高考指数函数与对数函数专题复习
指数对数幂函数知识点汇总

指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。
高考数学 指数函数、对数函数 讲解

logbN= loga N (a,b均大于0且不等于1,N>0)
logab
相关结论:logab= 1 ;logab·logbc·logcd=logad
logba
(a,b,c均大于0且不等于1,d>0)
条件
a>0且a≠1,M>0,N>0
结论
loga(MN)=logaM+logaN
M
loga N =logaM-logaN logaMn=nlogaM(n∈R)
1
1
+m=-
2
1 x
1
+m+1,因为函数y=2x+1为R上的
增函数,所以y=- 1 为R上的增函数,所以f(x)在R上单调递减是不正确
2x 1
的,所以C不正确;
对于D,当m=0时,f(x)= 2x =1- 1 ,
2x 1 2x 1
由2x+1>1,可得-1<- 1 <0,所以1- 1 ∈(0,1),即函数f(x)的值域为(0,1),
a>1 图象
0<a<1
定义域 值域 性质
过定点(1,0),即当x=1时,y=0 当x>1时,y>0; 当0<x<1时,y<0 在(0,+∞)上是增函数
(0,+∞) R
当x>1时,y<0; 当0<x<1时,y>0 在(0,+∞)上是减函数
3.反函数 一般地,指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反 函数,它们的定义域与值域正好互换,图象关于直线y=x对称.
故a的取值范围为[36,+∞).
指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结一、指数函数的定义与性质指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。
其中,底数$a$决定了函数的性质。
当$a > 1$时,函数单调递增;当$0 < a < 1$时,函数单调递减。
指数函数的定义域为$R$,值域为$(0, +\infty)$。
例如,函数$y = 2^x$是一个底数为$2$(大于$1$)的指数函数,它在$R$上单调递增。
二、对数函数的定义与性质对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。
其中,对数的底数$a$同样决定了函数的性质。
当$a > 1$时,函数在$(0, +\infty)$上单调递增;当$0 < a <1$时,函数在$(0, +\infty)$上单调递减。
对数函数的定义域为$(0, +\infty)$,值域为$R$。
例如,函数$y =\log_2 x$是一个底数为$2$(大于$1$)的对数函数,它在$(0, +\infty)$上单调递增。
三、指数函数与对数函数的图象指数函数$y = a^x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(0, 1)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(0, 1)$,从左到右逐渐下降。
对数函数$y =\log_a x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(1, 0)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(1, 0)$,从左到右逐渐下降。
四、指数运算与对数运算的性质指数运算性质:1、$a^m \times a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)对数运算性质:1、$\log_a (MN) =\log_a M +\log_a N$2、$\log_a \frac{M}{N} =\log_a M \log_a N$3、$\log_a M^n = n \log_a M$4、$\log_a a = 1$5、$\log_a 1 = 0$五、例题分析例 1:比较大小比较$2^{03}$和$03^2$的大小。
高考数学复习专题知识梳理总结—指数函数与对数函数

高考数学复习专题知识梳理总结—指数函数与对数函数一.根式及相关概念(1)a的n次方根定义如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示n的奇偶性a的n次方根的表示符号a的取值范围n为奇数n a Rn为偶数±n a[0,+∞)(3)根式式子na叫做根式,这里n叫做根指数,a叫做被开方数.二.根式的性质(n>1,且n∈N*)(1)n为奇数时,na n=a.(2)n为偶数时,na n=|a|=≥0,a<0.(3)n0=0.(4)负数没有偶次方根.思考:(na)n中实数a的取值范围是任意实数吗?提示:不一定,当n为大于1的奇数时,a∈R;当n为大于1的偶数时,a≥0.三.分数指数幂的意义分数指数幂正分数指数幂规定:amn=na m(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-mn=1amn=1na m(a >0,m ,n ∈N *,且n >1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义思考:在分数指数幂与根式的互化公式a m n =na m 中,为什么必须规定a >0?提示:①若a =0,0的正分数指数幂恒等于0,即na m=a mn =0,无研究价值.②若a <0,a m n =n a m不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a >0.四.有理数指数幂的运算性质(1)a r a s =a r +s (a >0,r ,s ∈Q ).(2)(a r )s =a rs (a >0,r ,s ∈Q ).(3)(ab )r =a r b r (a >0,b >0,r ∈Q ).五.无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.六.指数函数的概念一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .七.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域R 值域(0,+∞)过定点(0,1),即当x =0时,y =1单调性在R上是增函数在R上是减函数奇偶性非奇非偶函数对称性函数y=a x与y=a-x的图象关于y轴对称思考1:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?提示:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律?提示:指数函数值随自变量的变化规律.八.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.九.常用对数与自然对数十.对数的基本性质(1)负数和零没有对数.(2)log a1=0(a>0,且a≠1).(3)log a a=1(a>0,且a≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N(a>0且a≠1),则总有N>0,所以转化为对数式x=log a N时,不存在N≤0的情况.十一.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=log a M+log a N;(2)log a MN=log aM-log a N;(3)log a M n=n log a M(n∈R).思考:当M>0,N>0时,log a(M+N)=log a M+log a N,log a(MN)=log a M·log a N是否成立?提示:不一定.十二.对数的换底公式若a>0且a≠1;c>0且c≠1;b>0,则有log a b=log c b log c a.十三.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).思考1:函数y=2log3x,y=log3(2x)是对数函数吗?提示:不是,其不符合对数函数的形式.十四.对数函数的图象及性质a的范围0<a<1a>1图象定义域(0,+∞)值域R性定点(1,0),即x=1时,y=0质单调性在(0,+∞)上是减函数在(0,+∞)上是增函数思考2:对数函数的“上升”或“下降”与谁有关?提示:底数a与1的关系决定了对数函数的升降.当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.十五.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.十六、三种函数模型的性质十七.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.思考1:函数的零点是函数与x轴的交点吗?提示:不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.十八.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.十九.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.思考2:该定理具备哪些条件?提示:定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.二十.二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.二十一.二分法求函数零点近似值的步骤(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则c就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).二十二.常用函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)(4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)二十三.建立函数模型解决问题的基本过程思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:<解题方法与技巧>1.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.典例1:(1)若x <0,则x +|x |+x 2x=________.(2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值.[思路点拨](1)由x <0,先计算|x |及x 2,再化简.(2)结合-3<x <3,开方、化简,再求值.(1)-1[∵x <0,∴|x |=-x ,x 2=|x |=-x ,∴x +|x |+x 2x=x -x -1=-1.](2)[解]x 2-2x +1-x 2+6x +9=(x -1)2-(x +3)2=|x -1|-|x +3|,当-3<x ≤1时,原式=1-x -(x +3)=-2x -2.当1<x <3时,原式=x -1-(x +3)=-4.2x -2,-3<x ≤1,4,1<x <3.2.根式与分数指数幂互化的规律(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.典例2:将下列根式化成分数指数幂的形式:(1)a a (a >0);(2)13x (5x 2)2;-23(b >0).[解](1)原式=a ·a 12=a 32=a 34.(2)原式=13x ·(x 25)2=13x ·x 45=13x 95=11x 35=x -35.(3)-23=b -23×14×=b 19.3.指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.典例3:化简求值:4.解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.(2)在利用整体代入的方法求值时,要注意完全平方公式的应用.典例4:已知a 12+a -12=4,求下列各式的值:(1)a +a -1;(2)a 2+a -2.[思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值[解](1)将a 12+a -12=4两边平方,得a +a -1+2=16,故a +a -1=14.(2)将a +a -1=14两边平方,得a 2+a -2+2=196,故a 2+a -2=194.5.判断一个函数是否为指数函数,要牢牢抓住三点:(1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x 的系数必须为1.典例5:(1)下列函数中,是指数函数的个数是()①y =(-8)x ;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且=39,则f (-2)=________.(1)D(2)19[(1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数;④中3x 前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x (a >0且a ≠1),由=39得a -32=39,所以a =3,又f (-2)=a -2,所以f(-2)=3-2=1 9 .]6.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.典例6:(1)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)函数y=a x-3+3(a>0,且a≠1)的图象过定点________.(1)D(2)(3,4)[(1)由于f(x)的图象单调递减,所以0<a<1,又0<f(0)<1,所以0<a-b<1=0,即-b>0,b<0,故选D.(2)令x-3=0得x=3,此时y=4.故函数y=a x-3+3(a>0,且a≠1)的图象过定点(3,4).]7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论.典例7:比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).[解](1)1.52.5,1.53.2可看作函数y =1.5x 的两个函数值,由于底数1.5>1,所以函数y =1.5x 在R 上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y =0.6x 的两个函数值,因为函数y =0.6x 在R 上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1.(4)当a >1时,y =a x 在R 上是增函数,故a 1.1>a 0.3;当0<a <1时,y =a x 在R 上是减函数,故a 1.1<a 0.3.8.利用指数函数的单调性解不等式(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.(2)解不等式a f (x )>a g (x )(a >0a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即a f (x )>a g (x )x )>g (x ),a >1,x )<g (x ),0<a <1.典例8:(1)解不等式x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.[解](1)∵21,∴原不等式可以转化为x -11.∵y 在R 上是减函数,∴3x -1≥-1,∴x ≥0,故原不等式的解集是{x |x ≥0}.(2)分情况讨论:①当0<a<1时,函数f(x)=a x(a>0,a≠1)在R上是减函数,∴x2-3x+1>x+6,∴x2-4x-5>0,根据相应二次函数的图象可得x<-1或x>5;②当a>1时,函数f(x)=a x(a>0,a≠1)在R上是增函数,∴x2-3x+1<x+6,∴x2-4x-5<0,根据相应二次函数的图象可得-1<x<5.综上所述,当0<a<1时,x<-1或x>5;当a>1时,-1<x<5.9.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.典例9:判断f(x)2-2x的单调性,并求其值域.[思路点拨]令u=x2-2x―→函数u(x)的单调性―→――→函数f(x)的单调性[解]令u=x2-2x,则原函数变为y.∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y在(-∞,+∞)上递减,∴y 2-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u=x2-2x=(x-1)2-1≥-1,∴y ,u ∈[-1,+∞),∴1=3,∴原函数的值域为(0,3].10.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.典例10:将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log 1232=-5;(3)lg 1000=3;(4)ln x =2.[解](1)由2-7=1128,可得log 21128=-7.(2)由log 1232=-55=32.(3)由lg 1000=3,可得103=1(4)由ln x =2,可得e 2=x .11.求对数式log a N (a >0,且a ≠1,N >0)的值的步骤(1)设log a N =m ;(2)将log a N =m 写成指数式a m =N ;(3)将N 写成以a 为底的指数幂N =a b ,则m =b ,即log a N =b .典例11:求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x;(4)-ln e 2=x .[解](1)x =(64)-23=(43)-23=4-2=116.(2)x 6=8,所以x =(x 6)16=816=(23)16=212= 2.(3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2,所以x =-2.12.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.典例12:已知3a =5b =c ,且1a +1b=2,求c 的值.[思路点拨]3a =5b =c ――――→指对互化求1a ,1b ――――→1a +1b=2求c 的值[解]∵3a =5b =c ,∴a =log 3c ,b =log 5c ,∴1a =log c 3,1b=log c 5,∴1a +1b=log c 15.由log c 15=2得c 2=15,即c =15.13.求对数型函数的定义域时应遵循的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.典例13:求下列函数的定义域:(1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1);(3)f (x )=log (2x -1)(-4x +8).[解](1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)+1>0,-x >0,>-1,<2,解得-1<x <2,故函数的定义域为(-1,2).(3)4x +8>0,x -1>0,x -1≠1,<2,>12,≠1.故函数y =log (2x -1)(-4x +8)的定义域为|12<x <2,且x ≠114.函数图象的变换规律(1)一般地,函数y =f (x ±a )+b a b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.典例14:(1)当a >1时,在同一坐标系中,函数y=a -x 与y =log a x 的图象为()A B C D(2)已知f (x )=log a |x |,满足f (-5)=1,试画出函数f (x )的图象.[思路点拨](1)结合a >1时y =a -x及y =log a x 的图象求解.(2)由f (-5)=1求得a ,然后借助函数的奇偶性作图.(1)C[∵a >1,∴0<1a <1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.](2)[解]∵f (x )=log a |x |,∴f (-5)=log a 5=1,即a =5,∴f (x )=log 5|x |,∴f (x )是偶函数,其图象如图所示.15.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.典例15:比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54.16.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解;(3)形如log a x >log b x 的不等式,可利用图象求解.典例16:已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f (x )≤g (x )中x 的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x 的取值集合.(2)分a >1和0<a <1求解不等式得答案.[解](1)-1>0,-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a>1x<3,-1≤6-2x,解得1<x≤7 3;②当0<a<1x<3,-1≥6-2x,解得73≤x<3.综上可得,当a>1,7 3;当0<a<1时,不等式的解集为7 3,17.常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.典例17:(1)下列函数中,增长速度最快的是()A.y=2019x B.y=2019C.y=log2019x D.y=2019x(2)下面对函数f(x)=log12x,g(x)与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是()A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快(1)A(2)C[(1)指数函数y=a x,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.(2)观察函数f(x)=log1x,g(x)与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:2函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.]18.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.典例18:函数f(x)=2x和g(x)2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f f(2019)与g(2019)的大小.[解](1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.(2)∵f(1)=g(1),f(2)=g(2)从图象上可以看出,当1<x<2时,f(x)<g(x),∴当x>2时,f(x)>g(x),∴f(2019)>g(2019).19.函数零点的求法(1)代数法:求方程f(x)=0的实数根.(2)几何法:对于不能用求根公式的方程f(x)=0,可以将它与函数y=f(x)的图象联系起来.图象与x轴的交点的横坐标即为函数的零点.典例19:(1)求函数f(x)2+2x-3,x≤0,2+ln x,x>0的零点;(2)已知函数f(x)=ax-b(a≠0)的零点为3,求函数g(x)=bx2+ax的零点.[解](1)当x≤0时,令x2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2.所以函数f(x)2+2x-3,x≤02+ln x,x>0的零点为-3和e2.(2)由已知得f(3)=0即3a-b=0,即b=3a.故g(x)=3ax2+ax=ax(3x+1).令g(x)=0,即ax(3x+1)=0,解得x=0或x=-1 3 .所以函数g(x)的零点为0和-1 3 .20.判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.典例20:(1)函数f(x)=ln(x+1)-2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)(2)根据表格内的数据,可以断定方程e x-x-3=0的一个根所在区间是()x-10123e x0.371 2.727.3920.08x+323456A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(1)C(2)C[(1)因为f(1)=ln2-21<0,f(2)=ln3-1>0,且函数f(x)在(0,+∞)上单调递增,所以函数的零点所在区间为(1,2).故选C.(2)构造函数f(x)=e x-x-3,由上表可得f(-1)=0.37-2=-1.63<0,f(0)=1-3=-2<0,f(1)=2.72-4=-1.28<0,f(2)=7.39-5=2.39>0,f(3)=20.08-6=14.08>0,f(1)·f(2)<0,所以方程的一个根所在区间为(1,2),故选C.]21.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.典例21:已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A .4,4B .3,4C .5,4D .4,3D[图象与x 轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]22.函数拟合与预测的一般步骤:(1)根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出拟合直线或拟合曲线.(3)求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.典例22:某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长.已知2015年为第1年,前4年年产量f (x )(万件)如下表所示:x 1234f (x )4.005.587.008.44(1)画出2015~2018年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2019年(即x =5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2019年的年产量为多少?[思路点拨]描点――→依散点图选模――→待定系数法求模――→误差验模→用模[解](1)画出散点图,如图所示.(2)由散点图知,可选用一次函数模型.设f (x )=ax +b (a ≠0).由已知得a +b =4,3a +b =7,解得a =1.5,b =2.5,∴f (x )=1.5x +2.5.检验:f(2)=5.5,且|5.58-5.5|=0.08<0.1,f(4)=8.5,且|8.44-8.5|=0.06<0.1.∴一次函数模型f(x)=1.5x+2.5能基本反映年产量的变化.(3)根据所建的函数模型,预计2019年的年产量为f(5)=1.5×5+2.5=10万件,又年产量减少30%,即10×70%=7万件,即2019年的年产量为7万件.。
(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。
∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。
2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。
3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。
二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。
2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。
3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。
常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。
(2)自然对数函数:y=ln(x),其中底数为e。
自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。
三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。
高三数学总复习对数和指数函数

高中数学总复习对数和指数函数复习内容:高中数学第三章【复习目标】1. 理解对数的意义,会熟练的将指数式与对数式互化,掌握积、商、幂的对数运算性质换底公式; 2. 理解反函数的概念,会求已知函数的反函数,掌握函数与它的反函数在定义域、值域及图像上的关系;3. 理解指数函数和对数函数的要领,掌握指数函数和对数函数的图像和性质,掌握指数函数和对数函数互为反函数的结论;4. 理解指数方程和对数方程的意义,会解简单的指数方程和对数方程. 5. 掌握数学方法:分类讨论,数形结合,换元法,等价转换.【重点难点】对数的意义与运算性质,反函数的概念及性质,指数函数和对数函数的图像和性质. 【课前预习】1.函数()(2)x f x =-、2()3x f x -=、1()2()3x f x =⋅、3()f x x =中,指数函数是2.(1)函数1()()2x f x =的值域是 (2)函数212()log (25)f x x x =-+的值域是3.(1)函数()f x =(2)函数()f x =4.(1)函数()y f x =的图像与函数()2x f x =的图像关于x 轴对称,则()y f x == (2)函数lg(2)(2)y x x =->的图像关于x 轴对称的函数()y f x ==5. 函数2()(1)x f x a =-是R 上的减函数,则实数a 的取值X 围是6. 已知0<a<1,b<-1,则函数()x f x a b =+的图像不经过 ( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 7.函数213()log (232)f x x x =--的单调递增区间是8. 使log 2(-x)<x+1成立的x 的取值X 围是 9.不论a 为何值时,函数y=(a-1)2x -2a 的图像过一定点,这个定点的坐标是(-1,-12)10.已知函数f(x)是定义在R 上的奇函数,当x<0时,f(x)=1()3x ,则f(12)11.已知函数y=4x -32x +3的值域为[1,7],则实数x 的取值X 围是(-∞,0]∪[1,2]12.函数()2x f x =,x 1,x 2∈R 且x 1≠x 2,则 ( ) A.12121[()()]()22x x f x f x f ++= B.12121[()()]()22x x f x f x f ++> C.12121[()()]()22x x f x f x f ++< D.以上答案都不对【基础知识】1.幂的有关概念(1)正整数指数幂()nna a a a a n N *=⋅⋅⋅⋅∈ (2)零指数幂)0(10≠=a a(3)负整数指数幂()10,nn aa n N a-*=≠∈ (4)正分数指数幂()0,,,1mn m n a a a m n N n *=>∈>; (5)负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>(6)0(0)a a >,没有意义.2.有理数指数幂的性质()()10,,rsr sa a aa r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈3.根式的内容(1)根式的定义:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。
2023-2024学年高考数学指数函数与对数函数专项练习题(含答案)

2024....二、多选题.函数,若对任意实数、,,则下列结论错误的是()(32log f x x x =++a b 0a b +>A .方程有且只有6个不同的解B .方程()()0f g x =解C .方程有且只有5个不同的解D .方程()()0f f x =解的零点个数为 .()4log =-y f x x16.已知函数,若方程有4个不同的实根,,,22log (1),13()1357,322x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩()34f x =1x 2x 3x 且,则.4x 1234x x x x <<<()341211x x x x ⎛⎫++=⎪⎝⎭答案:1.C【分析】根据函数的单调性,借助中间值比较大小.【详解】因为函数在单调递增,且,所以,即,2log y x =()0,∞+π2>22log π>log 21=1a >因为函数在单调递减,且,所以,即,0.5log y x =()0,∞+π1>0.50.5log π<log 1=00b <因为函数在单调递增,且,所以,即,πxy =(),-∞+∞20-<200<ππ1-<=01c <<所以,a c b >>故选:C 2.A【分析】由提供的数据知,描述西红柿种植成本与上市时间的变化关系函数不可能是单Q t 调函数,故选取二次函数进行描述,将表格所提供的三组数据代入,即得函2Q at bt c =++Q 数解析式,进而求解.【详解】因为随着时间的增加,种植成本先减少后增加,所以函数不单调,所以选取,且开口向上,2Q at bt c =++将表格中的三组数据分别代入,2Q at bt c =++得解得116360060,8410000100,11632400180,a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩0.01,2.4,224,a b c =⎧⎪=-⎨⎪=⎩即,对称轴,开口向上,20.01 2.4224Q t t =-+ 2.412020.01t -=-=⨯在对称轴处即120天时函数取最小值.∴t =西红柿种植成本最低时的上市天数是120天.∴故选:A.3.C【分析】由指数函数的性质分别对和的情况讨论单调性并求值域,从而列方程组01a <<1a >即可得到答案.【详解】函数(且)的值域为,2x y a =-0a >1,11a x ≠-≤≤5,13⎡⎤-⎢⎥⎣⎦又由指数函数的单调性可知,当时,函数在上单调递减,值域是01a <<2xy a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即,解得;110152321a a a -<<⎧⎪⎪-=-⎨⎪-=⎪⎩101133a a a -<<⎧⎪⎪=⎨⎪=⎪⎩13a =当时,函数在上单调递增,值域是1a >2x y a =-[]1,1-12,2a a -⎡⎤--⎣⎦所以有,即 ,解得.11152321a a a ->⎧⎪⎪-=-⎨⎪-=⎪⎩11133a a a ->⎧⎪⎪=⎨⎪=⎪⎩3a =综上所述,或.13a =3a =故选:C.4.B【分析】结合已知条件,利用抽象函数的定义域以及对数、分式的定义域求法求解即可.【详解】因为函数的定义域是,()f x [1,2022]所以对于有:,(1)()lg f x g x x +=1120220lg 0x x x ≤+≤⎧⎪>⎨⎪≠⎩解得:且,02021x <≤1x ≠故函数的定义域是,()()1ln f x g x x+=(01)(1],,2021⋃故选:B .5.A【分析】根据题意,求得,得到,结合零点的存在性定理,3()0,(2)02f f >>3(1)()02f f ⋅<即可求解.【详解】由函数,且,可得,()348f x x x =+-()()10,30f f <>3()70,(2)2602f f =>=>所以,根据零点的存在性定理,3(1)()02f f ⋅<可得方程的近似解落在区间为.3480x x +-=31,2⎛⎫⎪⎝⎭故选:A.6.C【分析】根据给定条件,可得函数在R 上单调递增,再利用分段函数及对数函数单调性()f x 列出不等式求解即得.【详解】函数的定义域为R ,(2)1,1()log ,1a a x x f x x x --≤⎧=⎨>⎩由对任意,都有,得函数在R 上单调递增,12x x ≠1212()()f x f x x x ->-()f x 于是,解得,20130a a a ->⎧⎪>⎨⎪-≤⎩23a <≤所以实数的取值范围为.a (]2,3故选:C 7.B【分析】利用对数的换底公式和运算法则即可得解.【详解】,,,230x y k ==>Q 23log ,log x k y k ==∴11log 2,log 3k k x y ∴==,,则.12log 2log 3log 61k k k x y ∴=+=+=∴26k =6k =故选:B.8.A【分析】由函数的定义域排除C ,由函数的奇偶性排除D ,由特殊的函数值排除B ,结合奇偶性和单调性判断A.【详解】由得,则函数的定义域为,排除选项C ;30x ->33x -<<()ln 3y x =-()3,3-又,所以为偶函数,则图象关于y 轴对称,排除选项D ;()()ln 3ln 3x x --=-()ln 3y x =-当时,,排除选项B ,52x =1ln 02y =<因为为偶函数,且当时,函数单调递减,()ln 3y x =-30x >>()()ln 3ln 3y x x =-=-选项A 中图象符合.故选:A 9.ACD【分析】分析函数的奇偶性与单调性,由已知可得出,结合函数的奇偶性()f x a b >-()f x与单调性可得出合适的选项.【详解】令,对任意的,,即,()()22log 1g x x x =++x ∈R 21x x x+>≥-210x x ++>所以,函数的定义域为,()g x R 则.()()()()2222221log 1log 1log1g x x x x x g x x x⎛⎫-=+--=+-==- ⎪⎝⎭++所以,函数是定义域为的奇函数,()g x R 因为函数、为上的增函数,1u x =221u x =+[)0,∞+所以,内层函数在上为增函数,21u x x =++[)0,∞+外层函数在上为增函数,2log y u =()0,∞+所以,函数在上为增函数,()()22log 1g x x x =++[)0,∞+由于函数是定义域为的奇函数,则该函数在上为增函数,()g x R (],0-∞所以,函数在上单调递增,()()22log 1g x x x =++R 因为的定义域为,则,()f x R ()()()()()33f x x g x x g x f x -=-+-=--=-所以,函数为奇函数,()f x 又因为函数为上的增函数,所以,函数在上单调递增.3y x =R ()f x R 因为,所以,则,即,A 错B 对,0a b +>a b >-()()()f a f b f b >-=-()()0f a f b +>又、的大小不确定,故CD 错.a b 故选:ACD.方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.10.ABC【分析】根据题意,由函数的定义,只需满足集合中的每一个元素在集合中都有唯一一P Q 个元素与之对应即可,再结合选项逐一分析,即可得到结果.【详解】选项A ,,集合中的每一个元素在集合中都有唯一一个元素与之1:2f x y x→=P Q 对应,故A 正确;选项B ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,故13:f x y x →=P Q B 正确;选项C ,,集合中的每一个元素在集合中都有唯一一个元素与之对应,1:2xf x y ⎛⎫→= ⎪⎝⎭P Q 故C 正确;选项D ,,集合中的1,在集合中没有元素与之对应,故D 错误;:ln f x y x →=P Q 故选:ABC 11.ABD【分析】根据奇偶性的定义即可判断A,根据基本函数的单调性即可判断BC ,根据反函数的性质即可判断D.【详解】对于A ,定义域为,关于原点对称,又由于()f x R ()()e e e e ,,22x x x xf x f x --++=-=,所以为偶函数,A 正确,()()=f x f x -()f x 对于B ,,由于函数在单调递增,所以在()e 121e 1e 1x x x f x -==-++e 1xy =+x ∈R 1e 1x y =+单调递减,因此在单调递增,B 正确,x ∈R ()21e 1xf x =-+x ∈R 对于C ,由于函数为定义域上的偶函数,当时,在区间上单调递lg y x=0x >lg y x =()0,∞+增,故C 错误,对于D ,由于函数与互为反函数,所以两者图象关于,D 正13xy ⎛⎫= ⎪⎝⎭133log log y x x ==-y x =确,故选:ABD 12.ACD【分析】令,结合图象可得有3个不同的解,,,不妨设,()t x g =()0f t =1t 2t 3t 123t t t <<则可知,,,令,结合图象可得有2个不同的解121t -<<-2t =312t <<()m f x =()0g m =,,不妨设,则可知,,再数形结合求出复合函数的解的1m 2m 12m m <121m -<<-201m <<个数.【详解】A 选项,令,结合图象可得有3个不同的解,,,()t x g =()0f t =1t 2t 3t 不妨设,则可知,,,123t t t <<121t -<<-20t =312t <<由图可知有2个不同的解,有2个不同的解,有2个不同的解,()1g x t =()2g x t =()3g x t =即有6个不同的解,A 正确;()()0f g x =B 选项,令,结合图象可得有2个不同的解,,()m f x =()0g m =1m 2m 不妨设,则可知,,12m m <121m -<<-201m <<由图可知有1个解,有3个不同的解,()1f x m =()2f x m =即有4个不同的解,B 错误;()()0g f x =C 选项,令,结合图象可得有3个不同的解,,()m f x =()0f m =1m 2m 3m 且,,,121m -<<-20m =312m <<由图可知有1个解,有3个不同的解,有1个解,()1f x m =()2f x m =()3f x m =即有5个不同的解,C 正确;()()0f f x =D 选项,令,结合图象可得有两个不同的解,()t x g =()0g t =1t2t 不妨设,则可知,,12t t <121t -<<-201t <<由图可知有2个不同的解,有2个不同的解,()1g x t =()2g x t =即有4个不同的解,D 正确.()()0g g x =故选:ACD .13.193【分析】利用位数的定义,结合对数运算法则即可得解.k故答案为.14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.设a >0, f (x)=xx eaa e -是R 上的奇函数.(1) 求a 的值;(2) 试判断f (x )的反函数f -1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a10)0(f >=⇒=-⇒=, (2)=-⇒∈++=--)x (f )R x (24x x ln )x (f 121-=++-24x x ln 2=++24x x ln 2)x (f 1--, ∴)x (f 1-为奇函数.用定义法可证)x (f 1-为单调增函数.例2. 是否存在实数a, 使函数f (x )=)x ax (log 2a -在区间]4 ,2[上是增函数? 如果存在,说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax )x (u 2-=, 对称轴a21x =. (1) 当1a >时, 1a 0)2(u 2a 21>⇒⎪⎩⎪⎨⎧>≤;(2) 当1a 0<<时, 81a 00)4(u 4a 21≤<⇒⎪⎩⎪⎨⎧>≥. 综上所述: 1a >1.(安徽卷文7)设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a【答案】A 【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是【答案】D【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-ba <1得-1<ba<0,矛盾,对于C 、D 两图,0<|b a |<1,在C 图中两根之和-ba <-1,即b a>1矛盾,选D 。
3.(辽宁卷文10)设525bm ==,且112a b +=,则m =【答案】D(A )10 (B )10 (C )20 (D )100解析:选A.211log 2log 5log 102,10,m m m m a b +=+==∴=又0,10.m m >∴=4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=125-,则【答案】CA. a<b<cB. b<c<aC. c<a<b D . c<b<a【解析】 a=3log 2=21log 3, b=In2=21log e ,而22log 3log 1e >>,所以a<b,c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b.5.(全国Ⅰ卷理10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是【答案】A (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b222a a =+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a +又0<a<b,所以0<a<1<b ,令2()f a a a =+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞【答案】C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a +≥,从而错选D,这也是命题者的用苦良心之处.7.(山东卷文3)函数()()2log 31x f x =+的值域为【答案】AA.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
【命题意图】本题考查对数函数的单调性、函数值域的求法等基础知识。
8.(陕西卷文7)下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f (x +y )=f (x )f (y )”的是[ C ](A )幂函数(B )对数函数 (C )指数函数 (D )余弦函数【解析】因为x yx y aa a +=所以f (x +y )=f (x )f (y )。
9.(上海卷文17)若x 是方程式lg 2x x +=的解,则0x 属于区间 [答]( )(A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2)解析:04147lg )47()75.1(,2lg )(<-==-+=f f x x x f 由构造函数10.(四川卷文2)函数y=log2x 的图象大致是高^考#资*源^网(C)(A) (B) (C) (D) 11.(天津卷文6)设554a log 4b log c log ===25,(3),,则【答案】D(A)a<c<b (B) b<c<a (C) a<b<c (D) b<a<c 【解析】因为55a log 4log 5=1,=<2255(log 3)(log 5)=1,b =<544c log log 41=>=,所以c 最大,排除A 、B ;又因为a 、b(0,1)∈,所以a b >,故选D 。
12.(浙江卷文2)已知函数 1()log (1),f x x =+若()1,f α= α=(A)0(B)1(C)2(D)3解析:α+1=2,故α=1,选B ,本题主要考察了对数函数概念及其运算性质,属容易题13.(重庆卷文4)函数164xy =-的值域是【答案】C(A )[0,+∞) (B)[0,4] (C) [0,4) (D) (0,4)【解析】[)40,0164161640,4x x x >∴≤-<∴-∈ .14.(北京卷文2)若372log πlog 6log 0.8a b c ===,,,则( A )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【解析】利用中间值0和1来比较:372log π>1log 61log 0.80a b c =<=<=<,0,15.(湖南卷文6)下面不等式成立的是( A ) A .322log 2log 3log 5<< B .3log 5log 2log 223<<C .5log 2log 3log 232<< D .2log 5log 3log 322<<【解析】由322log 21log 3log 5<<< , 故选A. 16(江西卷文4)若01x y <<<,则( C )A .33yx < B .log 3log 3x y < C .44log log x y < D .11()()44x y <【解析】C 函数4()log f x x =为增函数17.(辽宁卷文4)已知01a <<,log 2log 3a a x =+,1log 52a y =,log 21log 3a a z =-,则( )A .x y z >>B .z y x >>C .y x z >> D .z x y >>【解析】本小题主要考查对数的运算。
log 6,a x= log 5,a y =log 7,a z =由01a <<知其为减函数, y x z ∴>>答案:C18.(全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a【解析】由0ln 111<<-⇒<<-x x e,令x t ln =且取21-=t 知b <a <c 【答案】C 19.(山东卷文12)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a-<<<C .101ba -<<<-D .1101ab --<<<【解析】本小题主要考查正确利用对数函数的图象来比较大小。
由图易得1,a>101;a -∴<<取特殊点01log 0,a x y b =⇒-<=<1-Oyx11log log log 10,aa ab a⇒-=<<=101a b -∴<<<.选A. 20.(天津卷文10)设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程l o g l o g3a a x y +=,这时a 的取值的集合为( ) A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,【解析】易得3a y x =,在[,2]a a 上单调递减,所以22[,]2y a a ∈,故2122a aa a ⎧⎪⇒⎨⎪⎩≥≥>,选B .21.(山东卷文15)已知2(3)4log 3233x f x =+,则8(2)(4)(8)(2)f f f f ++++ 的值等于 .【解析】本小题主要考查对数函数问题。
22(3)4log 32334log 3233,x x f x =+=+2()4log 233,f x x ⇒=+8(2)(4)(8)(2)f f f f ∴++++=222282334(log 22log 23log 28log 2)186********.⨯+++++=+=22.(重庆卷文14)若0,x>则1311142422-(2x +3)(2x -3)-4x= .【解析】本小题主要考查指数的运算。