ)若函数()f x 的定义域为R ,值域为[0,2],求实数,m n 的值.【答案】(Ⅰ)定义域为{}1x x ≠-,值域为3(,log 8]-∞;(Ⅱ)5,5m n ==.【解析】(Ⅰ)若4,4m n ==,则232484()log 1x x f x x ++=+,由2248401x x x ++>+,得到2210x x ++>,得到1x ≠-,故定义域为{}1x x ≠-.令224841x x t x ++=+,则2(4)840t x x t --+-=当4t =时,0x =符合.当4t ≠时,上述方程要有解,则2644(4)0,0t t ⎧∆=--≥⎨≠⎩,得到04t ≤<或48t <≤,又1x ≠-,所以0t ≠,所以08t <≤,则值域为3(,log 8]-∞.(Ⅱ)由于函数()f x 的定义域为R ,则22801mx x n x ++>+恒成立,则06440m mn >⎧⎨-<⎩,即016m mn >⎧⎨>⎩,令2281mx x n t x ++=+,由于()f x 的值域为[0,2],则[1,9]t ∈,而2()80t m x x t n --+-=,则由644()()0,t m t n ∆=---≥解得[1,9]t ∈,故1t =和9t =是方程644()()0t m t n ---=即2()160t m n t mn -++-=的两个根,则10169m n mn +=⎧⎨-=⎩,得到55m n =⎧⎨=⎩,符合题意.所以5,5m n ==.【变式训练10-2】.(2019秋•荔湾区校级期末)已知函数f (x )=log 3(1+x )﹣log 3(1﹣x ).(1)求函数f (x )定义域,并判断f (x )的奇偶性.(2)判断函数f (x )在定义域内的单调性,并用单调性定义证明你的结论.(3)解关于x 的不等式f (1﹣x )+f (1﹣x 2)>0.【分析】(1)根据对数函数的性质以及函数的定义域,根据函数的奇偶性的定义判断函数的奇偶性即可;(2)根据函数单调性的定义判断函数的单调性即可;(3)根据函数的单调性以及函数的奇偶性判断即可.【答案】解:(1)要使函数f (x )=log 3(1+x )﹣log 3(1﹣x )有意义,必须满足,解得:﹣1<x <1,∴函数f(x)的定义域是(﹣1,1),综上所述,结论是:函数f(x)的定义域是(﹣1,1).f(x)=log3(1+x)﹣log3(1﹣x)=log3().f(﹣x)=log3=﹣log3.∴f(x)为奇函数.(2)函数f(x)=log3(),在区间(﹣1,1)上任取两个不同的自变量x1,x2,且设x1<x2,则f(x1)﹣f(x2)=log3,又(1+x1)(1﹣x2)﹣(1﹣x1)(1+x2)=2(x1﹣x2)<0,即(1+x1)(1﹣x2)<(1﹣x1)(1+x2),∵﹣1<x1<x2<1,∴1+x1>0,1﹣x2>0,∵(1+x1)(1﹣x2)>0,∴<1,∴log3<0,即f(x1)>f(x2),∴函数f(x)是定义域内的单调递增函数.(3)∵f(x)为奇函数,∴f(1﹣x)+f(1﹣x2)>0∴f(1﹣x)>f(x2﹣1),又∵f(x)在定义域上单调递增,∴1﹣x>x2﹣1,x2+x﹣2<0,即(x+2)(x﹣1)<0,∴﹣2<x<1,而,解得:0<x<,综上:0<x<1.【点睛】本题考查了函数的单调性、奇偶性问题,考查导数的应用以及转化思想,是一道中档题.四、迁移应用17.设函数122,1,()1log ,1,x x f x x x -⎧≤=⎨->⎩则满足()2f x ≤的x 的取值范围是_______________.【答案】[0,)+∞【解析】1x ≤时,1()22x f x -=≤,11x -≤,0x ≥,∴01x ≤≤,1x >时,2()1log 2f x x =-≤,2log 1x ≥-,12x ≥,所以1x >,综上,原不等式的解集为[0,)+∞.故答案为:[0,)+∞.。

对数及对数函数教案8篇

对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。

对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。

对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。

将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。

其理论依据为建构主义学习理论。

它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

突破2.2 对数与对数函数重难点突破解析版-假期利器之暑假初升高数学衔接(人教A版必修一)

突破2.2 对数与对数函数重难点突破解析版-假期利器之暑假初升高数学衔接(人教A版必修一)

突破2.2 对数与对数函数重难点突破一、考情分析二、经验分享【知识点1 对数的概念与基本性质】 条件)1,0(≠>=a a N a x 且结论数x 叫做以a 为底N 的对数,a 叫做对数的底数,N 叫做真数记法N x a log =2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ;(2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且.【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论:①ab b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a n a n log log =;④;⑤b b a alog log 1-=.b n m b a ma n log log =(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【知识点3 对数函数的定义】 1.对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.两种特殊的对数函数(1)常用对数函数:以10为底的对数函数x y lg =. (2)自然对数函数:以无理数e 为底的对数函数x y ln =.【知识点4 对数函数的图象与性质】 对数函数的图象与性质列表如下:a >10<a <1图象性质定义域 (0,+∞)值域R过定点过定点(1,0),即x =1时,y =0函数值的变化当0<x <1时,y <0;当x >1时,y >0当0<x <1时,y >0;当x >1时,y <0 单调性是(0,+∞)上的增函数是(0,+∞)上的减函数温馨提示:掌握对数函数的图象和性质,其关键是理解图象的特征,利用几何直观掌握函数的性质.【知识点5 反函数】在指数函数)10(≠>=a a a y x ,中,x 是自变量,y 是x 的函数,其定义域是R ,值域是(0,+∞); 在对数函数)1,0(log ≠>=a a y x a 中,y 是自变量,x 是y 的函数,其定义域是R ,值域是(0,+∞), 像这样的两个函数叫作互为反函数.三、题型分析(一) 对数运算例1.(四川省绵阳市南山中学2018-2019学年高一上期中)若3a =5b =225,则1a +1b=( ) A.12B.14C. 1D. 2【答案】A【解析】35225a b Q ==35log 225,log 225a b ∴==则225225225111log 3log 5log 152a b +=+== 故选:A .【变式训练1】.(2018年新课标I 卷文)已知函数,若,则________.【答案】-7 【解析】根据题意有,可得,所以,故答案是.(二) 对数函数化简求值例2.(1)2(lg 2)2+lg 2·lg5+2(lg 2)2lg 21-+.(2)()()3334839322log 2log log 8log 3log 3log 2log 29-+-++ 【答案】(1)1;(2)34【解析】(1)原式===.(2)原式232233log 2log 3log 328log log 2322329⨯⎛⎫⎛⎫=-++ ⎪⎪⎝⎭⎝⎭323111533log 9log 3log 212232624⎛⎫⎛⎫=-⨯+⨯⨯+=-⨯= ⎪ ⎪⎝⎭⎝⎭.【变式训练1】.(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可; (2)进行指数式和根式的运算即可. 【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式训练2】.(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可; (2)进行对数的运算即可. 【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义. (三) 利用对数函数比较大小例3.(2019年高考全国Ⅰ卷理)已知0.20.32log 0.220.2a b c ===,,,则( ) A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【变式训练1】.(2019年高考天津理)已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b << B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 52a =<=, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A.(四) 对数函数的图像 例4. 在同一直角坐标系中,与的图像可能是( )A .B .C .D .【答案】B 【解析】因为的图象为过点的递增的指数函数图象,故排除选项;的图象为过点的递减的函数图象,故排除选项,故选B .【变式训练1】.(2019年高考浙江)在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是( )【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.(五) 对数函数的定义域 定点 奇偶性等相关问题例5.(2019·江西高三高考模拟(文))已知函数lg ,0()1lg ,0x x f x x x >⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,若()()f m f m >-,则实数m 的取值范围是( ) A .(1,0)(1,)-⋃+∞ B .(,1)(1,)-∞-+∞U C .(1,0)(0,1)-U D .(,1)(0,1)-∞-U【答案】A【解析】由函数的解析式可得函数为奇函数,绘制函数图像如图所示,则不等式()()f m f m >-即()()f m f m >-,即()0f m >, 观察函数图像可得实数m 的取值范围是()()1,01,-⋃+∞. 故选:A .【变式训练1】.(2019·陕西西安中学高三期中(文))已知函数的定义域为______.【答案】【解析】要是函数有意义,则需,解得,故函数定义域为.【变式训练2】.(山东省烟台市2019届高三3月一模)若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m =( ) A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211log 2144f m m ⎛⎫-=+=-+=- ⎪⎝⎭, ∴1m =. 故选C .(六) 对数型复合函数例6.(四川省绵阳市南山中学2018-2019学年高一上期中)设函数f (x )1x +g (x )=ln (ax 2-3x +1),若对任意的x 1∈[0,+∞),都存在x 2∈R ,使得f (x 1)=g (x 2)成立,则实数a 的最大值为( ) A. 2 B.94C. 4D.92【答案】B【解析】设()()2ln 31g x ax x =-+的值域为A ,∵()11f x x =+[0,+∞)上的值域为(],0-∞, ∴(],0-∞⊆A ,∴()231h x ax x =-+至少要取遍(0,1]中的每一个数,又()01h =∴实数a 需要满足a ≤0或0940a a >⎧⎨=-≥⎩V解得94a ≤. ∴故选:B .【变式训练1】.(浙江省杭州市学军中学2017-2018学年高一上期中)当10,2x ⎛⎫∈ ⎪⎝⎭时,函数()2log a f x x x =-的图像在x 轴下方,那么实数a 的取值范围是___ ___.【答案】1,116⎡⎫⎪⎢⎣⎭【解析】由题意得,当时,函数的图象在轴下方,当,时,且,所以,不满足题意;当,时,函数为单调递增函数,所以,要使得函数的图象在轴下方,则,即,即,解得,所以实数的取值范围是.【变式训练2】.(江西省景德镇一中2018-2019学年高一上期中)已知函数2()log (9)(0,1)a f x x ax a a =-+->≠.(1)当10=a 时,求f (x )的值域和单调减区间; (2)若f (x )存在单调递增区间,求a 的取值范围. 【答案】(1)(][),16;5,9lg -∞(2)6a >【解析】(1)当10a =时,()()()(221010log 109log [516f x x x x ⎤=-+-=--+⎦,设()22109516t x x x =-+-=--+,由21090x x -+->,得21090x x -+<,得19x <<,即函数的定义域为()1,9,此时()(]25160,16t x =--+∈,则1010log log 16y t =≤,即函数的值域为(],16lg -∞,要求()f x 的单调减区间,等价为求()2516t x =--+的单调递减区间,()2516t x =--+Q 的单调递减区间为[)5,9,()f x ∴的单调递减区间为[)5,9.(2)若()f x 存在单调递增区间,则当1a >,则函数29t x ax =-+-存在单调递增区间即可,则判别式2360a ∆=->得6a >或6a <-舍, 当01a <<,则函数29t x ax =-+-存在单调递减区间即可,则判别式2360a ∆=->得6a >或6a <-,此时a 不成立,综上实数a 的取值范围是6a >.【变式训练3】..已知函数()log a f x x =(0a >,且1a ≠)在1,24⎡⎤⎢⎥⎣⎦上的最大值为2.(1)求a 的值;(2)若01a <<,求使得(()2)0f f x ->成立的x 的取值范围.【答案】(1或12;(2)1184x <<. 【解析】(1)由题意,当1a >时,函数()log a f x x =在1,24⎡⎤⎢⎥⎣⎦上单调递增,因此max ()(2)log 22a f x f ===,解得a =当01a <<时,函数()log a f x x =在1,24⎡⎤⎢⎥⎣⎦上单调递减,因此14max1()()log 24a f x f ===,解得12a =.综上可知:a =12a =. (2)由不等式(()2)0f f x ->,即log (()2)log 1a a f x ->, 又01a <<,根据对数函数的性质,可得0()21f x <-<, 即122log 3x <<,解得1184x <<.四、迁移应用1.(2019年高考北京文)下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x - C .12log y x =D .1y x=【答案】A【解析】易知函数122,log xy y x -==,1y x=在区间(0,)+∞上单调递减, 函数12y x =在区间(0,)+∞上单调递增. 故选A.2.(2018届四川省南充市三诊)在同一坐标系中,函数与的图象都正确的是( )A. B. C. D.【答案】A 【解析】因为,.所以函数单调递减,排除B ,D.与的图象关于轴对称.排除A.故选A.3.(四川省绵阳市南山中学2018-2019学年高一上期中)若3a =5b =225,则1a +1b=( ) A.12B.14C. 1D. 2【答案】A【解析】35225a b Q ==35log 225,log 225a b ∴==则225225225111log 3log 5log 152a b +=+== 故选:A .4. 在同一直角坐标系中,与的图像可能是( )A .B .C .D .【答案】B 【解析】因为的图象为过点的递增的指数函数图象,故排除选项;的图象为过点的递减的函数图象,故排除选项,故选B .5(2019年高考全国Ⅰ卷理)已知0.20.32log 0.220.2a b c ===,,,则( ) A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .6.(山东省德州市2019届高三第二次练习)设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =( )A .9B .11C .13D .15【答案】B【解析】∵函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,∴()2log 322(3)log 3log 44f f -+=+=2+9=11.故选B .7.(2019·北京高考模拟(理))若函数22,1,()log ,1,x x f x x x ⎧<=⎨-≥⎩则函数()f x 的值域是( )A .(,2)-∞B .(,2]-∞C .[0,)+∞D .(,0)(0,2)-∞U【答案】A【解析】画出函数的图像如下图所示,由图可知,函数的值域为(),2-∞,故选A.8.(云南省玉溪市第一中学2019届高三第二次调研)若()log ()f x x 12=2+1,则()f x 的定义域为____________. 【答案】1(,0)2-【解析】要使函数有意义,需12210log (21)0x x +>⎧⎪⎨+>⎪⎩,解得102x -<<. 则()f x 的定义域为1(,0)2-.9.(2019年高考全国Ⅱ卷理)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.10.(浙江省2019届高三高考全真模拟(二))若函数6,2()3log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域为[4,)+∞,则(1)f =________;实数a 的取值范围为________.【答案】5 (1,2]【解析】因为12≤,所以(1)165f =-+=.当2x ≤时,6y x =-+是减函数,所以264y ≥-+=.若01a <<,函数3log a y x =+是减函数,显然当x →+∞时,y →-∞,不符合题意;若1a >,函数3log a y x =+是增函数,所以3log 2a y >+,要想函数()f x 的值域为[4,)+∞,只需3log 24a +≥,即lg 2log 211lg 2lg 2lg a a a a≥⇒≥⇒≥⇒≤,所以12a <≤,实数a 的取值范围为(1,2]. 11.(浙江省宁波市2019届高三上期末)已知实数且若,则____;若,则实数的取值范围是___【答案】【解析】∵实数且,,∴,∴,∴, ∵,∴当时,;当时,无解,综上的取值范围是. 故答案为,.12(浙江省杭州高级中学2019届高三上期中)已知函数,则___,若,则所有符合条件的组成的集合为____.【答案】0【解析】(1)∵,∴, (2)如图,作出函数的图象,若,则,∴故答案为:13.已知函数()log a f x x =(0a >,且1a ≠)在1,24⎡⎤⎢⎥⎣⎦上的最大值为2.(1)求a 的值;(2)若01a <<,求使得(()2)0f f x ->成立的x 的取值范围. 【答案】(12或12;(2)1184x <<. 【解析】(1)由题意,当1a >时,函数()log a f x x =在1,24⎡⎤⎢⎥⎣⎦上单调递增,因此max ()(2)log 22a f x f ===,解得2a =当01a <<时,函数()log a f x x =在1,24⎡⎤⎢⎥⎣⎦上单调递减,因此14max1()()log 24a f x f ===,解得12a =.综上可知:2a =12a =. (2)由不等式(()2)0f f x ->,即log (()2)log 1a a f x ->, 又01a <<,根据对数函数的性质,可得0()21f x <-<, 即122log 3x <<,解得1184x <<.14. 已知函数且.当时,,求实数x的取值范围.若在上的最大值大于0,求a的取值范围.【答案】(1);(2)【解析】(1)当a=3时,,,得(2)∵a>0,∴在定义域内单调递增,当a>1时,函数在上单调递增,,得即a>,又a>1,故a>1;当0<a<1时,函数在上单调递减,,得;又因为在上恒成立,故,即综上:的取值范围。

【高中数学】突破09对数与对数运算重难点题型(举一反三)(解析版)

【高中数学】突破09对数与对数运算重难点题型(举一反三)(解析版)

学习资料分享[公司地址]2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件)1,0(≠>=a a N a x 且结论数x 叫做以a 为底N 的对数,a 叫做对数的底数,N 叫做真数记法Nx a log =2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln .3.对数与指数的关系当0>a ,且1≠a 时,N x N a a x log =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ;(2)01log =a )1,0(≠>a a 且;(3))1,0(1log ≠>=a a a a 且.【知识点2对数的运算性质】1.运算性质条件0>a ,且1≠a ,0,0>>N M 性质NM MN a a a log log )(log +=N M NM a a a log log log -=M n M a n a log log =(n ∈R)2.换底公式ab bc c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).3.知识拓展(1)可用换底公式证明以下结论:①ab b a log 1log =;②1log log log =⋅⋅ac b c b a ;③b b a n a n log log =;④b n m b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是()A .(﹣∞,5)B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.3有意义,则实数t的取值范围是()【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【分析】根据对数式log(t﹣2)3有意义,【答案】解:要使对数式log(t﹣2)须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.(x+1)中,要使式子有意义,x的取值范围为()【变式1-2】在M=log(x﹣3)A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N>0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg +()lg 1(2)lg 52+lg 8+lg 5lg 20+(lg 2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2+(lg 2+lg 5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.a+log(c﹣b)a=2log 【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a•log(c﹣b)a.(c+b)a=,log(c﹣b)a=证明左端=右【分析】依题意,利用对数换底公式log(c+b)端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+===a•log(c﹣b)a.=2log(c+b)∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。

突破14 对数与对数函数(重难点突破)(解析版)

突破14 对数与对数函数(重难点突破)(解析版)

突破14 对数与对数函数重难点突破一、基础知识【知识点一、对数】 1.对数的概念(1)对数:一般地,如果x a N =(0,1)a a >≠且,那么数 x 叫做以a 为底 N 的对数,记作_______,其中a 叫做对数的底数,N 叫做真数.(2)常用对数:通常我们将以_______为底的对数叫做常用对数,并把10log N 记为lg N .(3)自然对数:在科学技术中常使用以无理数e=2.718 28……为底数的对数,以e 为底的对数称为自然对数,并把e log N 记为ln N . 2.对数与指数的关系当a >0,且a ≠1时,log ba a Nb N =⇔=.即3.对数的性质根据对数的概念,知对数log (0,1)a N a a >≠且具有以下性质: (1)负数和零没有对数,即0N >; (2)1的对数等于0,即log 10a =; (3)底数的对数等于1,即log 1a a =. 【知识点二、对数的运算】 1.基本性质若0,1,0a a N >≠>且,则 (1)log a Na=______;(2)log ba a =______.2.对数的运算性质如果0,1,0,0a a M N >≠>>且,那么:(1)log _________a (M N)=⋅; (2)log ________aM=N; (3)log _______()n a M =n ∈R . 【知识点三、换底公式及公式的推广】 1.对数的换底公式log log (0,1;0,1;0)log c b c NN b b c c N b=>≠>≠>且且.【注】速记口诀:换底公式真神奇,换成新底可任意, 原底加底变分母,真数加底变分子.2.公式的推广 (1)1log log a b b a=(其中a >0且1a ≠;b >0且1b ≠);(2)log log n na ab b =(其中a >0且1a ≠;b >0);(3)log log n m a a mb b n=(其中a >0且1a ≠;b >0); (4)1log log a ab b =-(其中a >0且1a ≠;b >0);(5)log log log log a b c a b c d d ⋅⋅=(其中a ,b ,c 均大于0且不等于1,d >0). 【知识点四、对数函数】 1.对数函数的概念一般地,我们把函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域是_____. 2.对数函数(0,1)xy a a a =>≠且的结构特征 (1)对数符号前面的系数是1;(2)对数的底数是不等于1的正实数(常数); (3)对数的真数仅有自变量x . 【知识点五、对数函数的图象与性质】1.一般地,对数函数log (0,1)a y x a a =>≠且的图象和性质如下表所示:01a << 1a >图象定义域 (0,)+∞值域 R奇偶性 非奇非偶函数过定点 过定点(1,0),即1x =时,0y =单调性 在(0,)+∞上是___函数 在(0,)+∞上是___函数 函数值的变化情况当01x <<时,0y >; 当1x >时,0y <当01x <<时,0y <; 当1x >时,0y >【注】速记口诀:对数增减有思路,函数图象看底数; 底数只能大于0,等于1了可不行; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(1,0)点.2.对数函数log (0,1)a y x a a =>≠且中的底数对其图象的影响在直线x =1的右侧,当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.【知识点六、反函数】根据指数与对数的关系,将指数式(0,1)xy a a a =>≠且(其中x 是自变量,且x ∈R ,y 是x 的函数,(0,)y ∈+∞)化成对数式,即log a x y =,于是对于任意一个(0,)y ∈+∞,通过式子log a x y =都有唯一一个x ∈R 与之对应,这样将y 看成自变量,x 是y 的函数,这时我们就说log ((0,))a x y y =∈+∞是函数()x y a x =∈R 的反函数.由于习惯上将x 看成自变量,而将y 看成因变量,因此,我们将log a x y =中的x ,y 互换,写成log ((0,))a y x x =∈+∞,即对数函数log ((0,))a y x x =∈+∞是指数函数()x y a x =∈R 的反函数,它们的图象关于直线y x =对称.知识参考答案:一、1.(1)log a x N = (2)10 二、1.(1)N(2)b2.(1)log log a a M +N (2)log log a a M N -(3)log a n M四、1.(0,)+∞ 五、1.减增二、题型分析1.对数的概念解决使对数式有意义的参数问题,只要注意满足底数和真数的条件,然后解不等式(组)即可.对数的概念是对数式和指数式互化的依据,在互化过程中应注意对数式和指数式之间的对应关系. 【例1】在对数式(1)log (3)x x --中,实数x 的取值范围应该是 A .1<x <3B .x >1且x ≠2C .x >3D .1<x <3且x ≠2【答案】D【名师点睛】本题极易忽略底数的限制范围,底数1x -需大于0且不等于1. 【变式训练1】在M =log (x ﹣3)(x +1)中,要使式子有意义,x 的取值范围为( ) A .(﹣∞,3] B .(3,4)∪(4,+∞) C .(4,+∞) D .(3,4)【分析】由对数的定义可得,由此解得x 的范围.【答案】解:由函数的解析式可得 ,解得3<x <4,或x >4.故选:B .【点睛】本题主要考查对数的定义,属于基础题.【变式训练2若对数ln (x 2﹣5x +6)存在,则x 的取值范围为 . 【分析】由已知利用对数的概念可得x 2﹣5x +6>0,解不等式即可得解. 【答案】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得:3<x 或x <2,即x 的取值范围为:(﹣∞,2)∪(3,+∞). 故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答. 2.对数运算性质的应用对数的运算性质是进行对数运算和化简的基础,所以要熟记对数的运算性质以及对数恒等式,化简的原则是:(1)尽量将真数化为 “底数”一致的形式;(2)将同底的多个对数的和(差)合成积(商)的对数;(3)将积(商)的对数分成若干个对数的和(差).运算时要灵活运用对数的相关公式求解,如log a a =1(0,1)a a >≠且,log log 1a b b a ⋅=等.【例2】计算:(1)9log 32162)23(log--+; (2)2(lg 5)lg 2lg 5lg 2+⨯+.【答案】(1)13--;(2)1.【名师点睛】在计算23log(32)+-的值时,注意将32-化为132+即可求解.在求解(2)时,注意提取公因式,利用lg 2lg51+=求解.【变式训练1】(2019春•东莞市期末)计算(1)2﹣()+lg +()lg 1(2)lg 52+lg 8+lg 5lg 20+(lg 2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可. 【答案】解:(1)原式=;(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2+(lg 2+lg 5)2=3. 【点睛】考查分数指数幂和对数的运算,完全平方公式的运用. 【变式训练2】(2019•西湖区校级模拟)计算: (1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可. 【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式训练3】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可. 【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义. 3.换底公式的应用换底公式即将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以e 为底的自然对数.【例3】已知711,log 473ab ⎛⎫== ⎪⎝⎭,试用,a b 表示49log 48.【答案】492log 482b a+=. 【解析】11lg3,73lg 7aa ⎛⎫=∴= ⎪⎝⎭.∵7log 4,b =∴lg 4lg 7b =. 则49lg 48lg 4lg32log 48lg 49lg 72lg 722a b ab +==+=+=. 【名师点睛】在解题的方向还不清楚的情况下,一般统一为常用对数(当然也可以换成其他非1的正数为底).【变式训练1】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式: (1)log a c •lo g c a ;(2)log 23•log 34•log 45•log 52; (3)(log 43+log 83)(log 32+log 92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可. 【答案】解:(1)log a c •log c a =•=1;(2)log 23•log 34•log 45•log 52=•••=1; (3)(log 43+log 83)(log 32+log 92)=(+)(+)=(+)(+)=• =.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目. 【变式训练2】利用对数的换底公式化简下列各式:(log 43+log 83)(log 32+log 92) 【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log 43+log 83)(log 32+log 92) =(log 6427+log 649)(log 94+log 92) =log 64243•log 98 = ==.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 4.对数方程的求解解对数方程时,(1)等号两边为底数相同的对数式,则真数相等;(2)化简后得到关于简单对数式的一元二次方程,再由对数式与指数式的互化求解. 【例4】方程1122log (95)log (32)2x x ---=-+的解为 .【答案】2x =【名师点睛】本题所给方程的底数相同,若底数不同,则还需化为同底数再求解.另外,解对数方程必须把所求得的解代入原方程进行检验,以确保所有的真数都大于零,这是必不可少的步骤. 【变式训练1】求下列各式中x 的值: (1)log 4x =﹣,求x ;(2)已知log 2(log 3x )=1,求x .【分析】(1)根据对数和指数之间的关系即可将log 232=5化成指数式; (2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式训练2】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N>0)是解答的关键.【变式训练3】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x 3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题. 5.与对数函数有关的函数的定义域和值域定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.同时还要注意偶次方根的被开方数非负,分母不能为零等.求值域时,一方面要抓住对数函数的定义域和单调性,另一方面,若是复合函数,则要抓住中间变量的取值范围.【例5】已知函数33()log (2)log (6)f x x x =-++. (1)求函数()f x 的定义域; (2)求函数()f x 的最大值.【答案】(1)(6,2)-;(2)34log 2. 【解析】(1)由题意得2060x x ->⎧⎨+>⎩,解得62x -<<,故函数()f x 的定义域是(6,2)-.(2)33()log (2)log (6)f x x x =-++=23log (412)x x --+,(6,2)x ∈-.令22412(2)16t x x x =--+=-++,则(0,16]t ∈. 又3log y t =在(0,16]t ∈上为增函数,∴()f x 的最大值是33(2)log 164log 2f -==.【名师点睛】求函数的最值,一定要坚持“定义域优先”的原则.由对数函数组成的复合函数的最值问题,可利用换元法求解,但要注意中间变量的取值范围.学科&网 【变式训练1】(2019•西湖区校级模拟)函数的定义域是( ) A .B .C .D .【分析】由函数的解析式列出不等式进行求解即可. 【答案】解:由题意得,,解得x >,则函数的定义域是,故选:C .【点睛】本题考查了函数的定义域的求法,属于基础题. 【变式训练2】(2018秋•宜宾期末)函数y =的定义域是( )A .(,+∞)B .(,1]C .(﹣∞,1]D .[1,+∞)【分析】首先由根式有意义得到log 0.5(4x ﹣3)≥0,然后求解对数不等式得到原函数的定义域. 【答案】解:要使原函数有意义,则log 0.5(4x ﹣3)≥0, 即0<4x ﹣3≤1,解得. 所以原函数的定义域为(].故选:B .【点睛】本题考查了对数函数定义域,训练了对数不等式的解法,是基础的计算题. 【变式训练3】(2018春•连城县校级月考)函数y =的定义域是( )A .[1,+∞)B .(,+∞)C .(1,+∞)D .(,1]【分析】利用对数的性质求解. 【答案】解:函数y =的定义域满足:,解得.故选:D .【点睛】本题考查对数函数的定义域的求法,解题时要注意对数性质的灵活运用,是基础题. 6.对数函数的图象对数函数=log (0,1)a y x a a >≠且的图象过定点(1,0),所以讨论与对数函数有关的函数的图象过定点的问题,只需令真数为1,解出相应的,x y ,即可得到定点的坐标.当底数1a >时,对数函数()log a f x x =是(0,)+∞上的增函数,当1x >时,底数a 的值越小,函数图象越“陡”,其函数值增长得越快;当底数01a <<时,对数函数()log a f x x =是(0,)+∞上的减函数,当01x <<时,底数a 的值越大,函数图象越“陡”,其函数值减小得越快.也可作直线y =1与所给图象相交,交点的横坐标即为各个底数,依据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可比较底数的大小.【例6】设0,1a a >≠且,函数2log (2)a y x =++的图象恒过定点P ,则P 点的坐标是 A .(1,2)-B .(2,1)-C .(3,2)-D .(3,2)【答案】A【名师点睛】本题求定点坐标的依据是对数函数=log (0,1)a y x a a >≠且的图象过定点(1,0),不必分1a >和01a <<两种情况讨论.【变式训练1】(2019•西湖区校级模拟)若当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1,则函数y =log a ||的图象大致为( )A .B .C .D .【分析】由于当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1,利用指数函数的图象和性质可得0<a <1.先画出函数y =log a |x |的图象,此函数是偶函数,当x >0时,即为y =log a x ,而函数y =log a ||=﹣log a |x |,即可得出图象.【答案】解:∵当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1. 因此,必有0<a <1.先画出函数y =log a |x |的图象:红颜色的图象. 而函数y =log a ||=﹣log a |x |,其图象如黑颜色的图象. 故选:B .【变式训练2】(2018秋•船营区校级月考)函数f (x )=的图象可能是( )A .B .C.D.【分析】先求出函数的定义域,再判断函数为奇函数,即图象关于原点对称,故可以排除BC,再根据函数值域,可排除D.【答案】解:∵f(x)=,∴函数定义域为(﹣∞,0)∪(0,+∞),∵,∴函数f(x)为奇函数,图象关于原点对称,故排除B、C,∵当0<x<1时,lnx<0,∴f(x)=<0,x∈(0,1)故排除D.故选:A.【点睛】本题主要考查了绝对值函数以及函数的值域、奇偶性和单调性,属于基础题.【变式训练3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【分析】本题研究一个对数型函数的图象特征,函数y=|lg(x+1)|的图象可由函数y=lg(x+1)的图象将X轴下方的部分翻折到X轴上部而得到,故首先要研究清楚函数y=lg(x+1)的图象,由图象特征选出正确选项【答案】解:由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与X 轴的交点是(1,0),故函数y =lg (x +1)的图象与X 轴的交点是(0,0),即函数y =|lg (x +1)|的图象与X 轴的公共点是(0,0),考察四个选项中的图象只有A 选项符合题意故选:A .【点睛】本题考查对数函数的图象与性质,解答本题关键是掌握住对数型函数的图象图象的变化 规律,由这些规律得出函数y =|lg (x +1)|的图象的特征,再由这些特征判断出函数图象应该是四个选项中的那一个 7.对数函数单调性的应用(1)比较对数式的大小:若比较同底数的两个对数式的大小,可直接利用对数函数的单调性;若比较底数不同、真数相同的两个对数式的大小,可以先用换底公式化为同底后,再进行比较,也可以利用顺时针方向底数增大画出对数函数的图象,再进行比较;若比较底数与真数都不同的两个对数式的大小,常借助1,0等中间量进行比较.(2)解简单的对数不等式:形如log log a a x b >的不等式,常借助=log a y x 的单调性求解,如果a 的取值不确定,需分1a >与01a <<两种情况进行讨论;形如log a x b >的不等式,应将b 化为以a 为底数的对数式的形式,再借助=log a y x 的单调性求解. 【例7】已知13212112,log ,log 33a b c -===,则 A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】 C【名师点睛】本题中既有指数式,又有对数式,无法直接比较大小,可借助中间量1,0来进行比较. 【变式训练1】(2019秋•沙坪坝区校级月考)已知a =log 30.3,b =30.3,c =0.30.2,则( ) A .a <b <c B .a <c <bC .c <a <bD .b <c <a【分析】容易得出,从而可得出a ,b ,c 的大小关系.【答案】解:∵log 30.3<log 31=0,30.3>30=1,0<0.30.2<0.30=1 ∴a <c <b .故选:B .【点睛】考查对数函数、指数函数的单调性,以及增函数、减函数的定义.【变式训练2】(2019•西湖区校级模拟)下列关系式中,成立的是( ) A . B . C . D .【分析】容易得出,从而可得出正确的选项.【答案】解:∵log 34>log 33=1,0<0.31.7<0.30=1,log 0.310<log 0.31=0, ∴.故选:A .【点睛】考查对数函数和指数函数的单调性,增函数和减函数的定义. 8.对数型复合函数的性质及其应用 (1)对数复合函数的单调性复合函数y =f [g (x )]是由y =f (x )与y =g (x )复合而成,若f (x )与g (x )的单调性相同,则其复合函数f [g (x )]为增函数;若f (x )与g (x )的单调性相反,则其复合函数f [g (x )]为减函数.对于对数型复合函数y =log a f (x )来说,函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.另外,在求复合函数的单调性时,首先要考虑函数的定义域.学科%网(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下: ①分解成y =log a u ,u =f (x )两个函数; ②求f (x )的定义域; ③求u 的取值范围;④利用y =log a u 的单调性求解.【例8】讨论函数()2log 32()1a f x x x =--的单调性.【答案】答案详见解析.【解析】由3x 2−2x −1>0,得函数的定义域为{x |x >1或x <13-}. ①当a >1时,若x >1,∵u =3x 2−2x −1为增函数,∴f(x)=log a(3x2−2x−1)为增函数.若x<13-,∵u=3x2−2x−1为减函数,∴f(x)=log a(3x2−2x−1)为减函数.②当0<a<1时,若x>1,则f(x)=log a(3x2−2x−1)为减函数,若x<13-,则f(x)=log a(3x2−2x−1)为增函数.【名师点睛】求复合函数单调性的具体步骤是:(1)求定义域;(2)拆分函数;(3)分别求y=f(u),u=φ(x)的单调性;(4)按“同增异减”得出复合函数的单调性.【变式训练1】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1] C.(﹣∞,1] D.[1,+∞)【分析】首先由根式有意义得到log0.5(4x﹣3)≥0,然后求解对数不等式得到原函数的定义域.【答案】解:要使原函数有意义,则log0.5(4x﹣3)≥0,即0<4x﹣3≤1,解得.所以原函数的定义域为(].故选:B.【点睛】本题考查了对数函数定义域,训练了对数不等式的解法,是基础的计算题.【变式训练2】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【分析】利用对数的性质求解.【答案】解:函数y=的定义域满足:,解得.故选:D.【点睛】本题考查对数函数的定义域的求法,解题时要注意对数性质的灵活运用,是基础题.【变式训练3】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【分析】运用复合函数的单调性分析函数最值,再通过配方求得值域.【答案】解:设u(x)=2x+3﹣x2=﹣(x﹣1)2+4,当x=1时,u(x)取得最大值4,∵函数y =log 4x 为(0,+∞)上的增函数, ∴当u (x )取得最大值时,原函数取得最大值, 即y max =log 4u (x )max =log 44=1,因此,函数y =log 4(2x +3﹣x 2)的值域为(﹣∞,1], 故填:(﹣∞,1].【点睛】本题主要考查了函数值域的求法,涉及对数函数的单调性,用到配方法和二次函数的性质,属于基础题.【变式训练4】函数y =(x )2﹣x 2+5 在 2≤x ≤4时的值域为 .【分析】利用换元法,令t =由2≤x ≤4 可得﹣1≤t ≤﹣,由题意可得y ==(t ﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,从而可求函数的值域. 【答案】解:令t =,因为2≤x ≤4,所以﹣1≤t ≤﹣,则y ==(t ﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,当t =﹣是函数有最小值,当t =﹣1时函数有最大值8;故答案为:{y |}【点睛】本题主要考查了对数的运算性质,换元法的应用,二次函数性质的应用及函数的单调性的应用,属于基础知识的简单综合试题. 9.忽略真数大于0【例9】已知()lg lg 2lg 23x y x y +=-,求32log xy的值. 【错解】因为lg lg 2lg(23)x y x y +=-,所以2(23)xy x y =-,即2241390x xy y -+=,即()(49)0x y x y --=,解得x y =或94x y =. 所以3322log log 10x y ==或233322293log log log ()242x y ===. 【错因分析】错解中,()lg lg 2lg 23x y x y +=-与2(23)xy x y =-对,x y 的取值范围要求是不同的,即求解过程不等价,因此,得出解后要代入原方程验证.【正解】同错解,得到x y =或94x y =. 由()lg lg 2lg 23x y x y +=-知,0,0,230x y x y >>->, 当x y =时,230x y -<,此时()lg 23x y -无意义,所以x y =, 即3322log log 10xy ==应舍去; 当94x y =时,233322293log log log ()242x y ===. 【名师点睛】求解有关对数恒等式或不等式的过程中,经常需要将对数符号“脱掉”,此时很容易忽略原式中对数的真数大于0这一隐性限制条件,从而导致求出的最终结果中产生增根或范围扩大,因此要求我们对于此类题,一定要将求出的结果代入原式中进行检验. 10.忽略对底数的讨论【例10】不等式1log (4)log a ax x ->-的解集是_______.【错解】∵1log log a ax x -=,∴原不等式等价于log (4)log a a x x ->,∴4x x ->,解得x <2.∴不等式1log (4)log a ax x ->-的解集为(,2)-∞.【错因分析】错解中的底数a 的值不确定,因此要分类讨论.另外,求解时要保证真数大于0.【名师点睛】解对数不等式时,要防止定义域扩大,途径有两种:一是不同解变形,最后一定要检验;二是解的过程中加上限制条件,如正解,使定义域保持不变,即进行同解变形,最后通过解不等式组得到原不等式的解,这样得出的解就不用检验了.三.课后作业1.222log log 63+等于 A .1B .2C .5D .6【答案】B【解析】原式=2222log 6log 23⎛⎫⨯=⎪⎝⎭=2.故选B . 2.实数01()lg42lg52-++的值为 A .1B .2C .3D .4【答案】C【解析】01()lg42lg52-++=1+lg4+lg25=1+lg100=3.故选C . 3.已知函数f (x )=log 2(3+x )+log 2(3–x ),则f (1)= A .1 B .log 26C .3D .log 29【答案】C【解析】f (1)=log 24+log 22=2+1=3.故选C . 4.若212log log 2a b +=,则有A .a =2bB .b =2aC .a =4bD .b =4a【答案】C【解析】212log log 2a b +=,得2log 2a b ⎛⎫=⎪⎝⎭,即a =4b .故选C . 5.设()()2log 20xf x x =>,则f (3)的值是A .128B .256C .512D .8【答案】B【解析】设log 2x =t ,则x =2t ,所以f (t )=22t ,即f (x )=22x .则f (3)=32822256==.故选B .6.log 513+log 53等于 A .0 B .1C .–1D .log 5103【答案】A【解析】原式=51log 33⎛⎫⨯ ⎪⎝⎭=log 51=0.故选A .7.若a =3412(),b =1234(),c =log 23,则a ,b ,c 大小关系是 A .a <b <c B .b <a <cC .b <c <aD .c <b <a【答案】A【解析】∵a =314211()22<()<b =1234(),c =log 23>1,则a <b <c ,故选A . 8.若a =30.4,b =0.43,c =log 0.43,则 A .b <a <c B .c <a <bC .a <c <bD .c <b <a【答案】D【解析】a =30.4>1,b =0.43∈(0,1),c =log 0.43<0,则c <b <a .故选D . 9.若25210cab==且abc ≠0,则c c a b+= A .2B .1C .3D .4【答案】A10.已知1122log log a b <,则下列不等式一定成立的是A .11()()43a b < B .11a b> C .ln (a –b )>0D .3a –b <1【答案】A【解析】∵1122log log a b <,∴a >b >0,∴111()()()433a a b <<,11a b<,ln (a –b )与0的大小关系不确定,3a –b >1.因此只有A 正确.故选A . 11.函数()lg 2y x =+的定义域为__________.【答案】(–1,+∞)【解析】应该满足()20lg 20x x +>⎧⎨+>⎩,即2+x >1,解得x >–1,所以函数的定义域为(–1,+∞).故答案为:(–1,+∞).12.函数y =lg x 的反函数是__________. 【答案】y =10x【解析】函数y =lg x ,可得x =10y ,所以函数y =lg x 的反函数是y =10x .故答案为:y =10x . 13.函数f (x )=1ln x -的定义域为__________. 【答案】(0,e]【解析】函数()1ln f x x =-的定义域为:{x |01ln 0x x >⎧⎨-≥⎩},解得0<x ≤e .故答案为:(0,e].14.设2x =5y =m ,且11x y+=2,则m 的值是__________. 【答案】10【解析】由2x =5y =m ,得x =log 2m ,y =log 5m ,由11x y+=2,得25112log log m m +=,即log m 2+log m 5=2,∴log m 10=2,∴m =10.故答案为:10.15.方程log 2(2–x )+log 2(3–x )=log 212的解x =__________. 【答案】–116.已知f (x )=lg (10+x )+lg (10–x ),则f (x )是 A .f (x )是奇函数,且在(0,10)是增函数 B .f (x )是偶函数,且在(0,10)是增函数 C .f (x )是奇函数,且在(0,10)是减函数 D .f (x )是偶函数,且在(0,10)是减函数 【答案】D 【解析】由100100x x +>⎧⎨->⎩得:x ∈(–10,10),故函数f (x )的定义域为(–10,10),关于原点对称,又由f (–x )=lg (10–x )+lg (10+x )=f (x ),故函数f (x )为偶函数,而f (x )=lg (10+x )+lg (10–x )=lg (100–x 2),y =100–x 2在(0,10)递减,y =lg x 在(0,10)递增,故函数f (x )在(0,10)递减,故选D . 17.设正实数a ,b 满足6a =2b ,则A .01ba << B .12ba <<C .23ba<<D .34b a<<【答案】C【解析】∵6a =2b ,∴a ln6=b ln2,∴ln6ln2ln3ln2ln2b a +===1+ln3ln2=1+log 23,∵1<log 23<2,∴2<ba<3,故选C .18.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 为1080,则下列各数中与MN最接近的是 A .1033 B .1053C .1073D .1093【答案】D【解析】由题意:M ≈3361,N ≈1080,根据对数性质有:3=10lg3≈100.48,∴M ≈3361≈(100.48)361≈10173,∴M N ≈173801010=1093.故选D . 19.若log 2(log 3a )=log 3(log 4b )=log 4(log 2c )=1,则a ,b ,c 的大小关系是 A .a >b >c B .b >a >cC .a >c >bD .b >c >a【答案】D【解析】由log2(log3a)=1,可得log3a=2,lg a=2lg3,故a=32=9,由log3(log4b)=1,可得log4b=3,lg b=3lg4,故b=43=64,由log4(log2c)=1,可得log2c=4,lg c=4lg2,故c=24=16,∴b>c>a.故选D.20.若正实数x,y满足log2(x+3y)=log4x2+log2(2y),则x+3y的最小值是A.12 B.10C.8 D.6【答案】D【解析】∵log2(x+3y)=log4x2+log2(2y),∴log2(x+3y)=log2x+log2(2y),即x+3y=2yx.可得:x+3y=23•3yx.∴3 2(x+3y)23()2x y+≤,当且仅当x=3y时取等.令x+3y=t,(t>0),则6t≤t2,解得:t≥6,即x+3y≥6.故选D.21.对任意的正实数x,y,下列等式不成立的是A.lg y–lg x=lg yxB.lg(x+y)=lg x+lg yC.lg x3=3lg x D.lg x=ln ln10 x【答案】B22.设函数y=f(x)的图象与y=log2(x+a)的图象关于直线y=–x对称,且f(–2)+f(–1)=2,则a= A.3 B.1 C.2 D.4【答案】D【解析】函数y=f(x)的图象与y=log2(x+a)的图象关于直线y=–x对称,设f(x)上任意一点为(x,y),则(x,y)关于直线y=–x对称的点为(–y,–x),把(–y,–x)代入y=log2(x+a),得–x=log2(–y+a),∴f(x)=–2–x+a,∵f(–2)+f(–1)=2,∴–22+a–2+a=2,解得a=4.故选D.23.已知函数f(x)=ln(–x2–2x+3),则f(x)的增区间为A.(–∞,–1)B.(–3,–1)C.[–1,+∞)D.[–1,1)【答案】B【解析】由–x2–2x+3>0,解得:–3<x<1,而y=–x2–2x+3的对称轴是x=–1,开口向下,故y=–x2–2x+3在(–3,–1)递增,在(–1,1)递减,由y =ln x 递增,根据复合函数同增异减的原则,得f (x )在(–3,–1)递增,故选B .24.已知函数()()212log 45f x x x =--,则函数f (x )的减区间是A .(–∞,2)B .(2,+∞)C .(5,+∞)D .(–∞,–1)【答案】C【解析】设t =x 2–4x –5,由t >0可得x >5或x <–1,则y =12log t 在(0,+∞)递减,由t =x 2–4x –5在(5,+∞)递增,可得函数f (x )的减区间为(5,+∞).故选C .25.已知R 上的奇函数f (x )满足当x <0时,f (x )=log 2(1–x ),则f (f (1))= A .–1 B .–2C .1D .2【答案】C【解析】设x >0,–x <0,f (x )为R 上的奇函数,且x <0时,f (x )=log 2(1–x ),则f (–x )=log 2(1+x )=–f (x ),∴f (x )=–log 2(1+x ),∴f (1)=–1,∴f (f (1))=f (–1)=log 22=1.故选C .26.若实数a ,b 满足a >b >1,m =log a (log a b ),2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为A .m >l >nB .l >n >mC .n >l >mD .l >m >n【答案】B【解析】∵实数a ,b 满足a >b >1,m =log a (log a b ),2(log )a n b =,2log a l b =,∴0=log a 1<log a b <log a a =1,∴m =log a (log a b )<log a 1=0,0<2(log )a n b =<1,1>2log a l b ==2log a b >2(log )a n b =.∴m ,n ,l 的大小关系为l >n >m .故选B .27.函数f (x )=log a (3–ax )(a >0且a ≠1)在区间(a –2,a )上单调递减,则a 的取值范围为__________.【答案】{a |1<a 【解析】∵函数f (x )=log a (3–ax )(a >0且a ≠1)在区间(a –2,a )上单调递减,∴2130a a >⎧⎨-≥⎩,求得1<a ,故答案为:{a |1<a .28.已知函数f (x )=a •2x +3–a (a ∈R )的反函数为y =f –1(x ),则函数y =f –1(x )的图象经过的定点的坐标为__________. 【答案】(3,0)【解析】∵f (x )=a •2x +3–a =a (2x –1)+3过定点(0,3),∴f (x ),的反函数y =f –1(x )的图象经过定点(3,0).故答案为:(3,0).29.若函数f (x )=log a (x 2–ax +1)(a >0且a ≠1)没有最小值,则a 的取值范围是__________. 【答案】(0,1)∪[2,+∞)30.(1)5log 3333322log 2log log 8259-+-; (2)74log 2327log lg 25lg 47++. 【答案】(1)–7;(2)154. 【解析】(1)原式=25log 933332log 4log log 8259-+-39log 48932⎛⎫=⨯⨯- ⎪⎝⎭=log 39–9=2–9=–7;(2)74log 2327log lg 25lg 47++()31424333115log lg 2542log 3lg10222344-=+⨯+=++=-++=.31.求函数f (x )=log 13(x 2–3)的单调区间.3+∞),单增区间是(–∞,3). 【解析】要使函数有意义,当且仅当u =x 2–3>0, 即x 3x <3又x 3+∞)时,u 是x 的增函数; x ∈(–∞,3)时,u 是x 的减函数. 而u >0时,y =log 13u 是减函数, 故函数y =log13(x 2–33+∞),单增区间是(–∞,3 32.已知函数f (x )=lg (x +1)–lg (1–x ).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性.【答案】(1)(–1,1);(2)f(x)为奇函数.【解析】(1)要使原函数有意义,需满足10 10 xx+>⎧⎨->⎩,解得–1<x<1,故函数的定义域为(–1,1);(2)∵f(–x)=lg(1–x)–lg(1+x)=–f(x)∴f(x)为奇函数.33.已知函数f(x)=log a(1+x)–log a(1–x),其中a>0且a≠1.(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性,并说明理由;(3)若f(35)=2,求使f(x)>0成立的x的集合.【答案】(1)(–1,1)(2)奇函数,理由详见解析;(3)(0,1).(3)若f(35)=2,∴log a(1+35)–log a(1–35)=log a4=2,解得a=2,∴f(x)=log2(1+x)–log2(1–x),若f(x)>0,则log2(x+1)>log2(1–x),∴x+1>1–x>0,解得0<x<1,故不等式的解集为(0,1).34.(2018•天津)已知a=log2e,b=ln2,c=121log3,则a,b,c的大小关系为A.a>b>c B.b>a>cC.c>b>a D.c>a>b【答案】D【解析】a=log2e>1,0<b=ln2<1,c=log1213=log23>log2e=a,则a,b,c的大小关系c>a>b,故选D.35.(2018•天津)已知a=log372,b=1314(),c=131log5,则a,b,c的大小关系为A.a>b>c B.b>a>c C.c>b>a D.c>a>b 【答案】D【解析】∵a=log372,c=131log5=log35,且5732>>,∴337512log log>>,则b=1311()144<=(),∴c>a>b.故选D.36.(2018•新课标Ⅲ)设a=log0.20.3,b=log20.3,则A.a+b<ab<0 B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b【答案】B37.(2018•上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=__________.【答案】7【解析】∵常数a ∈R ,函数f (x )=1og 2(x +a ).f (x )的反函数的图象经过点(3,1),∴函数f (x )=1og 2(x +a )的图象经过点(1,3),∴log 2(1+a )=3,解得a =7.故答案为:7.38.【2018年全国卷Ⅲ文】已知函数())ln 1f x x =+,()4f a =,则()f a -=__________.【答案】2-【解析】()()))ln1ln1f x f x x x +-=+++()22ln 12x x =+-+2=,∴()()2f a f a +-=,则()2f a -=-,故答案为:–2.。

2.2.1对数与对数运算重难点题型(举一反三)(解析版)

2.2.1对数与对数运算重难点题型(举一反三)(解析版)

2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论: ①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可. 【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816 的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【分析】依题意,利用对数换底公式log(c+b)a=,log(c﹣b)a=证明左端=右端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+====2log(c+b)a•log(c﹣b)a.∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3 +log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 对数与对数函数(重难点突破)重难点一 对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.重难点二 对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则;如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ;③log a M n =n log a M (n ∈R); ④log a m M n =nm log a M (m ,n ∈R ,且m ≠0).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1).重难点三 对数函数及其性质(1)概念:y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,定义域是(0,+∞). (2)一、重难点题型突破重难点1 对数与对数式的化简求值 如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ;(2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ).例1.(1)(2017·全国高一课时练习)已知lg 9=a,10b =5,则用a ,b 表示log 3645为 .【解析】由已知得lg5b =,则36lg 45lg 5lg 9log 45lg 36lg 4lg 92lg 2b aa++===++, 因为10lg 2lg 1lg515b ==-=-,所以2lg 22(1)22b a a b a b a b a a b +++==+-+-+,即36log 4522a ba b +=-+.(2)求下列函数的定义域:(1)f (x )=lg(x -2)+1x -3;(2)f (x )=log (x +1)(16-4x ).【解析】 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解得x >2且x ≠3,所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4,所以函数定义域为(-1,0)∪(0,4).【变式训练】(1).(2017·全国高一单元测试)已知10m =2,10n =4,则3210m n -的值为( ) A.2【解析】3210m n -=3221010m n =()()32121010m n =321224答案:B(2).(2013·全国高一课时练习)已知2log (2)log log a a a M N M N -=+,则MN的值为( ) A .14B .4C .1D .4或1【解析】因为2log (2)log log a a a M N M N -=+,所以2log (2)log a a M N MN -=(),2(2)M N MN -=,2540M MN N-+=(),解得=1(舍去),=4,故选B.重难点2 对数函数的图像与性质 例2求下列函数的定义域: (1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1); 【解析】(1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)需满足⎩⎪⎨⎪⎧ x +1>0,2-x >0,即⎩⎪⎨⎪⎧x >-1,x <2,解得-1<x <2,故函数的定义域为(-1,2). 例3.(1)(2017·北京市第二中学分校高一)函数12log y x =,x ∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]【解析】∵12083x log x <≤∴≥,-,故选A.(2).下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是( )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【答案】B【解析】设所求函数图象上任一点的坐标为(,)x y ,则其关于直线1x =的对称点的坐标为(2,)x y -,由对称性知点(2,)x y -在函数()ln f x x =的图象上,所以ln(2)y x =-,故选B .(3).函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0【答案】D【解析】由于f (x )的图象单调递减,所以0<a <1,又0<f (0)<1,所以0<a -b <1=a 0,即-b >0,b <0,故选D.(4).当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象为( )A B C D【解析】∵a >1,∴0<1a <1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.重难点3 对数函数的单调性与最值(比较大小) 例4.函数2()ln(28)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞ 【解析】由2280x x -->,得2x <-或4x >,设228u x x =--,则(,2)x ∈-∞-,u 关于x 单调递减,(4,)x ∈+∞,u 关于x 单调递增,由对数函数的性质,可知ln y u =单调递增,所以根据同增异减,可知单调递增区间为(4,)+∞.选D . 例5.设,则( )A .B .C .D . 【解析】, 由下图可知D 正确.【变式训练】.(1)设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=,357log 6,log 10,log 14a b c ===c b a >>b c a >>a c b >>a b c >>33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .(2)已知,则( ) A .B .C .D .【解析】 由题意,可知,,,所以最大,,都小于1,因为,所以,故选A . 重难点4 对数型复合函数的应用例6.(2017·山东滕州市第一中学新校高一课时练习)函数()()log 2a f x ax =-在[]0,1上是减函数,则a 的取值范围是( ) A .()0,1B .()0,2C .()1,2D .()2,+∞【解析】因为0a >,所以2y ax =-在[]0,1上是减函数,又因为()f x 在[]0,1上是减函数,所以log a y x =是增函数,所以1a >;又因为对数的真数大于零,则2020a >⎧⎨->⎩,所以2a <;则(1,2)a ∈.故选:C. 【变式训练】.(1)判断f (x )=⎝⎛⎭⎫13x 2-2x的单调性,并求其值域.(2)已知y =log a (2-ax )是[0,1]上的减函数,则a 的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)(3)函数f (x )=log 12(x 2+2x +3)的值域是________.【解析】(1) 令u =x 2-2x ,则原函数变为y =⎝⎛⎭⎫13u.∵u =x 2-2x =(x -1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y =⎝⎛⎭⎫13u在(-∞,+0.20.32log 0.220.2a b c ===,,a b c <<a c b <<c a b <<b c a <<5log 21a =<115122221log 0.2log log 5log 5log 425b --====>=0.20.51c =<b a c 5log 2a ==150.210.52⎛⎫==== ⎪⎝⎭22log 5log 42>=>12⎛< ⎝c <a c b <<∞)上递减, ∴y =⎝⎛⎭⎫13x 2-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =(x -1)2-1≥-1,∴y =⎝⎛⎭⎫13u ,u ∈[-1,+∞),∴0<⎝⎛⎭⎫13u≤⎝⎛⎭⎫13-1=3,∴原函数的值域为(0,3].(2)∵f (x )=log a (2-ax )在[0,1]上是减函数,且y =2-ax 在[0,1]上是减函数,∴⎩⎪⎨⎪⎧ f (0)>f (1),a >1,即⎩⎪⎨⎪⎧ log a 2>log a (2-a ),a >1,∴⎩⎪⎨⎪⎧a >1,2-a >0,∴1<a <2. (3)f (x )=log 12(x 2+2x +3)=log 12[(x +1)2+2],因为(x +1)2+2≥2。

所以log 12[(x +1)2+2]≤log 122=-1,所以函数f (x )的值域是(-∞,-1]二、课堂定时训练(45分钟)1.23(log 9)(log 4)⋅=( )A .14 B .12C . 2D . 4 【解析】23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯=. 2.如果,0log log 2121<<y x 那么( )A .1y x <<B .1x y <<C .1x y <<D .1y x <<【解析】根据对数函数的性质得1x y >>.3.在同一直角坐标系中,函数,(a >0,且a ≠1)的图象可能是( )1x y a =1(2log )ay x =+【解析】当时,函数的图象过定点且单调递减,则函数的图象过定点且单调递增,函数的图象过定点且单调递减,D 选项符合;当时,函数的图象过定点且单调递增,则函数的图象过定点且单调递减,函数的图象过定点且单调递增,各选项均不符合.综上,选D. 4.当102x <≤时,4log xa x <,则a 的取值范围是 ( ) A .(0,)2 B.2C. D.2) 【解析】由指数函数与对数函数的图像知12011log 42a a <<⎧⎪⎨>⎪⎩,解得212a <<,故选B 5.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为( )A .ac b <<B .a b c <<C .b c a <<D .c a b << 【解析】 由题意,可知,.,所以最大,,都小于1.因为,所以,故选A . 6.已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<01a <<xy a =(0,1)1xy a =(0,1)1log 2a y x ⎛⎫=+⎪⎝⎭1(,0)21a >xy a =(0,1)1xy a =(0,1)1log 2a y x ⎛⎫=+ ⎪⎝⎭1(,02)5log 21a =<115122221log 0.2log log 5log 5log 425b --====>=0.20.51c =<b a c 5log 2a ==150.210.52⎛⎫==== ⎪⎝⎭22log 5log 42>=>12⎛< ⎝c <a c b <<【解析】因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 21213123a f f ⎛⎫===-=-=-= ⎪⎝⎭,()2log 5b f =2log 5214=-=, ()02(0)210c f m f ===-=,所以c a b <<,故选C .7.lg ____________.【解析】lg lg101==. 8. 已知函数. (1)判断奇偶性并证明你的结论;(2)解方程. 【解析】(1)根据题意,为奇函数;证明:,所以定义域为,关于原点对称;任取,则2211log log 1011x x x x -+⎛⎫=⋅== ⎪+-⎝⎭.则有,为奇函数; (2)由(1)知,,即,,即,或, 又由,则有,综上,不等式解集为9.已知,函数. (1)求的定义域;(2)当时,求不等式的解集. 【解析】(1)由题意得:,解得 ()21log 1x f x x+=-()f x ()1f x <-()f x 10111xx x+>⇒-<<-()f x ()11-,()11x ∈-,()()2211log log 11x xf x f x x x-+-+=++-()()f x f x -=-()f x 11x -<<()()()211log 11x f x x +<-⇒<--111212x x -+<=-()()()221111221x x x x x +--+-=--()31021x x +=<-3101x x +>-13x ∴<-1x >11x -<<113x -<<-113,⎛⎫-- ⎪⎝⎭2a >()()()44log 2log f x x a x =---()f x 4a =()()253f x f -≤200x a x ->⎧⎨->⎩2x x a>⎧⎨<⎩因为,所以;故的定义域为(2)因为,所以,,因为,所以,即从而,解得故不等式的解集为. 10. 已知函数且.当时,,求实数x 的取值范围. 若在上的最大值大于0,求a 的取值范围.【解析】 (1)当a=3时,,,得(2)∵a >0,∴在定义域内单调递增, 当a >1时,函数在上单调递增,,得即a >,又a >1,故a >1;当0<a <1时,函数在上单调递减,,得; 又因为在上恒成立,故,即综上:的取值范围2a >2x a <<()f x ()2,a 4a =()()()4425log 27log 92f x x x -=---()443log 1log 10f =-=()()253f x f -≤()()44log 27log 920x x ---≤()()44log 27log 92x x -≤-2709202792x x x x->⎧⎪->⎨⎪-≤-⎩742x <≤()()253f x f -≤7,42⎛⎤⎥⎝⎦。

相关文档
最新文档