对数及对数函数教案

合集下载

对数_对数函数复习教案

对数_对数函数复习教案

一.知识归纳一)对数1、定义: 如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a即有:⇔=N a b )1,0(log ≠>=a a N b a题型一、指数与对数的互化练习1 把下列指数式写成对数形式:4611(1)5625;(2)2;(3) 5.73643m-⎛⎫=== ⎪⎝⎭练习2 把下列对数形式写成指数形式:12(1)log 164;(2)lg 0.012;(3)ln 10 2.303=-=-=2、性质:①零与负数没有对数 ②01log =a ③1log =a a;3、恒等式:NaNa=log;b aba=log)1,0(≠>a a4、运算法则:NM MN aaalogloglog)1(+=NM NMaaalogloglog)2(-=Mn M analog log )3(= 其中a>0,a≠0,M>0,N>05、换底公式:)10,10,0(loglog log≠>≠>>=m m a a N aN N mm a且且二、题型讲解题型一.对数式的化简和运算 例1 计算:练习 求下列各式的值:练习、计算下列各式 (1)12lg )2(lg5lg 2lg)2(lg222+-+⋅+(2)06.0lg 61lg)2(lg )1000lg 8(lg 5lg 23++++(4) 用log a x ,log a y ,log a z 表示下列各式:二)对数函数y=log a x (a>0 , a≠1)的图象与性质:注意:研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制5. 函数y =的定义域是_____________6.方程0)2lg(lg 2=+-x x 的解集是___________________.7 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ) A42 B22 C41 D21例2、已知x,y ,z 为正数,满足zyx643==①求使2x=py 的p 的值, ②求与①中所求的p 的差最小的整数③求证:x zy1121-=④比较3x 、4y 、6z 的大小变式:已知a 、b 、c 均是不等于1的正数,且0111=++==zyxcbazyx,求abc 的值题型三、对数函数图像与性质的运用例3已知f(x)=a x ,g(x)=log a x(a>0,a≠1),若f(3)×g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能为( )练习:比较下列各组中两个值的大小: (1)6log,7log 76; (2)8.0log,log23π例4.判断下列函数的奇偶性: (1)xxx f +-=11lg)(;(2))1ln()(2x xx f -+=例4、已知不等式0)3(log )12(log 2<<+x x x x 成立,则实数x 的取值范围为( )A )31,0( B)21,0( C)1,31( D)21,31(题型四、指数、对数函数的综合问题例5.设a>0,xeax f +=)(是R 上的偶函数.(1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数例6.设函数)(log )(2xx b a x f -=且12log )2(,1)1(2==f f(1) 求a,b 的值; (2) 当[]2,1∈x 时,求)(x f 最大值备用(2011陕西卷理)已知函数()()0011>≥+++=a ,,x xax ln x f 其中()I 若()f x 在x=1处取得极值,求a 的值;()II 求()x f 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围。

高中数学对数函数备课教案

高中数学对数函数备课教案

高中数学对数函数备课教案备课内容:对数函数
教学目标:
1. 了解对数函数的定义和性质;
2. 掌握对数函数的图像特点和变化规律;
3. 能够解决对数函数的相关题目。

教学重点:
1. 对数函数的定义和性质;
2. 对数函数的图像特点和变化规律。

教学难点:
1. 对数函数与指数函数之间的关系;
2. 解决对数函数相关题目的方法。

教学准备:
1. 教学课件;
2. 教辅书籍;
3. 黑板、粉笔;
4. 试题集。

教学步骤:
一、导入(5分钟)
1. 上课前,与学生讨论指数函数的相关知识;
2. 引入对数函数的概念,并与指数函数进行比较。

二、讲解(15分钟)
1. 讲解对数函数的定义和性质;
2. 展示对数函数的图像特点和变化规律;
3. 指导学生如何分析对数函数的性质和变化规律。

三、练习(15分钟)
1. 让学生通过计算和作图来练习对数函数相关题目;
2. 纠正学生的错误,并解释正确的解题方法。

四、总结(5分钟)
1. 总结对数函数的重要性及与指数函数的关系;
2. 强调对数函数在实际问题中的应用。

五、作业布置(5分钟)
1. 布置对数函数相关的作业;
2. 可根据学生的不同水平布置不同难度的题目。

教学反思:
在备课过程中,要充分理解对数函数的概念及其性质,并通过实际例题进行讲解,让学生
理解对数函数的图像特点和变化规律。

同时,要设计合理的练习题目,帮助学生巩固所学
知识,提高解题能力。

在教学过程中,要及时发现学生的问题并加以解决,确保教学效果。

高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1

高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1

第六节 对数与对数函数对数与对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 知识点一 对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a _N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N . (2)log aMN=log a M -log a N . (3)log a M n =n log a M (n ∈R ).(4)换底公式log a b =log m blog m a (a >0且a ≠1,b >0,m >0,且m ≠1).必记结论1.指数式与对数式互化:a x =N ⇔x =log a N . 2.对数运算的一些结论:①log am b n =nm log a b .②log a b ·log b a =1.③log a b ·log b c ·log c d =log a d .易误提醒 在运算性质log a M n =n log a M 中,易忽视M >0.[自测练习]1.(2015·临川一中模拟)计算⎝⎛⎭⎫lg 1125-lg 82÷4-12=________. 解析:本题考查指数和对数的运算性质.由题意知原式=(lg 5-3-lg 23)2÷2-1=(-3lg 5-3lg 2)2×2=9×2=18.答案:18 2.lg427-lg 823+lg 75=________. 解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:12知识点二 对数函数定义、图象与性质定义函数y =log a x (a >0,且a ≠1)叫作对数函数图 象a >10<a <1性 质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时, y ∈(-∞,0); 当x >1时, y ∈(0,+∞) 当0<x <1时, y ∈(0,+∞); 当x >1时, y ∈(-∞,0) 在(0,+∞)上为增函数在(0,+∞)上为减函数易误提醒 解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 必记结论1.底数的大小决定了图象相对位置的高低;不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.[自测练习]3.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B. 答案:B4.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:(1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1,所以a =2. (2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12.由(1)(2)知a =2或a =12.答案:2或12考点一 对数式的化简与求值|1.(2015·内江三模)lg51 000-823=( )A.235 B .-175 C .-185 D .4 解析:lg 51 000-823=lg 1035-(23)23=35-4=-175.答案:B2.(log 23)2-4log 23+4+log 2 13=( )A .2B .2-2log 2 3C .-2D .2log 2 3-2解析:(log 23)2-4log 23+4=(log 23-2)2=2-log 23,又log 213=-log 23,两者相加即为B.答案:B3.(2015·高考浙江卷)若a =log 43,则2a +2-a =________. 解析:原式=2log 4 3+2-log 4 3=3+13=433.答案:433对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二 对数函数图象及应用|(1)(2016·福州模拟)函数y =lg |x -1|的图象是( )[解析] 因为y =lg |x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意. [答案] A(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象,可知,f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有412=2,log 12 12=1,显然4x <log a x 不成立,排除选项A.[答案] B应用对数型函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:作出f (x )的大致图象,不妨设a <b <c ,因为a ,b ,c 互不相等,且f (a )=f (b )=f (c ),由函数的图象可知10<c <12,且|lg a |=|lg b |,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c ∈(10,12).答案:C考点三 对数函数性质及应用|已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. [解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为(-1,1).(2)由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数, 所以f (x )>0⇔x +11-x >1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1).利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.2.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.解:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立, 则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立, 则f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 5.插值法比较幂、对数大小【典例】 (1)设a =0.50.5,b =0.30.5,c =log 0.3 0.2,则a ,b ,c 的大小关系是( ) A .c <b <aB .a <b <cC .b <a <cD .a <c <b(2)已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b[思路点拨] (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 3 0.3=log 3 103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解. [解析] (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性, 可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)c =⎝⎛⎭⎫15log 3 0.3=5-log 3 0.3=5log 3 103. 法一:在同一坐标系中分别作出函数y =log 2 x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知: log 2 3.4>log 3 103>log 43.6. 法二:∵log 3 103>log 33=1,且103<3.4, ∴log 3103<log 3 3.4<log 2 3.4. ∵log 4 3.6<log 4 4=1,log 3103>1,∴log 4 3.6<log 3 103. ∴log 2 3.4>log 3103>log 4 3.6. 由于y =5x 为增函数,∴5log 2 3.4>5log 3103>5log 4 3.6. 即5log 2 3.4>⎝⎛⎭⎫15log 3 0.3>5log 4 3.6,故a >c >b . (3)因为函数y =f (x )关于y 轴对称, 所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时, [xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π 3<20.2<log 3 9,所以b >a >c ,选A. [答案] (1)C (2)C (3)A[方法点评] (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[跟踪练习] 设a >b >0,a +b =1且x =⎝⎛⎭⎫1a b,y =log ⎝⎛⎭⎫1a +1b ab ,z =log 1b a ,则x ,y ,z 的大小关系是( )A .y <x <zB .z <y <xC .y <z <xD .x <y <z解析:用中间量比较大小.由a >b >0,a +b =1,可得0<b <12<a <1,所以1b >2>1a >1,所以x =⎝⎛⎭⎫1a b>1,y =log ⎝⎛⎭⎫1a +1b ab =log ⎝⎛⎭⎫1ab ab =-1,0>z =log 1b a >log 1bb =-1,则y<z <x ,故选C.答案:CA 组 考点能力演练1.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.答案:A2.设a =30.5,b =0.53,c =log 0.5 3,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <b <aD .c <a <b解析:因为a =30.5>30=1,0<b =0.53<0.50=1,c =log 0.5 3<log 0.5 1=0,所以c <0<b <1<a ,故选C.答案:C3.(2015·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6 (a +b ),则1a +1b 的值为( )A .36B .72C .108D.172解析:设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k ,所以1a +1b =a +b ab =6k 2k -23k -3=108.所以选C. 答案:C4.(2015·长春质检)已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3). 又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3). 答案:B5.已知函数f (x )=log 2 ⎝⎛⎭⎫21-x +t 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:由f (-x )=-f (x )得log 2 ⎝ ⎛⎭⎪⎫21+x +t =-log 2 ⎝ ⎛⎭⎪⎫21-x +t ,所以21+x +t =121-x +t,整理得1-x 2=(2+t )2-t 2x 2,可得t 2=1且(t +2)2=1,所以t =-1,则f (x )=log 21+x1-x<0,即⎩⎪⎨⎪⎧1+x1-x>01+x 1-x <1,解得-1<x <0.答案:A6.(2015·深圳一模)lg 2+lg 5+20+⎝⎛⎭⎫5132×35=________. 解析:lg 2+lg 5+20+⎝⎛⎭⎫5132×35=lg 10+1+523×513=32+5=132. 答案:1327.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是________. 解析:∵a 2+1>1,log a ()a 2+1<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12.∴实数a 的取值范围是⎝⎛⎭⎫12,1.答案:⎝⎛⎭⎫12,18.(2015·成都摸底)关于函数f (x )=lg x 2+1x,有下列结论: ①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为lg 2;④当x >0时,函数f (x )是增函数.其中正确结论的序号是________(写出所有你认为正确的结论的序号).解析:函数f (x )=lg x 2+1x的定义域为(0,+∞),其为非奇非偶函数,即得①正确,②不正确;由f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ≥lg ⎝⎛⎭⎫2 x ×1x =lg 2,得③正确;函数u =x +1x 在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,函数y =lg u 为增函数,所以函数f (x )在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,即得命题④不正确.故应填①③.答案:①③9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,∴函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,求a的取值范围.解:由已知f (x )=log a x ,当0<a <1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=-log a 13-log a 2=-log a 23>0,故⎪⎪⎪⎪f ⎝⎛⎭⎫13>|f (2)|总成立.则y =|f (x )|的图象如图. 要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a , 当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时,得a -1≥13≥a ,得0<a ≤13. 综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). B 组 高考题型专练1.(2014·高考福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:由y =log a x 的图象可知log a 3=1,所以a =3.对于选项A :y =3-x =⎝⎛⎭⎫13x 为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.答案:B2.(2014·高考山东卷)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.答案:D3.(2015·高考北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2 (x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:在平面直角坐标系中作出函数y =log 2(x +1)的图象如图所示.所以f (x )≥log 2 (x +1)的解集是{x |-1<x ≤1},所以选C.答案:C4.(2015·高考浙江卷)log 2 22=________,2log 2 3+log 4 3=________. 解析:log 222=log 22-12=-12,2log 2 3+log 4 3=232log 2 3=2log 2 332=27=3 3. 答案:-12 3 3 5.(2015·高考北京卷)2-3,312,log 25三个数中最大的数是________. 解析:因为2-3=123=18,312=3≈1.732,而log 24<log 25,即log 25>2,所以三个数中最大的数是log 25.答案:log 25。

对数及对数函数教案8篇

对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。

对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。

对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。

将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。

其理论依据为建构主义学习理论。

它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

高一数学教案对数5篇

高一数学教案对数5篇

高一数学教案对数5篇高一数学教案对数1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案对数2教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

对数教案:引导学生全面认识数学,激发学习兴趣

对数教案:引导学生全面认识数学,激发学习兴趣

对数教案:引导学生全面认识数学,激发学习兴趣教学目标:1. 理解对数的定义和性质;2. 学会使用对数解决实际问题;3. 培养学生的数学思维能力和解决问题的能力;4. 激发学生对数学的兴趣和热情。

教学内容:1. 对数的定义和性质;2. 对数的换底公式;3. 对数的运算性质;4. 对数在实际问题中的应用;5. 对数的进一步探索。

教学准备:1. 教学PPT或黑板;2. 教学辅导书或教材;3. 练习题和答案;4. 教学工具(如教具、图形等)。

教学过程:一、导入(5分钟)1. 引导学生回顾指数的知识,让学生回顾指数的定义和性质;2. 提出问题:指数和对数有什么关系?引发学生的思考;3. 引导学生猜测对数的定义和性质,激发学生的学习兴趣。

二、对数的定义和性质(15分钟)1. 给出对数的定义:如果a^x = N,x叫做以a为底N的对数,记作x = log_aN;2. 讲解对数的性质,如对数的底数必须大于0且不等于1,对数的真数必须大于0等;3. 通过实例讲解如何求解对数,让学生理解对数的概念和意义。

三、对数的换底公式(15分钟)1. 给出对数的换底公式:log_aN = log_bN / log_bN;2. 解释换底公式的推导过程,让学生理解换底公式的意义;3. 通过实例讲解如何使用换底公式,让学生掌握换底公式的应用。

四、对数的运算性质(15分钟)1. 讲解对数的运算性质,如log_aM + log_aN = log_a(MN),log_aM log_aN = log_a(M/N)等;2. 通过实例讲解如何使用对数的运算性质,让学生掌握对数的运算方法;3. 给出一些练习题,让学生巩固对数的运算性质。

五、对数在实际问题中的应用(15分钟)1. 通过实际问题引入对数的使用,如人口增长、放射性衰变等;2. 讲解如何将实际问题转化为对数问题,让学生学会将实际问题抽象为对数模型;3. 给出一些实际问题,让学生练习使用对数解决问题。

对数的概念教案最终版

对数的概念教案最终版

对数的概念教案最终版一、教学目标1. 让学生理解对数的定义和性质,掌握对数的基本运算方法。

2. 培养学生运用对数解决实际问题的能力,提高逻辑思维和运算能力。

二、教学内容1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用三、教学重点与难点1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用四、教学方法1. 采用讲授法,讲解对数的定义、性质和运算方法。

2. 运用案例分析法,引导学生运用对数解决实际问题。

3. 利用数形结合法,直观展示对数函数的图像,帮助学生理解对数的概念。

五、教学过程1. 导入新课:通过复习指数函数,引出对数的概念。

2. 讲解对数的定义与性质:解释对数的定义,阐述对数的性质,如对数与指数的关系、对数的换底公式等。

3. 教授对数的运算方法:讲解对数的加减乘除运算规则,举例说明运算方法。

4. 应用练习:布置练习题,让学生运用对数解决实际问题,如计算复合利率、人口增长等。

5. 课堂小结:总结本节课所学内容,强调对数的概念、性质和运算方法。

6. 布置作业:布置课后作业,巩固所学知识。

7. 课后反思:教师对本节课的教学情况进行反思,针对学生的掌握情况,调整教学策略。

六、教学拓展1. 对数与自然底数e:介绍自然底数e的概念,解释e的对数——自然对数,及其在数学和物理中的重要性。

2. 对数与对数函数:讲解对数函数的定义,分析对数函数的性质,如单调性、奇偶性等。

3. 对数在科学计算中的应用:介绍对数在科学计算中的广泛应用,如测量、天文、生物等领域。

七、案例分析1. 利用对数计算复合利率:以存款利息为例,讲解如何利用对数计算复合利率。

2. 利用对数解决人口增长问题:以人口增长模型为例,讲解如何利用对数预测人口增长。

3. 利用对数分析信号传输:以电信行业为例,讲解如何利用对数分析信号传输过程中的衰减。

八、课堂互动1. 小组讨论:分组讨论对数在实际生活中的应用,分享各自的研究成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数教学目的:(1)理解对数的概念;(2)能够说明对数与指数的关系; (3)掌握对数式与指数式的相互转化.教学重点:对数的概念,对数式与指数式的相互转化 教学难点:对数概念的理解. 教学过程: 一、引入课题1. (对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性;设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神. 2. 尝试解决本小节开始提出的问题. 二、新课教学1.对数的概念一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ),记作:N x a log =a — 底数,N — 真数,N a log — 对数式说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =⇔=log ; ○3 注意对数的书写格式. 思考:○1 为什么对数的定义中要求底数0>a ,且1≠a ; ○2 是否是所有的实数都有对数呢? 设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备. 两个重要对数:○1 常用对数(common logarithm ):以10为底的对数N lg ;○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数N ln .2. 对数式与指数式的互化x N a =log⇔N a x =对数式 ⇔ 指数式 对数底数 ← a → 幂底数 对数 ← x → 指数 真数 ← N → 幂例1.(教材P 73例1) 巩固练习:(教材P 74练习1、2)设计意图:熟练对数式与指数式的相互转化,加深理解对数概念.说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题.3. 对数的性质 (学生活动)○1 阅读教材P 73例2,指出其中求x 的依据; ○2 独立思考完成教材P 74练习3、4,指出其中蕴含的结论 对数的性质(1)负数和零没有对数;(2)1的对数是零:01log =a ; (3)底数的对数是1:1log =a a ;(4)对数恒等式:N aNa =log ;(5)n a na =log .三、归纳小结,强化思想○1 引入对数的必要性; ○2 指数与对数的关系; ○3 对数的基本性质. 四、作业布置教材P 86习题2.2(A 组) 第1、2题,(B 组) 第1题.课题:§2.2.1对数的运算性质教学目的:(1)理解对数的运算性质;(2)知道用换底公式能将一般对数转化成自然对数或常用对数; (3)通过阅读材料,了解对数的发现历史以及对简化运算的作用.教学重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数 教学难点:对数的运算性质和换底公式的熟练运用. 教学过程: 五、引入课题3. 对数的定义:b N N a a b=⇔=log ;4. 对数恒等式:b a N ab a Na ==log ,log ;六、新课教学1.对数的运算性质 提出问题:根据对数的定义及对数与指数的关系解答下列问题:○1 设m a =2log ,n a =3log ,求n m a +; ○2 设m M a =log ,n N a =log ,试利用m 、n 表示M a (log ·)N . (学生独立思考完成解答,教师组织学生讨论评析,进行归纳总结概括得出对数的运算性质1,并引导学生仿此推导其余运算性质)运算性质:学生活动:○1 阅读教材P75例3、4,;设计意图:在应用过程中进一步理解和掌握对数的运算性质. ○2 完成教材P79练习1~3 设计意图:在练习中反馈学生对对数运算性质掌握的情况,巩固所学知识. 4. 利用科学计算器求常用对数和自然对数的值设计意图:学会利用计算器、计算机求常用对数值和自然对数值的方法. 思考:对于本小节开始的问题中,可否利用计算器求解1318log 01.1的值?从而引入换底公式.5. 换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 学生活动○1 根据对数的定义推导对数的换底公式. 设计意图:了解换底公式的推导过程与思想方法,深刻理解指数与对数的关系. ○2 思考完成教材P 76问题(即本小节开始提出的问题); ○3 利用换底公式推导下面的结论(1)b mnb a na m log log =;(2)ab b a log 1log =.设计意图:进一步体会并熟练掌握换底公式的应用.说明:利用换底公式解题时常常换成常用对数,但有时还要根据具体题目确定底数. 6. 课堂练习○1 教材P79练习4 ○2 已知的值。

试求:12lg ,4771.03lg ,3010.02lg ==○3 试求:5lg 5lg 2lg 2lg 2+⋅+的值。

(对换5与2,再试一试) ○4 的值。

,试求:333335lg 2lg 35lg 2lg b a ab b a ++⋅++=+ ○5 设a =2lg ,b =3lg ,试用a 、b 表示12log 5七、归纳小结,强化思想本节主要学习了对数的运算性质和换底公式的推导与应用,在教学中应用多给学生创造尝试、思考、交流、讨论、表达的机会,更应注重渗透转化的思想方法. 八、作业布置1. 基础题:教材P 86习题2.2(A 组) 第3 ~5、11题; 2. 提高题:○1 设a =3log 8,b =5log 3,试用a 、b 表示5lg ; ○2 设a =7log 14,514=b ,试用a 、b 表示28log 35; ○3 设a 、b 、c 为正数,且c b a 643==,求证:ba c 2111=-. 3. 课外思考题:设正整数a 、b 、c (a ≤b ≤c )和实数x 、y 、z 、ω满足:ω30===z y x c b a ,ω1111=++z y x ,求a 、b 、c 的值.对数函数教学任务:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; (2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;(3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法.教学重点:掌握对数函数的图象和性质.教学难点:对数函数的定义,对数函数的图象和性质及应用. 教学过程: 九、引入课题1.(知识方法准备)○1 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.○2 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备.2.(引例) 教材P 81引例然后引导学生观察上表,体会“对每一个碳14的含量P 的取值,通过对应关系P t 215730log=,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数” .(进而引入对数函数的概念) 十、新课教学(一)对数函数的概念1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数(logarithmic function )其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy = 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制:0(>a ,且)1≠a . 巩固练习:(教材P 68例2、3)(二)对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:○1 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1) x y 2log = (2) x y 21log =(3) x y 3log = (4) x y 31log =2○3 思考底数a 是如何影响函数x y a log =的.(学生独立思考,师生共同总结)规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大. (三)典型例题例1.(教材P 83例7). 解:(略) 说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解.巩固练习:(教材P 85练习2). 例2.(教材P 83例8) 解:(略)说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法. 注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,规范解题格式. 巩固练习:(教材P 85练习3). 例2.(教材P 83例9) 解:(略)说明:本例主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题. 注意:本例在教学中,还应特别启发学生用所获得的结果去解释实际现象. 巩固练习:(教材P 86习题2.2 A 组第6题). 十一、 归纳小结,强化思想本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点. 十二、 作业布置1. 必做题:教材P 86习题2.2(A 组) 第7、8、9、12题. 2. 选做题:教材P 86习题2.2(B 组) 第5题.课题:§2.2.2对数函数(二)教学任务:(1)进一步理解对数函数的图象和性质;(2)熟练应用对数函数的图象和性质,解决一些综合问题;(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力.教学重点:对数函数的图象和性质.教学难点:对对数函数的性质的综合运用. 教学过程:十三、 回顾与总结1. 函数x y x y x y lg ,log ,log 52===的图象如图所示,回答下列问题. (1)说明哪个函数对应于哪个图象,并解释为什么?(2)函数x y a log =与x y a1log =,0(>a 且)0≠a 有什么关系?图象之间又有什么特殊的关系?○1 ○2 ○3(3)以x y x y x y lg ,log ,log 52===的图象为基础,在同一坐标系中画出x y x y x y 1015121log ,log ,log ===的图象.(4)已知函数x y x y x y x y a a a a 4321log ,log ,log ,log ====的图象,则底数之间的关系:.教log =y x a1 log =y x a2 log =y x a3 log =y x a42. 完成下表(对数函数x y a log =,0(>a 且)0≠a 的图象和性质)3. 根据对数函数的图象和性质填空.○1 已知函数x y 2log =,则当0>x 时,∈y ;当1>x 时,∈y ;当10<<x 时,∈y ;当4>x 时,∈y .○1 已知函数x y 31log =,则当10<<x 时,∈y ;当1>x 时,∈y ;当5>x 时,∈y ;当20<<x 时,∈y ;当2>y 时,∈x .十四、 应用举例例1. 比较大小:○1 πa log ,e a log ,0(>a 且)0≠a ; ○2 21log 2,)1(log 22++a a )(R a ∈. 解:(略)例2.已知)13(log -a a 恒为正数,求a 的取值范围.解:(略)[总结点评]:(由学生独立思考,师生共同归纳概括).. 例3.求函数)78lg()(2-+-=x x x f 的定义域及值域. 解:(略)注意:函数值域的求法.例4.(1)函数x y a log =在[2,4]上的最大值比最小值大1,求a 的值;(2)求函数)106(log 23++=x x y 的最小值.解:(略)注意:利用函数单调性求函数最值的方法,复合函数最值的求法.例5.(2003年上海高考题)已知函数xxx x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性.解:(略)注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.例6.求函数)54(log )(22.0++-=x x y x f 的单调区间.解:(略)注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数)23(log 221x x y --=的单调区间.十五、 作业布置 考试卷一套对数函数教学目标:知识与技能 理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.过程与方法 通过作图,体会两种函数的单调性的异同.情感、态度、价值观 对体会指数函数与对数函数内在的对称统一.教学重点:重点 难两种函数的内在联系,反函数的概念. 难点 反函数的概念.教学程序与环节设计:由函数的观点分析例题,引出反函数的概念.教学过程与操作设计:。

相关文档
最新文档