对数指数函数公式全集

合集下载

关于对数和指数的公式

关于对数和指数的公式

关于对数和指数的公式
指数和对数的转换公式表示为x=a^y。

1、指数函数的定义域为R,这里的前提是a大于0且不等于1,对于a不大于0的情况则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑,指数函数的值域为(0,+),函数图形都是上凹的。

2、对数函数的一般形式为y=logax,它实际上就是指数函数的反函数(图像关于直线y=x对称的两函数互为反函数)可表示为x=a^y,因此指数函数里对于a存在规定a>0且a≠1,对于不同大小a会形成不同的函数图形关于X轴对称、当a>1时a越大,图像越靠近x轴、当0<a<1时a越小,图像越靠近x轴。

3、转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行这两种形式的相互转化,熟练应用公式1oga1=0,1ogaa=1,alogaM=M,logaan=n,有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算。

对数指数函数公式

对数指数函数公式

对数指数函数公式对数函数和指数函数是高中数学中非常重要的两类函数。

指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1,x为自变量,y为因变量;对数函数是指在指数函数y=a^x中的三个参数a、x、y中的一个固定不变的量,若固定其中的a和x,求出使得y=a^x的x,那么我们称这个x为以a为底的对数,记作x=loga y。

下面我们分别对指数函数和对数函数进行详细的介绍。

一、指数函数:指数函数是一种自变量在连续变化时,因变量按照指数规律随之变化的函数。

指数函数的一般式为y=a^x,其中a为底数,x为指数,a>0且a≠11.指数的定义和性质:指数函数中,a的取值范围与loga x存在一一对应关系,也就是a 的取值范围应该是(0,∞)。

当a=1时,指数函数简化为y=1^x=1,这是一个常值函数。

指数函数的性质如下:①当x=0时,指数函数的值为a^0=1,即指数函数在x=0处的函数值为1②当x<0时,指数函数的值为a^x=1/a^,x,即指数函数在x<0时的函数值为倒数。

③当x>0时,指数函数随着x的增大,函数值也随之增大,且增长速度越来越快。

2.指数函数的图像:指数函数的图像可以用以下性质来描述:①当a>1时,随着x的增大,函数值也随之增大,且增长速度越来越快。

这种函数的图像呈现递增趋势,且图像越来越陡峭。

②当0<a<1时,随着x的增大,函数值也随之减小,且减小速度越来越快。

这种函数的图像呈现递减趋势,且图像越来越平缓。

③当a=1时,指数函数的图像为一条水平直线,即y=1二、对数函数:对数函数是指在指数函数y=a^x中的三个参数a、x、y中的一个固定不变的量,求出使得y=a^x的x,那么我们称这个x为以a为底的对数,记作x=loga y。

1.对数的定义和性质:对数函数的定义如下:对于任意的正数a(a>0且a≠1),b(b>0),整数n,称n为以a为底的对数,记作n=loga b,当且仅当a的n次幂等于b。

对数运算公式表

对数运算公式表

对数运算公式表一、定义和性质1. 对数的定义:对数是一个数学函数,它表示一个数以某个基数为底的幂的指数。

比如,以10为底的对数表示为log10(x),读作“以10为底x的对数”。

2. 对数运算的性质:对数运算满足以下性质:a) log(ab) = log(a) + log(b) (对数的乘法法则)b) log(a/b) = log(a) - log(b) (对数的除法法则)c) log(a^b) = b*log(a) (对数的幂法法则)二、常用对数1. 常用对数:以10为底的对数,表示为log(x),读作“x的常用对数”。

例如,log(100) = 2,log(1000) = 3。

2. 常用对数的性质:a) log(1) = 0 (任何数以10为底的对数都等于0)b) log(10) = 1 (10的常用对数等于1)三、自然对数1. 自然对数:以自然常数e(约等于2.71828)为底的对数,表示为ln(x),读作“x的自然对数”。

例如,ln(e) = 1,ln(1) = 0。

2. 自然对数的性质:a) ln(xy) = ln(x) + ln(y) (对数的乘法法则)b) ln(x/y) = ln(x) - ln(y) (对数的除法法则)c) ln(e^x) = x (对数的幂法法则)四、对数运算的应用1. 对数运算在科学和工程领域有广泛的应用,包括但不限于以下几个方面:a) 数据压缩:对数运算可以将大范围的数据压缩到较小的范围内,方便存储和处理。

b) 数据可视化:对数坐标轴可以将指数增长的数据呈现为线性增长,更直观地展示数据变化趋势。

c) 概率统计:对数运算在概率统计中常用于处理概率的乘法和除法,简化计算过程。

d) 信号处理:对数运算常用于音频和图像处理中,可以提高信号的动态范围和信噪比。

e) 金融投资:对数收益率常用于金融投资中的风险评估和回报分析。

五、总结对数运算是一种重要的数学工具,广泛应用于各个领域。

高考数学常用公式:指数函数与对数函数公式汇总

高考数学常用公式:指数函数与对数函数公式汇总

【导语】锲⽽舍之,朽⽊不折;锲⽽不舍,⾦⽯可镂。

备考也需要这样持之以恒的精神。

⽆忧考为您提供⾼考数学常⽤公式,平时巩固所学知识并灵活运⽤,考试时会更得⼼应⼿,快来看看吧! 指数函数与对数函数公式汇总 (1)定义域、值域、对应法则 (2)单调性 对于任意x1,x2∈D 若x1 若x1f(x2),称f(x)在D上是减函数 (3)奇偶性 对于函数f(x)的定义域内的任⼀x,若f(-x)=f(x),称f(x)是偶函数 若f(-x)=-f(x),称f(x)是奇函数 (4)周期性 对于函数f(x)的定义域内的任⼀x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂 正分数指数幂的意义是 负分数指数幂的意义是 (2)对数的性质和运算法则 loga(MN)=logaM+logaN logaMn=nlogaM(n∈R) 指数函数对数函数 (1)y=ax(a>0,a≠1)叫指数函数 (2)x∈R,y>0 图象经过(0,1) a>1时,x>0,y>1;x<0,0 0 a>1时,y=ax是增函数 0 (2)x>0,y∈R 图象经过(1,0) a>1时,x>1,y>0;0 0 a>1时,y=logax是增函数 0 指数⽅程和对数⽅程 基本型 logaf(x)=bf(x)=ab(a>0,a≠1) 同底型 logaf(x)=logag(x)f(x)=g(x)>0(a>0,a≠1) 换元型f(ax)=0或f(logax)=0。

对数所有公式大全

对数所有公式大全

对数所有公式大全对数是高等数学中重要的概念之一,广泛应用于各个领域。

在学习和应用对数的过程中,我们需要掌握一些重要的公式。

在本文中,将为你介绍一些常见的对数公式,以帮助你更好地理解和应用对数。

1. 对数的定义公式:对数的定义公式表达了对数和幂的关系:若a>0且a≠1,那么对任意的正数x,b>0以及b≠1,有如下等式成立:loga(x)=b ⟺ x = a^b2. 对数的基本性质:对数具有一些重要的基本性质,可以帮助我们简化对数的运算。

2.1 对数的基本性质1:对数的幂等式loga(a) = 1这个公式表示对数底与求对数运算互为逆运算,即一个数和它的对数底数的对数等于1。

2.2 对数的基本性质2:对数的相等性质若loga(x) = loga(y),那么x = y。

这个公式表示如果两个数的对数的底数相同,并且对数相等,那么这两个数本身也是相等的。

2.3 对数的基本性质3:对数的乘法公式loga(x * y) = loga(x) + loga(y)这个公式表示对数的乘法可以转化为对数的加法。

2.4 对数的基本性质4:对数的除法公式loga(x / y) = loga(x) - loga(y)这个公式表示对数的除法可以转化为对数的减法。

2.5 对数的基本性质5:对数的幂公式loga(x^k) = k * loga(x)这个公式表示对数的幂可以转化为对数的乘法。

3. 常用对数公式:除了对数的基本性质,还有一些特殊的对数公式在实际问题中非常常见。

3.1 自然对数的公式自然对数(以e为底的对数)在科学和工程领域中广泛使用。

自然对数的定义公式为:ln(x) = loge(x),其中e ≈ 2.71828是自然对数的底数。

3.2 对数的积分公式对数函数的积分公式是数学中一种重要的积分公式。

∫(1/x)dx = ln|x| + C其中C是常数。

3.3 对数的换底公式对数的换底公式用于将一个对数转换为另一个底数的对数。

指数函数运算公式8个

指数函数运算公式8个

指数函数运算公式8个指数函数,也称为幂函数,是数学中的一种常见函数类型。

它的一般形式可以表示为y = ax^n,其中a是常数,n是指数。

在指数函数的运算中,有一些常见的公式可以帮助简化计算。

下面是8个常见的指数函数运算公式:1.指数函数的乘法公式:若要计算两个指数函数相乘,即y=a1x^n1*a2x^n2,可以将底数先相乘,再将指数相加,即y=(a1*a2)x^(n1+n2)。

2.指数函数的除法公式:若要计算两个指数函数相除,即y=(a1x^n1)/(a2x^n2),可以将底数先相除,再将指数相减,即y=(a1/a2)x^(n1-n2)。

3. 指数函数的幂运算公式:若要计算一个指数函数的幂,即y =(ax^n)^m,可以将指数相乘,即y = ax^(n * m)。

4. 幂函数的指数公式:若要计算一个幂函数的指数,即y =a^(bx^n),可以将指数和底数都取对数,即y = e^(ln(a^(bx^n))),然后根据对数的运算公式进一步简化。

5. 指数函数的倒数公式:若要计算一个指数函数的倒数,即y = 1/ (ax^n),可以将指数取相反数,即y = (ax^(-n))。

6. 指数函数的根式公式:若要计算一个指数函数的根式,即y =(ax^n)^(1/m),可以将指数和根式互相消去,即y = a^(1/m) * x^(n/m)。

7. 指数函数的对数公式:若要计算一个指数函数的对数,即y =loga(ax^n),可以将对数和指数互相消去,即y = n * loga(x)。

8. 对数函数的指数公式:若要计算一个对数函数的指数,即y = loga^(bx^n),可以将指数取为e的幂,即y = e^(bx^n * ln(a))。

这些指数函数运算公式可以在解决数学问题、化简复杂表达式以及研究数学模型等方面发挥重要作用。

通过熟练掌握这些公式,并结合其他数学知识和技巧,可以更加灵活地运用指数函数进行计算和分析。

高中数学公式大全指数对数函数的运算与对数换底

高中数学公式大全指数对数函数的运算与对数换底

高中数学公式大全指数对数函数的运算与对数换底高中数学公式大全:指数对数函数的运算与对数换底指数对数函数是高中数学中的重要内容,掌握其运算规则和对数换底的方法对于解题非常有帮助。

本文将详细介绍指数对数函数的运算与对数换底,并给出相关的数学公式大全,希望对你的学习有所帮助。

1. 指数函数的运算指数函数是形如 y = a^x 的函数,其中 a 是底数,x 是指数。

在指数函数的运算中,有以下几个重要的公式:公式一:指数相乘的法则当两个指数相乘时,底数不变,指数相加,即 a^x * a^y = a^(x+y)。

公式二:指数相除的法则当两个指数相除时,底数不变,指数相减,即 a^x / a^y = a^(x-y)。

公式三:指数的乘方法则当一个指数的数值再次乘方时,底数不变,指数相乘,即 (a^x)^y = a^(x*y)。

2. 对数函数的运算对数函数是指数函数的逆运算,常用表示形式为 y = loga(x),其中a 是底数,x 是真数。

在对数函数的运算中,有以下几个重要的公式:公式四:对数相乘的法则当两个对数相乘时,真数不变,底数相加,即 loga(x) * loga(y) = loga(x*y)。

公式五:对数相除的法则当两个对数相除时,真数不变,底数相减,即 loga(x) / loga(y) = loga(x/y)。

公式六:对数的乘方法则当一个对数的数值再次乘方时,真数不变,底数相乘,即 loga(x^p) = p * loga(x)。

3. 对数换底公式对数换底公式是指用一个底数的对数来表示另一个底数的对数。

在解题中,如果给定的对数底数与所需要的对数底数不一致,就需要使用对数换底公式。

对数换底公式有以下两种形式:公式七:以10为底数的对数换底公式对于任意一个正数 x,可以得到以 10 为底数的对数和以 e 为底数的对数之间的关系:log10(x) = ln(x)/ln(10)。

公式八:以任意底数为对数的换底公式对于任意一个正数 x,可以得到以 a 为底数的对数和以 b 为底数的对数之间的关系:loga(x) = logb(x) / logb(a)。

对数函数运算法则公式

对数函数运算法则公式

对数函数运算法则公式一、什么是对数函数对数函数,又称为指数函数,是一类常见的数学函数,它可以用来表达不同系数的多次方之间的关系。

它的基本形式为y=loga x (a>0, a≠1),其中 a 为底数,x 为真数,y 为对数。

二、对数函数运算法则1. 同底数相加/减法则:若 y1=loga x,y2=loga m,则有:y1+y2=loga x+loga m =loga (xm)y1-y2=loga x-loga m =loga (x/m)2. 同底数乘/除法则:若 y1=loga x,y2=loga m,则有:y1*y2=loga x*loga m =loga (x^m)y1/y2=loga x/loga m =loga (x^(1/m))3. 相乘/除法则:若 y1=loga x,y2=logb m,则有:y1*y2=loga x*logb m =loga (x^b)y1/y2=loga x/logb m =loga (x^(1/b))4. 幂函数的对数运算法则:若 y=ax,则有:loga y=x*loga a5. 指数函数的对数运算法则:若 y=a^x,则有:loga y=x*loga a6. 反函数的对数运算法则:若 y=f-1(x),则有:loga y=loga f-1(x)=loga x7. 同余式的对数运算法则:若y=a^x ≡ b^x mod c,则有:loga y=x*loga a ≡ x*loga b mod c三、总结以上就是关于“对数函数运算法则公式” 的详细介绍,它是一类常见的数学函数,可以用来表达不同系数的多次方之间的关系,它有 7 种运算法则,即同底数相加/减法、同底数乘/除法、相乘/除法、幂函数的对数运算法则、指数函数的对数运算法则、反函数的对数运算法则以及同余式的对数运算法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数和对数函数重点、难点:重点:指数函数和对数函数的概念、图象和性质。

难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y xxa ==,l o g 在a >1及01<<a 两种不同情况。

1、指数函数:定义:函数()y aa a x=>≠01且叫指数函数。

定义域为R ,底数是常数,指数是自变量。

为什么要求函数y ax=中的a 必须a a >≠01且。

因为若a <0时,()y x=-4,当x =14时,函数值不存在。

a =0,y x=0,当x ≤0,函数值不存在。

a =1时,y x=1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x=中的a a >≠01且。

1、对三个指数函数y y y x xx==⎛⎝ ⎫⎭⎪=21210,,的图象的认识。

图象特征函数性质(1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x>0; (2)图象都经过点(0,1);(2)无论a 取任何正数,x =0时,y =1;(3)yy x x==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x=⎛⎝ ⎫⎭⎪12的图象正好相反;(3)当a >1时,x a x a x x>><<⎧⎨⎪⎩⎪0101,则,则 当01<<a 时,x a x a x x><<>⎧⎨⎪⎩⎪0101,则,则(4)y y x x==210,的图象自左到右逐渐(4)当a >1时,y a x=是增函数, 当01<<a 时,y a x=是减函数。

上升,y x=⎛⎝ ⎫⎭⎪12的图象逐渐下降。

对图象的进一步认识,(通过三个函数相互关系的比较):①所有指数函数的图象交叉相交于点(0,1),如y x=2和y x=10相交于()01,,当x >0时,y x=10的图象在y x=2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。

②y x=2与y x=⎛⎝ ⎫⎭⎪12的图象关于y 轴对称。

③通过y x =2,y x =10,y x=⎛⎝ ⎫⎭⎪12三个函数图象,可以画出任意一个函数y a x=(a a >≠01且)的示意图,如y x=3的图象,一定位于y x=2和y x=10两个图象的中间,且过点()01,,从而y x=⎛⎝ ⎫⎭⎪13也由关于y 轴的对称性,可得y x=⎛⎝ ⎫⎭⎪13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。

2、对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。

) 由于N a b=>0故lo g a N 中N 必须大于0。

当N 为零的负数时对数不存在。

(1)对数式与指数式的互化。

由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如:求log .032524⎛⎝⎫⎭⎪分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524⎛⎝⎫⎭⎪=x ,再改写为指数式就比较好办。

解:设log .032524⎛⎝⎫⎭⎪=x则即∴即032524825825125241212032.log .x xx =⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪=--评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异。

如求35x=中的x ,化为对数式x =log 35即成。

(2)对数恒等式:由a N b N ba ==()l o g ()12 将(2)代入(1)得aNa Nl o g = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。

计算:()3132-log解:原式==⎛⎝ ⎫⎭⎪-=313122221313l o g l o g 。

(3)对数的性质:①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。

(4)对数的运算法则:①()()l o g l o g l o g a a aM N M N M N R =+∈+, ②()l o g l o g l o g a a aMNM N M N R =-∈+, ③()()l o g l o g a naNn N N R =∈+④()l o g l o g a naN nNNR =∈+1 3、对数函数:定义:指数函数y a a a x=>≠()01且的反函数y x a =l o g x∈+∞(,)0叫做对数函数。

1、对三个对数函数y x y x==l o g l o g 212,, y x =lg 的图象的认识。

图象特征与函数性质:图象特征函数性质(1)图象都位于 y 轴右侧; (1)定义域:R +,值或:R ;(2)图象都过点(1,0);(2)x =1时,y =0。

即l o g a 10=; (3)y x=l o g 2,y x =lg 当x >1时,图象在x 轴上方,当00<<x 时,图象在x 轴下方,y x =log 12与上述情况刚好相反; (3)当a >1时,若x >1,则y >0,若01<<x ,则y <0; 当01<<a 时,若x >0,则y <0,若01<<x 时,则y >0; (4)y x y x ==l o g l g 2,从左向右图象是上升,而y x =log 12从左向右图象是下降。

(4)a >1时,y x a =l o g 是增函数; 01<<a 时,y xa =l o g 是减函数。

对图象的进一步的认识(通过三个函数图象的相互关系的比较):(1)所有对数函数的图象都过点(1,0),但是y x=l o g 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时,y x =l o g 2的图象在y x =lg 的图象上方;而01<<x 时,y x =l o g 2的图象在y x =lg 的图象的下方,故有:l o g.l g .21515>;l o g .l g .20101<。

(2)y x=l o g 2的图象与y x =log 12的图象关于x 轴对称。

(3)通过y x=l o g 2,y x =lg ,y x =log 12三个函数图象,可以作出任意一个对数函数的示意图,如作y x =l o g 3的图象,它一定位于y x =l o g 2和y x =lg 两个图象的中间,且过点(1,0),x >0时,在y x =lg 的上方,而位于y x=l o g 2的下方,01<<x 时,刚好相反,则对称性,可知y x =log 13的示意图。

因而通过课本上的三个函数的图象进一步认识无限个函数的图象。

4、对数换底公式:l o g l o g l o g l o g (.)l o g ba a n e g N N bLN Ne N LN N====其中…称为的自然对数称为常数对数27182810 由换底公式可得:L N N e NN n===l g l g l g ..l g 043432303 由换底公式推出一些常用的结论:(1)l o g l o g l o g l o g a ba bb a b a ==11或· (2)log log a ma n bmnb =(3)l o g l o g ana nb b =(4)lo g a mn a m n=5、指数方程与对数方程*定义:在指数里含有未知数的方程称指数方程。

在对数符号后面含有未知数的方程称对数方程。

由于指数运算及对数运算不是一般的代数运算,故指数方程对数方程不是代数方程而属于超越方程。

名称 题型 解法基本型 同底数型 不同底数型 需代换型()a bf x = a a f x x ()()=ϕ ()()a bf x x =ϕ ()F a x =0取以a 为底的对数()f x b a =l o g 取以a 为底的对数()()f x x =ϕ 取同底的对数化为()()fx a x b ··l g l g =ϕ换元令t a x=转化为t 的代数方程对数方程的题型与解法:名称 题型 解法基本题 ()l o g a f x b = 对数式转化为指数式()f x a b=同底数型 ()()l o g l o g a afx x =ϕ 转化为()()f x x =ϕ(必须验根)需代换型 F a x (log )=0换元令t xa =l o g 转化为代数方程。

相关文档
最新文档