滑动轴承

滑动轴承
滑动轴承

滑动轴承

滑动轴承[huá dòng zhóu chéng] 滑动轴承(sliding bearing),在滑动摩擦下工作的轴承。滑动轴承工作平稳、可靠、无噪声。在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料

层称为轴承衬。轴瓦和轴承衬的材料统称为滑动轴承材料。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。常用的滑动轴承材料有轴承合金(又叫巴氏合金或白合金)、耐磨铸铁、铜基和铝基合金、粉末冶金材料、塑料、橡胶、硬木和碳-石墨,聚四氟乙烯(特氟龙、PTFE)、改性聚甲醛(POM)、等。滑动轴承(sliding bearing),在滑动摩擦下工作的轴承。滑动轴承工作平稳、可靠、无噪声。在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。轴瓦和轴承衬的材料统称为滑动

轴承材料。聚四氟乙烯(PTFE)、改性聚甲醛(POM)、等。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。[1]滑动轴承种类很多。滑动轴承①按能承受载荷的方向可分为径向(向心)滑动轴承和推力(轴向)滑动轴承两类。②按润滑剂种类可分为油润滑轴承、脂润滑轴承、水润滑轴承、气体轴承、固体润滑轴承、磁流体轴承和电磁轴承7类。③按润滑膜厚度可分为薄膜润滑轴承和厚膜润滑轴承两类。④按轴瓦材料可分为青铜轴承、铸铁轴承、塑料轴承、宝石轴承、粉末冶金轴承、自润滑轴承和含油轴承等。⑤按轴瓦结构可分为圆轴承、椭圆轴承、三油叶轴承、阶梯面轴承、可倾瓦轴承和箔轴承等。滑动轴承轴瓦分为剖分式和整体式结构。为了改善轴瓦表面的摩擦性质,常在其内径面上浇铸一层或两层减摩材料,通常称为轴承衬,所以轴瓦又有双金属轴瓦和三金属轴瓦。轴瓦或轴承衬是滑动轴承的重要零件,轴瓦和轴承衬的材料统称为轴承材料。由于轴瓦或轴承衬与轴颈直接接触,一般轴颈部分比较耐磨,因此轴瓦的主要失效形式是磨损。轴瓦的磨损与轴颈的材料、轴瓦自身材料、润滑剂和润滑状态直接相关,选择轴瓦材料应综合考虑这些因素,以提高滑动轴承的使用寿命和工作性能。轴承的材料有1)金属材料,如轴承合金、青铜、铝基合金、锌基合金等轴承合金:轴承合金又称白合金,主要是锡、铅、锑或其它金属的合金,由于其

耐磨型好、塑性高、跑合性能好、导热性好和抗胶和性好及与油的吸附性好,故适用于重载、高速情况下,轴承合金的强度较小,价格较贵,使用时必须浇铸在青铜、钢带或铸铁的轴瓦上,形成较薄的涂层。2)多孔质金属材料(粉末冶金材料)多孔质金属材料:多孔质金属是一种粉末材料,它具有多孔组织,若将其浸在润滑油中,使微孔中充满润滑油,变成了含油轴承,具有自润滑性能。多孔质金属材料的韧性小,只适应于平稳的无冲击载荷及中、小速度情况下。3)非金属材料轴承塑料:常用的轴承塑料有酚醛塑料、尼龙、聚四氟乙烯等,塑料轴承有较大的抗压强度和耐磨性,可用油和水润滑,也有自润滑性能,但导热性差。滑动轴承在工作时由于轴颈与轴瓦的接触会产生摩擦,导致表面发热、磨损甚而“咬死”,所以在设计轴承时,应选用减摩性好的滑动轴承材料制造轴瓦,合适的润滑剂并采用合适的供应方法,改善轴承的结构以获得厚膜润滑等。1、瓦面腐蚀:光谱分析发现有色金属元素浓度异常;谱中出现了许多有色金属成分的亚微米级磨损颗粒;润滑油水分超标、酸值超标。2、轴颈表面腐蚀:光谱分析发现铁元素浓度异常,铁谱中有许多铁成分的亚微米颗粒,润滑油水分超标或酸值超标。3、轴颈表面拉伤:铁谱中有铁系切削磨粒或黑色氧化物颗粒,金属表面存在回火色。4、瓦背微动磨损:光谱分析发现铁浓度异常,铁谱中有许多铁成分亚微米磨损颗粒,润滑油水

分及酸值异常。5、轴承表面拉伤:铁谱中发现有切削磨粒,磨粒成分为有色金属。6、瓦面剥落:铁谱中发现有许多大尺寸的疲劳剥落合金磨损颗粒、层状磨粒。7、轴承烧瓦:铁谱中有较多大尺寸的合金磨粒及黑色金属氧化物。8、轴承磨损:由于轴的金属特性(硬度高,退让性差)等原因,易造成粘着磨损、磨料磨损、疲劳磨损、微动磨损等状况。漆锈的预防:漆锈的特点是在一个密封式电机,一开始电机听起来不错,但在一段时间的仓库,电动机变得非常不正常的声音,除去轴承严重生锈。许多制造商将被视为前轴承的问题,主要的问题是,出的绝缘漆挥发酸在一定的温度,湿度金属的腐蚀与防护,腐蚀性物质的形成,渠道滑动轴承造成腐蚀损坏。

滑动轴承寿命是制造,组装,使用密切相关,必须使每一个环节,才能使国家运作的最好的轴承,从而延长轴承的使用寿命。

1、部分企业在生产涂装机轴承的过程中没有严格按清洗防锈规程和油封防锈包装的要求对加工过程中的涂装机

轴承零件和装配后的涂装机轴承成品进行防锈处理。如套圈在周转过程中周转时间太长,外圈外圆接触有腐蚀性的液体或气体等。

2、部分企业在生产中使用的防锈润滑油、清洗煤油等产品的质量达不到工艺技术规定的要求。

3、由于涂装机轴承钢价格一降再降,从而造成涂装机轴承钢材质逐渐下滑。如钢材中非金属杂质含量偏高(钢材中硫含量的升高使材料自身抗锈蚀性能下降),金相组织偏差等。现生产企业所用的涂装机轴承钢来源较杂,钢材质量更是鱼龙混珠。

4、部分企业的环境条件较差,空气中有害物含量高,周转场地太小,难以进行有效的防锈处理。再加上天气炎热,生产工人违反防锈规程等现象也不乏存在。

5、一些企业的防锈纸、尼龙纸(袋)和塑料筒等涂装机滑动轴承包装材料不符合滚动涂装机轴承油封防锈包装

的要求也是造成锈蚀的因素之一。

6、部分企业涂装机滑动轴承套圈的车削余量和磨削余量偏小,外圆上的氧化皮、脱碳层未能完全去除也是原因之一。[2]国内针对滑动轴承磨损一般采用的是补焊、镶轴套、打麻点等方法,但当轴的材质为45号钢(调质处理)时,如果仅采用堆焊处理,则会产生焊接内应力,在重载荷或高速运转的情况下,可能在轴肩处出现裂纹乃至断裂的现象,如果采用去应力退火,则难于操作,且加工周期长,检修费用高;当轴的材质为HT200时,采用铸铁焊也不理想。一些维修技术较高的企业会采用电刷镀、激光焊、微弧焊甚至冷焊等,这些维修技术往往需要较高的要求及高昂的费用。

[3]对于以上修复技术,在欧美日韩企业已不太常见,发达国

家一般采用的是高分子复合材料技术和纳米技术,高分子技术可以现场操作,有效提升了维修效率,且降低了维修费用和维修强度。其中应用最为广泛的是美嘉华福世蓝技术体系,相比传统技术,高分子复合材料既具有金属所要求的强度和硬度,又具有金属所不具备的退让性(变量关系),可以最

大限度确保修复部位和配合部件的尺寸配合;同时,利用复合材料本身所具有的抗压、抗弯曲、延展率等综合优势,可以有效地吸收外力的冲击,极大化解和抵消轴承对轴的径向冲击力,并避免了间隙出现的可能性,也就避免了设备因间隙增大而造成的二次磨损[3]。结构设计注意问题滑动轴承滑动轴承是面接触的,所以接触面间要保持一定的油膜,因此设计时应注意以下这几个问题:1、要使油膜能顺利地进入

摩擦表面。2、油应从非承载面区进入轴承。3、不要使全环油槽开在轴承中部。4、如油瓦,接缝处开油沟。5、要使油环给油充分可靠。6、加油孔不要被堵。7、不要形成油不流动区。8、防止出现切断油膜的锐边和棱角。滑动轴承也可

用润滑脂来润滑,在选择润滑脂时应考虑下列几点:(1)轴承载荷大,转速低时,应选择锥入度小的润滑脂,反之要选择锥入度大的。高速轴承选滑动轴承用锥入度小些、机械安定性好的润滑脂。特别注意的是润滑脂的基础油的粘度要低一些。(2)选择的润滑脂的滴点一般高于工作温度20-30℃,在高温连续运转的情况下,注意不要超过润滑脂的允许使用

温度范围。(3)滑动轴承在水淋或潮湿环境里工作时,应选择抗水性能好的钙基、铝基或锂基润滑脂。(4)选用具有较好粘附性的润滑脂。2、滑动轴承用润滑脂的选择:载荷

<1MPa,轴颈圆周速度1m/s以下,最高工作温度75℃,选用3号钙基脂;载荷1-6.5MPa,轴颈圆周速度0.5-5m/s,最高工作温度55℃,选用2号钙基脂;载荷>6.5MPa,轴颈圆周速度0.5m/s以下,最高工作温度75℃,选用3号钙基脂;载荷<6.5MPa,轴颈圆周速度0.5-5m/s,最高工作温度120℃,选用2号锂基脂;载荷>6.5MPa,轴颈圆周速度0.5m/s以下,最高工作温度110℃,选用2号钙-钠基脂;载荷1-6.5MPa,轴颈圆周速度1m/s以下,最高工作温度50-100℃,选用2号锂基脂;载荷>5MPa 轴颈圆周速度0.5m/s,最高工作温度60℃,选用2号压延机脂;在潮湿环境下,温度在75-120℃的条件下,应考虑用钙-钠基脂润滑脂。在潮湿环境下,工作温度在75℃以下,没有3号钙基脂,也可用铝基脂。工作温度在110-120℃时,可用锂基脂或钡基脂。集中润滑时,稠度要小些。3、滑动轴承用润滑脂的润滑周期:偶然工作,不重要零件:轴转速

<200r/min,润滑周期5天一次;轴转速>200r/min,润滑周期3天一次。间断工作:轴转速<200r/min,润滑周期2天一次;轴转速>200r/min,润滑周期1天一次。连续工作,工作温度小于40℃:轴转速<200r/min,润滑周期

1天一次;轴转速>200r/min,润滑周期每班一次。连续

工作,工作温度40-100℃:轴转速<200r/min,润滑周期

每班一次;轴转速>200r/min,润滑周期每班二次。既要

使轴颈与滑动轴承均匀细密接触,又要有一定的配合间隙。滑动轴承是指轴颈与滑动轴承的接触面所对的圆心角。接触角不可太大也不可太小。接触角太小会使滑动轴承压强增加,严重时会使滑动轴承产生较大的变形,加速磨损,缩短使用寿命;接触角太大,会影响油膜的形成,得不到良好的液体润滑。试验研究表明,滑动轴承接触角的极限是120°。当滑动轴承磨损到这一接触角时,液体润滑就要破坏。因此再不影响滑动轴承受压条件的前提下,接触角愈小愈好。从摩擦力距的理论分析,当接触角为60°时,摩擦力矩最小,因此建议,对转速高于500r/min的滑动轴承,接触角采用60°,转速低于500r/min的滑动轴承,接触角可以采用90°,也可以采用60°。轴颈与滑动轴承表面的实际接触情况,可用单位面积上的实际接触点数来表示。接触点愈多、愈细、愈均匀,表示滑动轴承刮研的愈好,反之,则表示滑动轴承刮研的不好。一般说来接触点愈细密愈多,刮研难度也愈大。生产中应根据滑动轴承的性能和工作条件来确定接触点,下表所列资料可供参考:滑动轴承转速slidingbearing(r/min)接触点(每25×25毫米面积上的接触点数)100以下

3~5100~500 10~15500~1000 15~201000~2000

20~252000以上25以上Ⅰ级和Ⅱ级精度的机械可采用上表数据,Ⅲ级精度的机械可按上表数据减半。非金属滑动轴承和金属滑动轴承的区别:滑动轴承工作时发生的是滑动摩擦;滚动摩擦力的大小主要取决于制造精度;而滑动轴承摩擦力的大小主要取决于轴承滑动面的材料。滑动轴承一般工作面均具有自润滑功能;滑动轴承按照材料分为非金属滑动轴承和金属滑动轴承。非金属滑动轴承主要以塑料轴承为主,塑料轴承一般都是采用性能比较好的工程塑料制成;比较专业的厂家一般均具有工程塑料自润滑改性技术,通过纤维、特种润滑剂、玻璃珠等等对工程塑料进行自润滑增强改性使之达到一定的性能,然后再用改性塑料通过注塑加工成自润滑的塑料轴承,全球比较专业的制造商有德国的IGUS和中国的CSB公司。金属滑动轴承目前使用最多的就是三层复合轴承,这种轴承一般都是以碳钢板为基板,通过烧结技术在钢板上先烧结一层球形铜粉,然后再在铜粉层上烧结一层越0.03mm的PTFE润滑剂;其中中间一层球形铜粉主要作用就是增强钢板与PTFE之间的结合强度,当然在工作时还起到一定的承载和润滑作用;全球比较专业的制造商有美国的GGB公司、日本的OILES公司以及中国的CSB公司;近些年也在世界滑动轴承制造基地也涌现出了一批优秀的中

小企业,大企业综合实力强,中小企业则往细分方向发展,比如三和无油润滑轴承专门发展阀门类不锈钢滑动轴承,凯

盛滑动轴承专门发展模具行业配件,优肯轴承发展注塑机等配件,随着滑动轴承行业的发展,行业细分越来越明显,中小企业也逐渐缩短了跟大企业的差距。通过以上说明不难看出,塑料轴承与金属滑动轴承存在以下区别:1、塑料轴承

整体均是润滑材料,使用寿命长;而金属类滑动轴承润滑层仅仅是表面0.003mm的PTFE,当这薄薄的一层摩擦完也

就宣告使用寿命的终结;2、塑料轴承使用中不会发生生锈现象且耐腐蚀,而金属类轴承易生锈不能用于化工液中;3、塑料轴承质量比金属轻,这更适合现代化的轻量型设计趋势;

4、塑料轴承制造成本较金属类要低;塑料轴承采用的是注

塑成型加工而成比较适合大批量生产;5、塑料轴承在运行中没有任何噪音,具有一定的吸振功能;由于塑料轴承较

金属类滑动轴承存在众多的优势,塑料轴承的产量正在日益扩大,塑料轴承的使用场合也在不断的延伸,从健身器材到办公设备以及汽车行业等等均采用了塑料轴承,在公路上行驶的汽车没有不使用塑料轴承的。塑料轴承市场前景无限广阔!滑动轴承现行国家标准1 GB/T14910-1994 滑动轴承厚壁多层轴承衬背技术要求2 GB/T16748-1997 滑动轴承金

属轴承材料的压缩试验3 GB/T18323-2001 滑动轴承烧结

轴套的尺寸和公差4 GB/T18324-2001 滑动轴承铜合金轴

套5 GB/T18325.1-2001 滑动轴承流体动压润滑条件下试验机内和实际应用的滑动轴承疲劳强度6 GB/T18326-2001

滑动轴承薄壁滑动轴承用金属多层材料7

GB/T18327.1-2001 滑动轴承基本符号8

GB/T18329.1-2001 滑动轴承多层金属滑动轴承结合强度的超声波无损检验9 GB/T18327.2-2001 滑动轴承应用符号10 GB/T18844-2002 滑动轴承损坏和外观变化的术语、特征及原因11 GB/T21466.3-2008 稳态条件下流体动压径向滑动轴承圆形滑动轴承第3部分:许用的运行参数12

GB/T21466.1-2008 稳态条件下流体动压径向滑动轴承圆柱滑动轴承第1部分:计算过程13 GB/T21466.2-2008 稳态条件下流体动压径向滑动轴承圆形滑动轴承第2部分:计算过程中所用函数14 GB/T7308-2008 滑动轴承有法兰或无法兰薄壁轴瓦公差、结构要素和检验方法15

GB/T10447-2008 滑动轴承半圆止推垫圈要素和公差16 GB/T10446-2008 滑动轴承整圆止推垫圈尺寸和公差17 GB/T2889.1-2008滑动轴承术语、定义和分类第1部分:设计、轴承材料及其性能18 GB/T23893-2009 滑动轴承用热塑性聚合物分类和标记19 GB/T23895-2009 滑动轴承薄壁轴瓦质量保证缩小轴承间隙范围的选择装配20

GB/T18325.3-2009 滑动轴承轴承疲劳第3部分:金属多层轴承材料平带试验21 GB/T18325.2-2009 滑动轴承轴承疲劳第2部分:金属轴承材料圆柱形试样试验22

GB/T23896-2009 滑动轴承薄壁轴瓦质量保证设计阶段的

失效模式和效应分析(FMEA)23 GB/T18325.4-2009 滑动轴承轴承疲劳第4部分:金属多层轴承材料轴瓦试验24 GB/T23894-2009 滑动轴承铜合金镶嵌固体润滑轴承25 GB/T23892.2-2009 滑动轴承稳态条件下流体动压可倾瓦块止推轴承第2部分:可倾瓦块止推轴承的计算函数26 GB/T23892.1-2009 滑动轴承稳态条件下流体动压可倾瓦块止推轴承第1部分:可倾瓦块止推轴承的计算27

GB/T23892.3-2009 滑动轴承稳态条件下流体动压可倾瓦块止推轴承第3部分:可倾瓦块止推轴承计算的许用值28 GB/T23891.1-2009 滑动轴承稳态条件下流体动压瓦块止推轴承第1部分:瓦块止推轴承的计算29

GB/T23891.2-2009 滑动轴承稳态条件下流体动压瓦块止推轴承第2部分:瓦块止推轴承的计算函数30

GB/T23891.3-2009 滑动轴承稳态条件下流体动压瓦块止推轴承第3部分:瓦块止推轴承计算的许用值31

GB/T2889.4-2011 滑动轴承术语、定义和分类第4部分:基本符号32 GB/T27939-2011 滑动轴承几何和材料质量特性的质量控制技术和检验33 GB/T12613.6-2011 滑动轴承卷制轴套第6部分:内径检验34 GB/T27938-2011 滑动轴承止推垫圈失效损坏术语、外观特征及原因35

GB/T12613.1-2011 滑动轴承卷制轴套第1部分: 尺寸36 GB/T12613.2-2011 滑动轴承卷制轴套第2部分: 外径和内

径的检测数据37 GB/T12613.3-2011 滑动轴承卷制轴套第

3部分:润滑油孔、油槽和油穴38 GB/T12613.4-2011 滑动轴承卷制轴套第4部分:材料39 GB/T12613.5-2011 滑动

轴承卷制轴套第5部分:外径检验40 GB/T12613.7-2011 滑动轴承卷制轴套第7部分:薄壁轴套壁厚测量41

GB/T2688-2012 滑动轴承粉末冶金轴承技术条件42

GB/T28278.1-2012 滑动轴承稳态条件下不带回油槽流体

静压径向滑动轴承第1部分:不带回油槽油润滑径向滑动轴承的计算43 GB/T28279.1-2012 滑动轴承稳态条件下带回

油槽流体静压径向滑动轴承第1部分:带回油槽油润滑径向滑动轴承的计算44 GB/T28279.2-2012 滑动轴承稳态条件

下带回油槽流体静压径向滑动轴承第2部分:带回油槽油润滑径向滑动轴承计算的特性值45 GB/T28278.2-2012 滑动

轴承稳态条件下不带回油槽流体静压径向滑动轴承第2部分:不带回油槽油润滑径向滑动轴承计算的特性值46

GB/T28280-2012 滑动轴承质量特性机器能力及过程能力

的计算47 GB/T28281-2012 滑动轴承质量特性统计过程控制(SPC)48 GB/T10445-1989 滑动轴承整体轴套的轴径49 GB/T12948-1991 滑动轴承双金属结合强度破坏性试验方

法50 GB/T12949-1991 滑动轴承覆有减摩塑料层的双金属轴套[4]词条图册更多图册词条图片(7张)

《滑动轴承的设计》word文档

滑动轴承的设计 § 1 滑动轴承概述 用于支撑旋转零件(转轴,心轴等)的装置通称为轴承。 按其承载方向的不同,轴承可分为: 径向轴承Radial bearing:轴承上的反作用力与轴心线垂直的轴承称为径向轴承; 推力轴承Thrust bearing:轴承上的反作用力与轴心线方向一致的轴承称为推力轴承。 按轴承工作时的摩擦性质不同,轴承可分为:滑动轴承和滚动轴承。 滑动轴承,根据其相对运动的两表面间油膜形成原理的不同,还可分为:流体动力润滑轴承(简称动压轴承)(Hydrodynamic lubrication) 流体静力润滑轴承(简称静压轴承)(Hydrostatic lubrication)。本章主要讨论动压轴承。 和滚动轴承相比,滑动轴承具有承载能力高、抗振性好,工作平稳可靠,噪声小,寿命长等优点,它广泛用于内燃机、轧钢机、大型电机及仪表、雷达、天文望远镜等方面。 在动压轴承中,随着工作条件和润滑性能的变化,其滑动表面间的摩擦状态亦有所不同。通常将其分为如下三种状态: 1、完全液体摩擦 完全液体摩擦状态(图8-1a)是指滑动轴承中相对滑动的两表面完全被润滑油膜所隔开,油膜有足够的厚度,消除了两摩擦表面的直接接触。此时,只存在液体分子之间的摩擦,故摩擦系数很小(f =0.001~0.008),显著地减少了摩擦和磨损。

2、边界摩擦 当滑动轴承的两相对滑动表面有润滑油存在时,由于润滑油与摩擦表面的吸附作用,将在摩擦表面上形成一层极薄的边界油膜(图8-1b),它能承受很高的压强而不破坏。边界油膜的厚度比一微米还小,不足以将两摩擦表面分隔开,所以,相对滑动时,两摩擦表面微观的尖峰相遇就会把油膜划破,形成局部的金属直接接触,故这种状态称为边界摩擦状态。一般而言,边界油膜可覆盖摩擦表面的大部分。虽它不能像完全液体摩擦完全消除两摩擦表面间的直接接触,却可起着减轻磨损的作用。这种状态的摩擦系数f =0.008~0.01。 3、干摩擦 两摩擦表面间没有任何物质时的摩擦称为干摩擦状态(图8-1c),在实际中,没有理想的干摩擦。因为任何金属表面上总存在各种氧化膜,很难出现纯粹的金属接触(除非在洁净的实验室,才有可能发生)。由于干摩擦状态,将产生大量的摩擦损耗和严重的磨损,故滑动轴承中不允许出现干摩擦状态,否则,将导致强烈的升温,把轴瓦烧毁。 完全液体摩擦是滑动轴承工作的最理想状况。对那些重要且高速旋转的机器,应确保轴承在完全液体摩擦状态下工作,这类轴承常称为液体摩擦滑动轴承。边界摩擦常与半液体摩擦状态、半干摩擦状态并存,通称为非液体摩擦状态。对那些在低速且有冲击条件下工作的不太重要的机器,可按非液体摩擦状态设计轴承,称为非液体摩擦滑动轴承。 § 2 滑动轴承的结构形式 一、向心滑动轴承的结构形式 1、剖分式 普通剖分式轴承结构(图8-2)由轴承盖、轴承座、剖分轴瓦和螺栓组成。轴瓦是直接和轴颈相接触的重要零件。为了安装时易对中,轴承盖和轴承座的剖分面常作出阶梯形的榫口。润滑油通过轴承盖上的油孔和轴瓦上的油沟流入轴承间隙润滑摩擦面。轴承剖分面最好与载荷方向近于垂直,以防剖分面位于承载区出现泄漏,降低承载能力。通常,多数轴承剖面为水平剖分,也称正剖分(图8-2a、8-2b),也有斜剖分的(图8-2c、8-2d)。

滑动轴承

滑动轴承 滑动轴承[huá dòng zhóu chéng] 滑动轴承(sliding bearing),在滑动摩擦下工作的轴承。滑动轴承工作平稳、可靠、无噪声。在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料 层称为轴承衬。轴瓦和轴承衬的材料统称为滑动轴承材料。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。常用的滑动轴承材料有轴承合金(又叫巴氏合金或白合金)、耐磨铸铁、铜基和铝基合金、粉末冶金材料、塑料、橡胶、硬木和碳-石墨,聚四氟乙烯(特氟龙、PTFE)、改性聚甲醛(POM)、等。滑动轴承(sliding bearing),在滑动摩擦下工作的轴承。滑动轴承工作平稳、可靠、无噪声。在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。轴瓦和轴承衬的材料统称为滑动

轴承材料。聚四氟乙烯(PTFE)、改性聚甲醛(POM)、等。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。[1]滑动轴承种类很多。滑动轴承①按能承受载荷的方向可分为径向(向心)滑动轴承和推力(轴向)滑动轴承两类。②按润滑剂种类可分为油润滑轴承、脂润滑轴承、水润滑轴承、气体轴承、固体润滑轴承、磁流体轴承和电磁轴承7类。③按润滑膜厚度可分为薄膜润滑轴承和厚膜润滑轴承两类。④按轴瓦材料可分为青铜轴承、铸铁轴承、塑料轴承、宝石轴承、粉末冶金轴承、自润滑轴承和含油轴承等。⑤按轴瓦结构可分为圆轴承、椭圆轴承、三油叶轴承、阶梯面轴承、可倾瓦轴承和箔轴承等。滑动轴承轴瓦分为剖分式和整体式结构。为了改善轴瓦表面的摩擦性质,常在其内径面上浇铸一层或两层减摩材料,通常称为轴承衬,所以轴瓦又有双金属轴瓦和三金属轴瓦。轴瓦或轴承衬是滑动轴承的重要零件,轴瓦和轴承衬的材料统称为轴承材料。由于轴瓦或轴承衬与轴颈直接接触,一般轴颈部分比较耐磨,因此轴瓦的主要失效形式是磨损。轴瓦的磨损与轴颈的材料、轴瓦自身材料、润滑剂和润滑状态直接相关,选择轴瓦材料应综合考虑这些因素,以提高滑动轴承的使用寿命和工作性能。轴承的材料有1)金属材料,如轴承合金、青铜、铝基合金、锌基合金等轴承合金:轴承合金又称白合金,主要是锡、铅、锑或其它金属的合金,由于其

什么是滑动轴承

什么是滑动轴承 轴承按轴承工作时的摩擦性质不同可分为:滑动轴承和滚动轴承。 利用轴和轴承用滑动运动而承受载荷的轴承叫滑动轴承。根据滑动轴承两个相对运动表面油膜形成原理的不同。可分为流体动压润滑轴承(也称动压轴承)和流体静压轴承(也称静压轴承)。一般讨论的是流体动压润滑轴承,它通过轴和轴承的相对运动把油带入两表面之间,形成足够的压力膜,将两表面隔开,从而承受载荷。 在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。轴瓦和轴承衬的材料统称为滑动轴承材料。常用的滑动轴承材料有轴承合金(又叫巴氏合金或白合金)、耐磨铸铁、铜基和铝基合金、粉末冶金材料、塑料、橡胶、硬木和碳-石墨,聚四氟乙烯(PTFE)、改性聚甲醛(POM)、等。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。

滑动轴承主要故障 滑动轴承在工作时由于轴颈与轴瓦的接触会产生摩擦,导致表面发热、磨损甚而“咬死”,所以在设计轴承时,应选用减摩性好的滑动轴承材料制造轴瓦,适的润滑剂并采用合适的供应方法,改善轴承的结构以获得厚膜润滑等。 1 、瓦面腐蚀:光谱分析发现有色金属元素浓度异常;谱中出现了许多有色金属成分的亚微米级磨损颗粒;润滑油水分超标、酸值超标。 2 、轴颈表面腐蚀:光谱分析发现铁元素浓度异常,铁谱中有许多铁成分的亚微米颗粒,润滑油水分超标或酸值超标。 3 、轴颈表面拉伤:铁谱中有铁系切削磨粒或黑色氧化物颗粒,金属表面存在回火色。 4、瓦背微动磨损:光谱分析发现铁浓度异常,铁谱中有许多铁成分亚微米磨损颗粒,润滑油水分及酸值异常。 5 、轴承表面拉伤:铁谱中发现有切削磨粒,磨粒成分为有色金属。 6 、瓦面剥落:铁谱中发现有许多大尺寸的疲劳剥落合金磨损颗粒、层状磨粒。 7 、轴承烧瓦:铁谱中有较多大尺寸的合金磨粒及黑色金属氧化物。 8、轴承磨损:由于轴的金属特性(硬度高,退让性差)等原因,易造成粘着磨损、磨料磨损、疲劳磨损、微动磨损等状况。

机械设计习题与答案22滑动轴承

二十二章滑动轴承习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措

施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(m in χψ-=d h B. )1(m in χψ+=d h C. 2/)1(m in χψ-=d h D. 2/)1(m in χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 。

滑动轴承的故障诊断分析 (DEMO)

滑动轴承的故障诊断分析 一、滑动轴承的分类及其特点 1、静压轴承 静压轴承的间隙只影响润滑油的流量,对承载能力影响不大,因此、静压轴承可以不必调整间隙,静压轴承在任何转速下都能保证液体润滑,所以理论上对轴颈与轴瓦的材料无要求。实际上为防止偶然事故造成供油中断,磨坏轴承轴承,轴颈仍用45#,轴瓦用青铜等。 2、动压轴承 动压滑动轴承必须在一定的转速下才能产生压力油膜。因此、不适用于低速或转速变化范围较大而下限转速过低的主轴。 轴承中只产生一个压力油膜的单油楔动压轴承,当载荷、转速等条件变化时,单油楔动压轴承的油膜厚度和位置也随着变化,使轴心线浮动,而降低了旋转精度和运动平稳性。 多油楔动压轴承一定的转速下,在轴颈周围能形成几个压力油楔,把轴颈推向中央,因而向心性好。 异常磨损:由于安装时轴线偏斜、负载偏载、轴承背钢与轴承座孔之间有硬质点和污物,轴或轴承座的刚性不良等原因,造成轴承表面严重损伤。其特征为:轴承承载不均、局部磨损大,表面温度升高,影响了油膜的形成,从而使轴承过早失效。 二、常见的滑动轴承故障 ●轴承巴氏合金碎裂及其原因 1.固体作用:油膜与轴颈碰摩引起的碰撞及摩擦,以及润滑油中所含杂质(磨粒)引起 的磨损。 2.液体作用:油膜压力的交变引起的疲劳破坏。 3.气体作用:润滑膜中含有气泡所引起的汽蚀破坏。 ●轴承巴氏合金烧蚀 轴承巴氏合金烧蚀是指由于某种原因造成轴颈与轴瓦发生摩擦,使轴瓦局部温度偏高,巴氏合金氧化变质,发生严重的转子热弯曲、热变形,甚至抱轴。 当发生轴承与轴颈碰摩时,其油膜就会被破坏。摩擦使轴瓦巴氏合金局部温度偏高,而导致巴氏合金烧蚀,由此引起的轴瓦和轴颈的热胀差,进一步加重轴瓦和轴颈的摩擦,形成恶性循环。

滑动轴承概述

轴承 轴承支承轴及轴上零件,保证轴的旋转精度。根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。而滚动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。对于初学者来讲,滚动轴承的类型选择;寿命计算;组合设计是比较难掌握。因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。 §11—1 滑动轴承概述 一、滑动轴承的类型 滑动轴承按其承受载荷的方向分为: (1)径向滑动轴承,它主要承受径向载荷。 (2)止推滑动轴承,它只承受轴向载荷。 滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。 (1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。因而摩擦系数很小,一般摩擦系数=0.001~0.008。由于始终能保持稳定的液体润滑状态。这种轴承适用于高速、高精度和重载等场合。 (2)非液体摩擦轴承(不完全液体润滑轴承) 非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开,有一部分表面直接接触。因而摩擦系数大,=0.05~0.5。如果润滑油完全流失,将会出现干摩擦。剧烈摩擦、磨损,甚至发生胶合破坏。 二、滑动轴承的特点 优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精 度高;(5)流体润滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力 缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。(2)流体摩擦滑动轴承在 起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。 §11—2 滑动轴承的结构和材料 一、径向滑动轴承 1.整体式滑动轴承 整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套内有油沟,分别用以加油和引油,进行润滑。这种轴承结构简单,价格低廉,但轴的装拆不方便,磨损后轴承的径向间隙无法调整。使用于轻载低速或间歇工作的场合。 2.对开式滑动轴承

滑动轴承简述

滑动轴承简述: 1、结构:滑动轴承主要由轴承座和轴承套(俗称轴瓦)两大部件组成;轴承座 用来储存冷却润滑油和支撑轴瓦;轴瓦为筒状,电机轴由中间通过,运转时轴与轴瓦间产生滑动并因相互磨擦产生热量。故轴瓦内孔有一层由锡铅铜等组成的金属合金(俗称巴氏合金),该合金耐磨性能好,不易与轴粘合,硬度相对电机轴较软,容许修刮,不易伤轴,容许使用温度一般在85℃左右。轴瓦与轴承座间一般采用球面支撑,轴瓦受力可以自动调节,使轴瓦面受力均匀。轴瓦与轴间的间隙可以根据要求通过两者的精加工实现,修配时也可以通过研刮轴瓦合金面及增减垫片来调节。为了便于装配,轴瓦为分瓣结构,分为上下两瓣。滑动轴承可以单独安装,也可以装在电机上。我公司中型电机是安装在电机端盖上,与电机组成一整体,故称为端盖式滑动轴承,这种结构便于现场安装调整。 2、使用:由于电机负荷全部由轴瓦承受,电机轴在轴瓦内高速旋转,故而在轴 瓦及轴之间需有一层润滑油膜,避免产生干磨擦,磨擦产生的热量也需该润滑油冷却。因此,滑动轴承使用时一般都需要一套冷却润滑装置,该装置俗称稀油站。稀油站主要由油箱、油泵、冷却器、电控系统等组成。冷却润滑油一般为32号或46号透平油。电机运行时,稀油站油泵把油供给电机轴承; 油从轴承上部进入轴瓦与轴的间隙,形成润滑油膜并对轴瓦进行冷却。冷却润滑后的油通过轴承座下部的回油管回到稀油站油箱,再经过过滤及冷却后经油泵输至电机轴承,形成连续循环。电机起动前,应事先开启稀油站对轴承进行供油;稀油站如有故障不能供油时,应及时切断主电源停止电机的运行,以免因轴瓦得不到冷却润滑而被烧坏,进一步影响电机。因此在稀油站或整个电机电控系统中,应有一套控制保护措施。 3、维护:滑动轴承的可靠性关键取决于供油系统的可靠性,除了在电控方面有 可靠的保护措施外,平常维护人员要经常进行巡视检查。轴瓦的巴氏合金硬度较低,在轻度损伤时,有经验的人可对其进行研刮修复,损伤严重时可重新浇注合金或更换轴瓦,更换比较简单、成本较低。轴瓦损伤时一般不会伤电机主轴。 4、费用:滑动轴承的制造成本比滚动轴承要高,但比进口的滚动轴承差不多。 滑动轴承的寿命比较长,轴承座是永久性的,轴瓦的寿命在5年以上,在轻度损时还可进行研刮修复,延长其寿命,却使需要更换成本也较低,更换操作也简单。 5、综述:滑动轴承一般用在中大型旋转机械上,国内有几十年成熟的制造技术 和使用经验,可靠性高、寿命长,维护成本较低。但首次投入成本稍高,维护比滚动轴承复杂。 滚动轴承综述: 滚动轴承的结构和使用这里不再介绍,主要由润滑脂润滑,自然散热冷却,维护简单,一般使用在中小型旋转机械上,较为常见,并且随着大直径轴承质量的不断提升,制造技术的不断成熟,滚动轴承使用在中大型旋转机械上是今后的一种趋势。滚动轴承的寿命理论上在5万小时以上,但实际因诸如轴承质量、装配精度、安装精度、润滑的好坏等因素的影响,一般在1.5~2万小时左右。滚动轴承的可靠性关键取决于轴承的质量,对安装的精度要求较高(包括在现场电机与负载的对中精度)。滚动轴承的更换,尤其是大直径的滚动轴承的更换比较麻

滑动轴承设计

滑动轴承的设计准则,是根据其工作方式及特点确定的。对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。 1.非流体润滑状态滑动轴承的设计准则 对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。此设计条件也可作为流体润滑轴承的初步设计计算条件。 (1)轴承承载面平均压强的设计计算 由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足: 其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。 对于径向轴承,一般只能承担径向载荷: 其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。DB是承载面在F方向上的投影面积。 推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承: 其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。 (2) 轴承摩擦热效应的限制性计算 滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。滑动轴承设计中,用限制 pv值的办法,控制其工作温升,其设计准则为: 其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。这样,上式也可写为: (3) 轴承最大滑动速度的条件性计算 非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。设计准则为: 其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。 (4) 滑动轴承的几何参数 滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示: 其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。滑动轴承设计时,ψ常在0.004~0.012范围取值。 滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。 2. 流体润滑状态滑动轴承的设计 流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。 (1) 滑动轴承形成流体动力润滑的条件 实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。 条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。 条件2:有充足的流体供给,且其具有一定的粘度;

液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算 流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。 (一)流体动力润滑的基本方程 流体动力润滑理论的基本方程是流体膜压力分布的微分方程。它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。 假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。 图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。现从层流运动的油膜中取一微单元体进行分析。 作用在此微单元体右面和左面的压力分别为p 及p p dx x ??? +???? ?, 作用在单元体上、下两面的切应力分别为τ及dy y τ τ???+????? 。根据x 方向的平衡条件,得: 整理后得 根据牛顿流体摩擦定律,得 ,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。 下面进一步介绍流体动力润滑理论的基本方程。 1.油层的速度分布 将上式改写成 (a)

对y 积分后得 (c) 根据边界条件决定积分常数C1及C2: 当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得: 代入(c)式后,即得 (d) 由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。 2、润滑油流量 当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为: 将式(d)代入式(e)并积分后,得 (f) 设在 p=p max处的油膜厚度为h0(即时 当润滑油连续流动时,各截面的流量相等,由此得 : 整理后得 该式为一维雷诺方程。它是计算流体动力润滑滑动轴承(简称流体动压轴承)的基本方程。可以看出,油膜压力的变化与润滑油的粘度、表面滑动速度和油膜厚度及其变化有关。经积分后可求出油膜的承载能力。由雷诺方程及图示的压力分布也可以看出,在h>h0段,速 度分布曲线呈凹形,,即压力沿x方向逐渐增大;而在h

最新第七部分滑动轴承设计

第七部分滑动轴承设计 1.考研重点和难点 【重点】非液体摩擦滑动轴承的设计计算; 【难点】形成液体摩擦的条件; §7.1滑动轴承的特点、类型及应用 滑动轴承的运动形式是以轴颈与轴瓦相对滑动为主要特征,也即摩擦性质为滑动摩擦。实践表明,由于滑动轴承的润滑条件不同,会出现不同的摩擦状态。轴承工作面的摩擦状态分为干摩擦状态、边界摩擦状态、混合摩擦状态和流体摩擦状态四类,如图所示。 两摩擦表面直接接触,相对滑动,又不加入任何润滑剂,称为干摩擦;两摩擦表面被流体(液体或气体)层完全隔开,摩擦性质仅取决于流体内部分子之间粘性阻力称为流体摩擦;两摩 图13-1 擦表面被吸附在表面的边界膜隔开,摩擦性质取决于边界膜和表面吸附性质的称为边界摩擦状态;实际上,干摩擦状态和边界摩擦状态很难精确区分,所以这两种摩擦状态也常常归并为边界摩擦状态。在实际应用中,轴承工作表面有时是边界摩擦和流体摩擦并存的混合状态,称为混合摩擦。边界摩擦和混合摩擦又长称为非液体摩擦。 所以,滑动轴承按其摩擦性质可以分为液体滑动摩擦轴承和非液体滑动摩擦轴承两类。 1)液体滑动摩擦轴承:由于在液体滑动轴承中,轴颈和轴承的工作表面被一层润滑油膜隔开,两零件之间没有直接接触,轴承的阻力只是润滑油分子之间的摩擦,所以摩擦系数很小,一般仅为0.001~0.008。这种轴承的寿命长、效率高,但是制造精度要求也高,并需要在一定的条件下才能实现液体摩擦。 2)非液体滑动摩擦轴承:非液体滑动摩擦轴承的轴颈与轴承工作表面之间虽有润滑油的存在,但在表面局部凸起部分仍发生金属的直接接触。因此摩擦系数较大,一般为0.1~0.3,容易磨损,但结构简单,对制造精度和工作条件的要求不高,故此在机械中得到广泛使用。 干摩擦的摩擦系数大,磨损严重,轴承工作寿命短。所以在滑动轴承中应力求避免。 所以,高速长期运行的轴承要求工作在液体摩擦状态下,一般工作条件下轴承则维持在边界摩擦或混合摩擦状态下工作。因此本章主要讨论非液体滑动摩擦轴承。

滑动轴承

习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措

施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(min χψ-=d h B. )1(min χψ+=d h C. 2/)1(min χψ-=d h D. 2/)1(min χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 。

典型的配合实例

典型的配合实例 为了便于在实际的设计中合理的确定其配合,下面举例说明某些配合在实际中的应用,以供参考。1. 间隙配合的选用 基准孔H与相应公差等级的轴a ~ h形成间隙配合,其中H/a组成的配合间隙最大,H/h的配合间隙最小,其最小间隙为零。 (1)H/a ,H/b , H/c 配合 这三种配合的间隙很大,不常使用,一般使用在工作条件较差,要求灵活动作的机械上,或用于受力变形大,轴在高温下工作需保证有较大间隙的场合,如起重机吊钩的铰链,带槽的法兰盘,内燃机的排气阀和导管。 (2) H/d , H/e 配合 这两种的配合间隙建达,用于要求不高,易于转动的支承。其中H/d适用于较松的转动配合,如密封盖,滑轮和空转带轮等与轴的配合,也适用于大直径滑动轴承的配合,如球磨机、轧钢机等重型机械的滑动轴承,适用于IT7 ~ 11级,例如滑轮和轴的配合。H/e适用于要求有明显间隙,易于转动的支承配合,如大跨度支承、多支点支承等配合。高等级的也适用于大的高速、重载的支承,如蜗轮发电机、大电动机的支承以及凸轮轴支承等。 (3)H/f 配合 这个配合的间隙多用于IT7~9级的一般转动配合,如齿轮箱、小电动机、泵等的转轴及滑动支承的配合。 (4)H/g配合 此种配合间隙很小,除了轻负荷的精密机构外,一般不用作转动配合,多用于IT5 ~ 7级,适合于作往复摆动和滑动的精密配合。有时也用于插销等定位配合,如精密连杆轴承、活塞及滑阀,以及精密机床的主轴于轴承分度头轴颈与轴的配合等。 (5)H/ h配合 这个配合的最小间隙为零,用于IT4~11级,适用于无相对转动而有定心和导向要求的定位配合,若无温度、变形影响,也适用于滑动配合。推荐配合H6/ h5,H8/ h7,H9/ h9,H11/ h11 ,如车床尾座顶尖套筒与尾座的配合。 2. 过渡配合的选用 基准孔H与相应的公差等级轴的基本偏差代号j~n,形成过渡配合,(n与高精度的H孔形成过盈配合)。(1)H/jH/ js 配合 这两种过渡配合获得间隙配合的机会较多,多用于IT4~7级,适用于要求间隙比h小,并允许略有过盈的定位配合,如联轴节,齿圈与钢制轮毂以及滚动轴承与箱体的配合等. (2)H/ k 配合 此种配合获得的平均间隙接近于零,定心较好,装备后,零件受到的接触应力较小,能够拆卸,适用于IT4~7级,如刚性联轴器配合。 (3)H/m,H/ n配合 这两种配合获得过盈的机会多,定心好,装配较紧,适用于IT4~7级,如蜗轮青铜轮缘与铸铁轮辐的配合。 3、过盈配合的选用 基准孔H与相应公差等级的轴p~zc过盈配合(p,r与较低精度的H孔形成过渡配合)。 (1)H/ p,H/ r配合 这两种配合在高公差等级时为过盈配合,可用捶打或压力机装配,只宜在大修时拆卸。它主要用于定心精度很高,零件有足够的刚性,受冲击负载的定位配合,多用于IT6~8级,如齿轮与衬套的配合,连杆小头孔与衬套的配合。 (2)H/ s,H/ t配合 这两种配合属于中等过盈配合,多采用IT6,IT7级,它用于钢铁件的永久或半永久结合,不用辅助件,

滑动轴承项目规划设计方案

滑动轴承项目规划设计方案 规划设计/投资方案/产业运营

摘要说明— 轴承是用于确定旋转轴与其他零件相对运动位置,起支承或导向作用 的零部件。轴承的主要功能是支承旋转轴或其它运动体,引导转动或移动 运动并承受由轴或轴上零件传递而来的载荷。根据轴承工作时的摩擦性质,可分为滑动轴承和滚动轴承两大类。滑动轴承与滚动轴承相比较,各有优 缺点,各有不同的适用场合。滚动轴承已实现标准化、系列化、通用化, 且适用范围广泛,但某些特殊的工况,如高速、重载、高精度等场合下, 通常只能配套使用滑动轴承,并且需要根据不同的工况进行定制化生产。 该滑动轴承项目计划总投资17091.80万元,其中:固定资产投资13645.03万元,占项目总投资的79.83%;流动资金3446.77万元,占项目 总投资的20.17%。 达产年营业收入27044.00万元,总成本费用20322.90万元,税金及 附加315.00万元,利润总额6721.10万元,利税总额7963.15万元,税后 净利润5040.83万元,达产年纳税总额2922.33万元;达产年投资利润率39.32%,投资利税率46.59%,投资回报率29.49%,全部投资回收期4.89年,提供就业职位424个。 报告内容:概述、背景和必要性研究、市场分析、建设规划、选址可 行性分析、土建工程研究、项目工艺原则、环境保护、清洁生产、项目安

全保护、风险应对说明、项目节能概况、实施方案、项目投资估算、项目盈利能力分析、项目综合评价结论等。 规划设计/投资分析/产业运营

滑动轴承项目规划设计方案目录 第一章概述 第二章背景和必要性研究 第三章建设规划 第四章选址可行性分析 第五章土建工程研究 第六章项目工艺原则 第七章环境保护、清洁生产第八章项目安全保护 第九章风险应对说明 第十章项目节能概况 第十一章实施方案 第十二章项目投资估算 第十三章项目盈利能力分析 第十四章招标方案 第十五章项目综合评价结论

滑动轴承教案

课题:滑动轴承 课型:理论讲授 教学目的:使学生会选用滑动轴承的结构和材料 教学要求:掌握非液体摩擦滑动轴承的设计。 重点:非液体摩擦滑动轴承 难点:形成液体摩擦的条件 教具:挂图,多媒体 教学方法与手段:图表分析,说明结论,实例讲解 实施步骤: 引入: 同学们,虽然滚动轴承有一系列优点,在一般机械中获得广泛的应用,但是在高速、高精度、重载、结构上要求剖分等场合下,滑动轴承则获得广泛使用。。 正题: 初步采用的方法:概念的理解,用举例法引入滑动轴承的概念。 滑动轴承的特点、类型及应用 滑动轴承按其摩擦性质可以分为液体滑动摩擦轴承和非液体滑动摩擦轴承两类 液体滑动摩擦轴承:由于在液体滑动轴承中,轴颈和轴承的工作表面被一层润滑油膜隔开,两零件之间没有直接接触,轴承的阻力只是润滑油分子之间的摩擦,所以摩擦系数很小,一般仅为0.001~0.008。这种轴承的寿命长、效率高,但是制造精度要求也高,并需要在一定的条件下才能实现液体摩擦。 非液体滑动摩擦轴承:非液体滑动摩擦轴承的轴颈与轴承工作表面之间虽有润滑油的存在,但在表面局部凸起部分仍发生金属的直接接触。因此摩擦系数较大,一般为0.1~0.3,容易磨损,但结构简单,对制造精度和工作条件的要求不高,故此在机械中得到广泛使用。 在机械中,虽然广泛采用滚动轴承,但在许多情况下又必须采用滑动轴承。这是因为滑动轴承有其独特的优点是滚动轴承不能代替的。滑动轴承的主要优点是: 1)结构简单,制造、加工、拆装方便; 2)具有良好的耐冲击性和良好的吸振性能,运转平稳,旋转精度高; 3)寿命长。 但是也有其缺点,主要有: 1)维护复杂,对润滑条件较高; 2)边界润滑轴承,摩擦损耗较大。因而在大型汽轮机、发电机、压缩机、轧钢机及高速磨床上多采用滑动轴承。此外,在低速而带有冲击载荷的机器中,如水泥搅拌器、滚筒清砂机、破碎机等冲压机械、农业机械中也多采用滑动轴承。 滑动轴承的结构 1、径向滑动轴承 常用的径向滑动轴承,我国已经制定了标准,通常情况下可以根据工作条件进行选用。径向滑板书板书 板书 板书板书板书板书

第九章滑动轴承设计

第二篇 第九章滑动轴承设计

第三章摩擦、磨损与润滑 §3-0 引言 §3-1 摩 擦 §3-2 磨 损 §3-3润滑 §3-4 流体动力润滑的基本原理

概述 用于支撑和约束旋转零件(转轴,心轴等)的装置通称为轴承。 一、按轴承工作时的摩擦性质不同,轴承可分为: 1.滑动轴承 2.滚动轴承。 二、按其承载方向的不同,轴承可分为: 1.径向轴承:承受径向载荷 2.推力轴承:承受轴向载荷 三、按相对运动的两表面间油膜形成原理的不同分类 1、流体动力润滑轴承(简称动压轴承) 2、流体静力润滑轴承(简称静压轴承)

?滑动轴承是一种工作在滑动摩擦状态下的轴承,其基本结构包括轴承座、轴套(瓦)和轴颈。滑动轴承具有一些独特的优点,主要应用于以下几种情况: ?工作转速特高的轴承 ?要求对轴的支承位置特别精确的轴承 ?特重型的轴承 ?承受巨大的冲击和振动载荷的轴承 ?装配要求做成剖分式的轴承(如曲轴的轴承) ?特殊条件下(如水或腐蚀性介质中)工作的轴承 ?在径向空间尺寸受到限制时,也常采用滑动轴承

?对轴承的基本要求: ①方向精度(置中,定向); ②运转灵便性; ③对温度变化的不敏感性; ④耐磨性; ⑤承载能力; ⑥成本; ⑦装配调整、维修是否方便。?按结构形式可分为: ①圆柱形滑动轴承; ②圆锥形滑动轴承; ③球形滑动轴承。

第一节圆柱形滑动轴承 圆柱性滑动轴承——轴颈与轴承的配合部分为圆柱形表面。它是轴承中应用最广的一种,圆柱形滑动轴承主要用来支承水平轴。 特点: ①接触面大,承载能力强,能承受冲击和振动; ②置中精度差,特别是磨损后,精度要更低; ③摩擦力矩大; ④对温度变化比较敏感。

滑动轴承材料

滑动轴承材料 本发明涉及一种无铅的滑动轴承材料,具有基于CuFe2P的基质。本发明还涉及一种滑动轴承符合材料,具有钢支撑层和由所述CuFe2P滑动轴承材料组成的支承层,还涉及一种基于CuFe2P的滑动元件。 基于铜的、特别是基于青铜基质的无铅的、烧结的滑动轴承材料由于与同类型的含铅的材料相比其良好的导热性以及高的耐磨损和耐腐蚀性而是已知的。这种材料的开发是基于这样的期望,即,替代含铅的滑动轴承材料,因为铅被归类于会污染环境的有害物质。铅在滑动轴承材料中具有固体润滑剂的功能。因此必须找到替代品用于固体润滑。另外,例如单级的青铜材料在混合摩擦条件下具有较高的Fressneigung。在这方面对一系列不同的组分在文献和实践中已经进行了研究并进入应用。 例如EP 0 962 541 A1记载了一种基于铜的滑动材料,其中由AlN、Al2O3、NiB、Fe2B、SiC、TiC、WC、Si3N4、Fe3P、Fe2P和/或Fe3B组成的微粒分散到由烧结的铜或烧结铜合金中。为了制造滑动材料将铜或铜合金与例如AlN微粒(Hv:1300;微粒直径例如为0.5μm)和Fe3P微粒(Hv:800;微粒直径例如为5μm)相混合并烧结混合物。在混合物中和在滑动材料中具有500-1000的中等硬度(Hv)的微粒(即Fe3P、Fe2P和/或Fe3B)的微粒的重量比例和平均微粒直径这样来选择,使得其大于具有1100或更多的高硬度的微粒(即AlN、Al2O3、NiB、Fe2B、SiC、TiC、WC和/或Si3N4)的重量比例和平均微粒直径。 在WO 2008/140100中记载了另一种基于铜基的滑动材料。这种滑动材料包括1.0-15%重量百分比的Sn、0.5-15%重量百分比的Bi和0.05-5%重量百分比的Ag,其中Ag和Bi存在于共晶状态。如果需要滑动材料可以包含1-10%重量百分比的平均颗粒直径为1.5-70μm的Fe3P、Fe2P、FeB、NiB和/或AlN微粒。 与此相反,CuFe2P目前为止主要用在电子工业(例如作为接触材料)中以及用作热交换材料。US 2009/0010797例如记载一种用于由Cu-Fe-P合金构成的电子构件的板件,所述合金含有0.01-3%重量百分比的Fe和0.01-0.3%重量百分比的P并具有专门的定向。CuFe2P被称为合适的铜合金。US 2006/0091792记载了用于由特殊的Cu-Fe-P合金构成的平面屏幕的溅射靶。 本发明的目的在于,提供一种滑动轴承材料,这种滑动轴承材料具有基于铜的材料的优点,并且在这种滑动轴承材料中可以放弃铅的使用。这种滑动轴承材料应具有良好的可加工性并避免轴承的Fressen。这种滑动轴承材料还应能良好地制造并良好地施加到常见的支撑层上。现在出人意料地发现,使用CuFe2P可以实现具有高导热性和良好的机械特性的滑动轴承。因此本发明还涉及CuFe2P用于滑动轴承或作为滑动轴承材料的应用。此外,本发明还涉及一种滑动轴承复合材料和一种包括所述滑动轴承复合材料的滑动轴承。 图1示出具有根据本发明的滑动轴承材料的轴承半瓦。 图2示出图1的轴承半瓦的放大的局部。 CuFe2P(CW107C;C19400)是一种铜合金,这种铜合金按DIN EN的规格包含2.1-2.6%重量百分比的Fe、0.05-0.2%重量百分比的Zn, 0.015-0.15%重量百分比的P、最高0.03%重量百分比的Pb和最高0.2%重量百分比的其他添加剂。适于本发明的目的的合金能够以商品名Wieland-K65够得并具有以下组成(Richtwerte):

滑动轴承的应用

滑动轴承的应用 1工作转速特高的情况 原因:因转速高,用滚动轴承,寿命将大大降低。 应用实例:汽轮机轴承 简介:汽轮机采用的轴承有推力轴承和支持轴承。支持轴承的重量和不平衡重量产生的离心力,并确定转子的径向位置,保证转子中心和汽缸中心一致,以保持转子与静止部分位置的径向间隙。推力轴承承受蒸汽作用在转子上的轴向推力,并确定转子的轴向位置,并保证通流部分动静间正确的轴向间隙。下为推力轴承: 1—球面座;2—挡油环;3—调节套筒;4—推力轴承瓦块安装环;5—反向推力瓦;6—正向推力瓦;7—出油挡油环;8—进油挡油环;9—拉弹簧 2特重型轴承; 原因:若采用滚动轴承,造价太高(需单件生产) 应用实例:支重轮轴承 简介:支重轮是履带式工程机械底盘四轮一带中的一种,它的主要作用是支撑着挖掘机与推土机的重量,让履带沿着轮子前进。支重轮的主要轮体、支重轮轴、轴套、密封圈、端盖等相关部件构成。

3对轴的支承位置特别精确的轴承; 原因:滑动轴承比滚动轴承影响精度的零件数要少,故可制造得更精确。 应用实例:精密机床的精密轴承 4承受巨大冲击和振动载荷的轴承; 原因:滑动轴承的轴瓦和轴颈间的支承面一般都较大,且有油层的缓冲和阻尼作用,所以显示出较滚动轴承更优越。 应用实例:颚式破碎机轴承 简介:鄂式破碎机的主轴承大多采用对开式滑动轴承,轴承内衬大多是由巴氏合金制成,这种轴承刮研技术要求较高,刮研不好或间隙调整不当,会导致研瓦或烧瓦事故。组装时,首先要把轴瓦、轴颈、集油器及润滑油管路清理干净。然后将主轴瓦、连杆瓦等组装完毕。安装三角带时,应使其比正常运转时略松一点。试车时,先开动油泵,并使供油量比正常运转时略大一些。

相关文档
最新文档