专题复习五 立体几何高考题型
高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,
高考复习立体几何考点常见题型

咼考复习立体几何考点常见题型立体几何常见题型考点1点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用•典型例题例1如图,正三棱柱的所有棱长都为,为中点(2DABCABC,CC1111A (?)求证:平面;AAB?ABD111(?)求二面角的大小;AADB,,1C C1D (?)求点到平面的距离(CABD1B考查目的:本小题主要考查直线与平面的位置关系,二面角的B1大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力(A解答过程:取中点,连结(BCOAOA1■ •■为正三角形,(?ABC? AOBC? F正三棱柱中,平面平面,ABC?BCCBABCABC,11111C CD平面( ?AO?BCCB11 B B连结,在正方形中,分别为BOOD BBCC111■I ■的中点,,(?BOBD? ABBD?BCCC111在正方形中,,平面(ABAB??AB?ABBAABD111111(?)设与交于点,在平面中,作于F,连结,由(?)得AFGABGFAD?ABABDAB?1 平面(ABD1, 为二面角的平面角(??AFGAADB? AFAD?1145在中,由等面积法可求得,?AADAF,15• •1AG210又,(AGAB,,21 ? ,,,sin?AFG2AF445510所以二面角的大小为(AADB,,arcsin14(?)中,,(S,1?ABDBDADABS,,,? ,5226,,?BCD111?ABD1在正三棱柱中,到平面的距离为(3ABCCB111设点到平面的距离为(dCABD1P □|11 由,得,VV,SSd,3ABCDCABD,,??BCDABD111333S2?BCD(?,,dS2?ABD12点到平面的距离为(?CABD12例2.( 2006年湖南卷)如图,已知两个正四棱锥P-ABCD与Q-ABCD勺高分别为1 和2,AB=4.(?)证明PQ平面ABCD;(?)求异面直线AQ与PB所成的角;(?)求点P到平面QAM距离.命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力•过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一P般方法•解答过程:D C 方法一(?)取AD的中点,连结PM QM. O M B因为P,ABCD与Q,ABCD都是正四棱锥,A 所以AD?PM AD?QM.从而AD?平面PQM. 又平面PQM所以PQ?AD. PQ,同理PQ?AB所以PQ平面ABCD. Q (?)连结AC BD设,由PQ平面ABCDAC:BD,O及正四棱锥的性质可知0在PQ上,从而P、A Q C四点共面.取0C的中点N,连接PN.P01N0N01P0N0,,,因为,所以,OQ2OAOC2OQOA从而AQ?PN ?BPN或其补角)是异面直线AQ与PB所成的角.2222222PB0B0P,,, ,,(22)13PN0N0P,,, ,,(2)13. 因为,2222 BN,0B0N,(22),(2),1022293103PB,PN,BN,,cos 所以. ,BPN,,,29PB,PN233,,3arccos从而异面直线AQ与PB所成的角是.911(?)连结0M 贝U OMABOQ,,,2.22所以?MQP,45?.由⑺知AD?平面PMQ所以平面PMQ平面QAD.过P作PH?QMF H, PH?平面QAD从而PH的长是点P到平面QAD勺距离.320PQPOQOPHP,Q,,?,,3,sin45. 又. 232即点P到平面QAD勺距离是.2考点 2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离典型例题42例3已知三棱锥,底面是边长为的正三角形,棱的长为2,且垂直于底S,ABCS(面.分别为的中点,求CD与SE间的距离.E、DBC ABC曲思路启迪:由于异面直线CD与SE的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离•解答过程:如图所示,取BD的中点F,连结EF,SF, CF,?EF?EF为的中位线,??面,CD, ?CD,BCDSEF到平面的距离即为两异面直线间的距离.?CDSEF又线面之间的距离可转化为线上一点C到平面?CDSEF的距离,设其为h,由题意知,,D、E、F分别是BC,42AB BC BD的中点,1 ?CD,26,EF,CD,6,DF,2,SC,22111123?,,,,,,,,6,2,2,VEFDFSC S,CEF3232322在Rt 中, SE,SC,CE,23,SCE22在Rt 中,SF,SC, CF,4, 24, 2,30,SCF又?EF,6, ?S,3,SEF112323,3,h,h,由于,即,解得V,V,,S,hC,SEFS,CEF,SEF333323故CD与SE间的距离为.3小结: 通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程.考点 3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化典型例题ACAAGB例4(如图,在棱长为2的正方体中,G是的中点,求BD到平面的距离. 1111 思路启迪: 把线面距离转化为点面距离,再用点到平面距离的方法求解.D1 C1O1解答过程:A 1B1 ? BDGB解析一?平面,11HG ?BDGB上任意一点到平面的距离皆为所求,以下求11D CO GBD点0平面的距离,11A B?BD,ACBD,A?ABD,AACC,,平面, 11111111111?BD,GBD又平面1111AACC,GBDO平面,两个平面的交线是,? 11111OH,OGGBDG作于H,则有平面,即0H是0点到平面的距离.0H,1111111,00G中,.在S,,OO,AO,,2,2,21,OOG1122112632,S,,OH,OG,,,OH, ?OH又.,OOG1122326GBD!卩BD到平面的距离等于.113?BDGB解析二?平面,11?BDGBDGBD任意一点到平面的距离皆为所求,以下求点B平面的距离.1111 GBDB,GB设点B到平面的距离为h,将它视为三棱锥的高,则11111 V,V, 由于S,,22,3,6,B,GBDD,GBB,GBD1111112114426222, ?h,,,V, ,,,,,D,GBB1132336 26GBDI卩BD到平面的距离等于.113小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离•本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离•考点4异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角•异面直线所成的角是高考考查的重点•典型例题例5(2007年北京卷文)n AB,4如图,在中,,斜边(可以通过Rt?AOBRt?AO,C,OAB6A以直线为轴旋转得到,且二面角的直二面AOBAOC,,Rt?AOBDAB角(是的中点((I)求证:平面平面;DCOD,AOB(II)求异面直线与所成角的大小(AOCD思路启迪:(II)的关键是通过平移把异面直线转化到一个三角形内•解答过程:解法1:(I)由题意,,,COAO,BOAO,EB是二面角是直二面角,?,BOCBAOC,,C,又,AOBOO? ,COBO平面,?,COAOB平面(又CO,COD平面平面(?COD,AOB AE(II)作,垂足为,连结(如图),贝U, DEOB,CEDEAO?是异面直线与所成的角(AOCD?, CDE1 在中,,,DRt?COECOBO,,2OEBO,,1222(? ,,,CECOOE51 又(DEAO,,3yO2BxC CE515在中,(?Rt?CDEtanCDE,,, DE3315异面直线与所成角的大小为(?AOCDarctan3例6((2006年广东卷)如图所示,AF、DE分别是?O ?O的直径.AD与两圆所在的平1面均垂直,AD,8,BC是?O的直径,AB,AC,6, OE//AD. (?)求二面角B— AD-F的大小;(?)求直线BD与EF所成的角.命题目的:本题主要考查二面角以及异面直线所成的角等基本知识,考查空间想象能力、逻辑思维能力和运算能力•过程指引:关键是用恰当的方法找到所求的空间距离和角并掌握利用空间向量求空间距离和角的一般方法.解答过程:⑺?AD与两圆所在的平面均垂直,?AD?AB, AD?AF,故?BAF是二面角B—AD—F的平面角.,? AF、BC是圆O的直径,?ABFC是矩形又? AB,AC,6,? ABFC是正方形0由于ABFC是正方形,所以?BAF,45.0即二面角B—AD- F的大小为45;(?)以O为原点,BC AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0, 0, 0),A(0,,32,0),B(32,0, 0),D(0,,32,8),E(0,0,8),F(0,32, 0)所以,BD,(,32,,32,8),FE,(0,,32,8)设异面直线BD与EF所成角为,则82,,,,,coscos,.BDFE. 1082arccos故直线BD与EF所成的角为.10考点5直线和平面所成的角例7.(2007年全国卷?理)° ——四棱锥中,底面为平行四边形,侧面底面(已知,SABCD,?ABC,45ABCDSBC,ABCD AB,2,, ( SASB,,3BC,22S(?)证明;SABC,C(?)求直线与平面所成角的大小(SDSABB考查目的:本小题主要考查直线与直线,直线与平面的位置关系,DA二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力(解答过程:解法一:(?)作,垂足为,连结,由侧面底面,SOBC?AOSBC?ABCDO 得底面(SO?ABCD因为,所以,SASB,AOBO,°又,故为等腰直角三角形,,?ABC,45?AOBAOBO?由三垂线定理,得(SABC?(?)由⑺知,依题设,SABC?ADBC?SSA,3故,由,,,得ADBC,,22AO,2SAAD?,(SD,11SO,1O C B 211,,2 的面积(?SABSABSAAB,,,21,,D 22A ,,1DB连结,得的面积?DABSABAD,,sin135222DVV设到平面的距离为,由于,得SABhDSABSABD,, 卩□ |11,解得(h,2hSSOS,1233h222设与平面所成角为,则(,SDSAB,,,,sinSD111122所以,直线与平面所成的我为(SDSBCarcsi nil考点6二面角此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解•二面角是高考的热点,应重视•典型例题例8((2007年湖南卷文)b —如图,已知直二面角,,,,,,,,,,PQAPQ,C,, , ,BAP45B,,CACB直线和平面,所成的角为(30CAC ,A P QB,;(I)证明BCPQ?(II)求二面角的大小(BACP,,命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力过程指引:⑴在平面内过点作COPC于点,连结(,COOBn |因为,,所以,,,?,,,PQCO?,C ,又因为,所以(CACB,OAOB,H卜o |A P 而,所以,,,,BAO45 ,ABO45 ,AOB9OQ O B,从而,又,BOPQ?COPC所以平面(因为平面,故(PQBC?PQ?OBCBC,OBC n - I(II)解法一:由(I)知,,又,,BOPQ?,,?,,,PQ,所以(BO?,BO,,BHH过点作于点,连结,由三垂线定理知,(OOHAC?BHA故是二面角的平面角(,BHOBACP,,°由(I)知,,所以是和平面所成的角,贝, , ,CAO3OCO?” CAOCA3AO,3OHAO,,si n30 不妨设,贝U,( AC,22BOAO,,3在中,,所以,,,,,ABOBAO45Rt?OABBO3tan2, ,,,BHO 于是在中,(Rt?BOHOH32故二面角的大小为(BACP,,arctan2,,例9(( 2006年重庆卷)如图,在四棱锥P,ABCD中, PA底面ABCDQA为直CD AD=CD=2AB, E F分别为PC CD的中点.,(?)试证:CD平面BEF;(?)设PA,k?AB,且二面角E-BD-C的平面角大于,30:,解法一:(?)证:由已知DFAB且DAD为直角,〃,,故ABFD是矩形,从而CDBF.,,又PA底面ABCD,CDAD故由三垂线定理知,CDPD在?PDC中, E、F 分别,,PC、CD的中点,故EF?PD从而CDEF由此得CD面BEF.(?)连结AC交BF于G.易知G为AC的中点.连接EG则在?PAC中易知EG?PA又,,PA 底面ABCD故EG底面ABCD在底面ABCD中,过G作GHBD垂足为H,连接EH.由三垂线定理知,,EHBD从而EHG为二面角E-BD-C的平面角.设AB=a则在?PAC中,有11EG=PA=ka.22 以下计算GH考察底面的平面图•连结GD.11 因S=BD?GH=GB?DF. ?GBD22求k的取值范围.解答过程:GB,DF故GH=. BD5 在?ABD中,因为AB,a,AD=2a,得BD=a.11 而GB=FB=AD=aDF=AB从而得22GB,ABa,a5a.GH== , 5BD5a1kaEG52因此tan?EHG== ,k.2GH5a5由k,0 知是锐角,故要使, ,必须,EHG,EHG30:53k,,tan= 30:32 215.解之得,k的取值范围为k, 15。
高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。
立体几何大题15种题型全归纳

【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。
高考立体几何复习三部曲—小题题型总结

高考立体几何三部曲-小题专项一、空间几何体的三视图问题1. 已知某个几何体的三视图如下,图中标出的尺寸(单位:cm),则这个几何体的体积是( ) A .34000cm 3 B .38000cm 3C .32000cmD .34000cm2、多面体的三视图如图所示,则该多面体的表面积为( ) A .213+ B .183+ C .21 D .183. 已知某几何体的三视图(单位:cm )如图所示,则该几何体的 体积是 A.1083cm B.1003cm C.923cm D.843cm4、某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )A .2B .5C .6D .32020正视图 20侧视图 101020俯视图二、斜二测画法1、利用斜二侧画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是( ) A .正三角形的直观图仍然是正三角形. B .平行四边形的直观图一定是平行四边形. C .正方形的直观图是正方形. D .圆的直观图是圆2、如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=2,C 1D 1=3,A 1D 1=1,则梯形ABCD 的面积是( )A .10B .5C .5 2D .10 2三、关于“球体”的问题1.纬度为α的纬圈上有A 、B 两点,弧在纬圈上,弧AB 的长为απcos R (R 为球半径),则A 、B 两点间的球面距离为________2.三棱锥P —ABC 的四个顶点在同一球面上,PA 、PB 、PC 两两互相垂直,且这个三棱锥的三个侧面的面积分别为6,32,2,则这个球的表面积是________3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( ) A. π3 B. π4 C. π33 D. π64.正四面体的四个顶点都在表面积为π36的一个球面上,则这个正四面体的高等于______5.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是π332,那么该三棱柱的体积是 ( ) A. 396 B. 316 C. 324 D. 3486..已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.7、将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )A. 3 +2 6 3B.2+2 6 3C.4+ 2 6 3D.4 3 +2 63四、动态计算问题1、长方形纸片ABCD ,AB=4,BC=7,在BC 边上任取一点E ,把纸片沿AE 折成直二面角,问E 点取何处时,使折起后两个端点B 、D 之间的距离最短?2、用一块长方形钢板制作一个容积为4m 3的无盖长方体水箱,可用的长方形钢板有下列四种不同的规格(长⨯宽的尺寸如各选项所示,单位均为m )。
高中数学立体几何题型归纳

高中数学立体几何题型归纳
高中数学立体几何是高考数学的一个重要组成部分,其题型归纳如下:
1. 计算题:主要要求异面直线所成的角、直线与平面所成的角、二面角、点到面的距离、表面积、体积等。
2. 证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
3. 三视图问题:要求画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,并能识别上述三视图所表示的立体模型。
4. 空间直线与平面的位置关系问题:要求判断直线与平面的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
5. 空间向量问题:要求理解空间向量的概念,掌握空间向量的加减法和数量积运算法则,能够运用空间向量求解立体几何问题。
6. 空间点、线、面之间的位置关系问题:要求判断点、线、面之间的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
7. 立体几何中的证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
此外,还有一些特殊的立体几何问题,如立方体问题、圆锥问题、球体问题等。
对于这些问题,需要结合实际情况进行具体分析,并注重理解和掌握相关的概念、定理和公式。
2023年高考数学总复习:立体几何及答案解析

又∵已知 E 为 PB 的中点,∴OE∥PD.
∵PD⊄平面 AEC,OE⊂平面 AEC,
∴PD∥平面 AEC.
解:(2)∵
⺁,
⺁ ,∴
⺁ ⺁.
又∵PD⊥底面 ABCD,∴ 三棱锥 െ
∵E 是 PB 的中点,∴ 三棱锥 െ
⺁ 三棱锥 െ
⺁ ⺁⺁ ⺁ ⺁
⺁.
⺁ 三棱锥 െ
⺁ ⺁.
2.如图,在四棱锥 P﹣ABCD 中,PA⊥平面 ABC,AD∥BC,∠ABC=90°,AD=2, ⺁ , BC=6. (1)求证:平面 PBD⊥平面 PAC; (2)PA 长为何值时,直线 PC 与平面 PBD 所成角最大?并求此时该角的正弦值.
第1页共3页
【解答】(1)证明:∵PA⊥平面 ABCD,BD⊂平面 ABCD,∴BD⊥PA,
又 ㋨๗
, ㋨๗
,
∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即 BD⊥AC(E 为 AC 与 BD 交点).
又 PA∩AC,∴BD⊥平面 PAC
又因为 BD⊂平面 PBD,所以平面 PBD⊥平面 PAC.
则๗ ๗
,即 െ ⺁ ㌳ ⺁ െ⺁ ㌳
,取 x=1,
⺁ 得平面 PBD 的一个法向量为๗ (1, , ),
所以 cos< ,๗>
๗
,
๗
쳌㌳ ⺁
㌳
⺁ ⺁
㌳ ⺁㌳ ⺁
因为 ㌳ ⺁ ㌳ ⺁
㌳⺁ ⺁ ⺁
,当且仅当 t=2 时等号成立,
所以 cos< ,๗>
,记直线 PC 与平面 PBD 所成角为θ,
则 sinθ=|cos< ,๗>|,故 t๗ ,
即 ⺁ 时,直线 PC 与平面 PBD 所成角最大,此时该角的正弦值为 .
(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习五 立体几何高考题型
热点之一:点、线、面问题
包括平面的基本性质、空间的直线和平面的位置关系及判定方法,特别注意三垂线定理及其逆定理的应用。
[例1] 已知、αβ是两个平面,直线,.l l αβ⊄⊄若以①l α⊥,②//l β,③αβ⊥中两个为条件,另一个为结论构成三个命题,则其中正确命题的个数是( ) (A )0个 (B )1个 (C )2个 (D )3个
[例2]把边长为a 的正方形剪去图中的阴影部分,沿图中
所画的线折成一个正三棱锥,则这个正三棱锥的高为(
(A (B (C (D (练习)
1.在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )
2.如右图,点E 是正方体1111ABCD A BC D - 的棱1DD 的中点,则过点E 与直线AB 和
11B C 都相交的直线的条数是( )
(A )0条 (B )1条 (C )2条 (D )无数
3.在正方体1111ABCD A BC D -中,写出过顶
点A 的一个平面______________,使该平面与正方体的
12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。
热点之二:空间角与距离问题
三个角:包括两条直线所成的角、直线与平面所成的角、二面角;
八个距离:包括点到直线的距离、点到面的距离、两条平行直线的距离、异面直线
1A 1C
1
B D
A
C
B E 1D
(A ) (D )
的距离、直线与平行平面的距离、两个平行平面之间的距离、球面上两点的距离。
在求角或距离时,一定要“先找后解”。
[例3](1998年全国高考题)已知斜三棱柱111ABC A B C -的侧面11A ACC 与底面ABC
垂直,90,2,ABC BC AC ∠=== , 且1111,.AA AC AA AC ⊥=
(Ⅰ)求侧棱1AA 与底面ABC 所成角的大小;
(Ⅱ)求侧面11A ABB 与底面
ABC 所成二面角的大小; (Ⅲ)(理)求顶点C 到侧面11A ABB 的距离;
(Ⅲ)(文)求侧棱1B B 和侧面11A ACC 的距离。
(练习)
4.如图,在正方体1111ABCD A BC D -中,E 、F 分别为
AB 、AD 的中点, (1)11
AC 与1
B C 所成角的大小是_____________;
(2) 11AC 与
EF 所成角的大小是_____________; (3) 1AC 与1AD 所成角的大小是_____________; (4)1AD 与EF 所成角的大小是_____________; (5)1BD 与CE 所成角大小是_____________; (6)1B C 与平面ABCD 所成角的大小是_________; (7)1BD 与平面1!DCC D 所成角的大小是_____________; (8)二面角1A BC D --的大小是_________; (9)二面角111B AC B --的大小是_____________; (10)二面角1C EF C --的大小是_____________;
5.将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线BD 折成60°的二面角后, (1)求异面直线AC 与BD 的距离;
(2)求三棱锥C ABD -的体积;
(3)求D 到面ABC 的距离。
D E
A
C
B
O
C 1A
1
B D
A
C B
E
1D F 1C
1C
1
B A
C B 1
A
热点之三:表面积与体积问题
[例4]棱锥被平行于底面的平面所截,当截面分别平分侧棱、侧面积、体积时,相应截面面积记作1S 、2S 、3S ,则( ) (A)123S S S << (B) 213S S S <<
(C)321S S S << (D)132S S S <<
[例5]如右图,在母线长为2
当这个圆柱体积最大时,它的高是( )
(B) (C)23
(练习)
6.如图,三棱台111ABC A B C -的上底111A B C ∆面积 为4,下底ABC ∆面积为9,且三棱锥11C AA B -的体 积为9,则三棱台111ABC A B C -的体积为( ) (A)19 (B)18 (C)
572 (D)763
7.已知圆台上、下底面半径分别为1cm 和4cm ,圆台的侧面展开图扇环所对的圆心角
为216°,则该圆台的体积为_________________________。
8.直四棱柱ABCD EFGH -的体积等于1,底面ABCD 为平行四边形,则四面体DCGF 体积为____________。
热点之四:立几综合题
[例6]如图,圆台1OO 的高等于下底面圆的半径,母线1AA 与下底面成60
的角,P
为下底面圆周上的一点,PO 与1AA 成30
的角。
(Ⅰ)求二面角1P OO A --的余弦值; (Ⅱ)若下底面圆的半径为1,求圆台的侧面积。
1C
1
B A
C B
1A
1A
[例7]如图,直四棱柱1111ABCD AC B D -的侧棱1AA 的长是a ,底面ABCD 是边长AB=2a ,BC=a 的矩形,E 为11C D 的中点。
(Ⅰ)求证:平面BCE ⊥平面BDE; (Ⅱ)求二面角E-BD-C 的大小;
(Ⅲ)求三棱锥1B BDE -的体积.
(练习答案)
1、B
2、B
3、面11AB D
4、(1)60 (2)90 (3)90 (4)60
(5)6)45
(7)8)45 (9)10)arctg 5、(1)34a (23
(3)32a 6、C 7、328cm π 8、16 A B
C
D
1A 1B
1C
1D
E
F
H。