滑动轴承设计
机械设计第十二章滑动轴承

流体是连续的
一维雷诺方程
讨论 1)油膜压力沿 x 方向变化规律 由
• 对平行板 平行板间油膜压力沿 x 方向无 变化,等于入口处压力( )
( )成正比,因此限制 值也就是限制轴承的温升,
从而避免温度过高使润滑失效。对于连续运转轴承,通常
都应进行这项计算。
轴颈的转速,r/min
轴颈的圆周速度,m/s 轴承材料的 许用
3. 限制速度 :
值,见P280表12-2
当 过大,即使 和 值都在允许的范围内,轴
承也可能很快磨损,故还必须限制滑动速度。
。
油槽的 尺寸可 查相关 的手册
§12-5 滑动轴承润滑剂的选用
润滑目的:减小摩擦,降低磨损,冷却,防锈,防尘和吸振。 润滑剂分类:流体(液体为主),脂,固体。润滑油为常用。
一.润滑脂的选择
润滑脂是润滑油与金属皂的混合物,呈半固体形态
。其稠度大,不易流失,无冷却效果,物化稳定性差,
摩阻大,有缓冲、吸振作用、承载能力大,故只适合低
3)润滑油油性良好,与固 6)润滑油不可压缩。
体表面吸附牢固。 取截面x处的一个单元体分
移动板A 0
h
析,存在如下静力平衡条件:
静止板B y
化简后得: 考虑到假设 4)有: 于是: 积分得: 1.油层的速度分布
带入边界条件: 解得:
即:
移动板A 0
静止板B b y
h
2.润滑油的流量 假设:无侧漏,z方向尺寸无限大,则通过间隙高度为 的
层与层间靠内摩擦阻 力(粘性)带动前进 沿 方向按线性变化
油层间压力无变化,平行板间润滑油不产生压力
轴颈和轴瓦偏心时 两倾斜板的摩擦状况
机械设计课件 滑动轴承学习课件

偏心距:e OO
偏心率:
e e Rr
表示偏心程度0 1
最小油膜厚度:
hmin e r r (1 )(χ↑→hmin↓)
保证流体动力润滑:
hmin Rz1 Rz2 [hmin ]
S hmin 2 ~ 3 Rz1 Rz2
Rz1、Rz2— 轴颈、轴瓦表面微观不平度的十点高度,m
2. 剖分式轴承 剖分式轴承由轴承座、轴承盖、剖分轴瓦、轴承盖
螺柱等组成。
轴瓦是轴承直接和轴颈相接触的零件,常在轴瓦内表面 上贴附一层轴承衬。在轴瓦内壁不承担载荷的表面上开设油 沟,润滑油通过油孔和油沟流进轴承间隙。
R(球)
3.调心式滑动轴承
特点:轴瓦外表面做成球面形状,与轴承盖及轴承座的 球状内表面相配合,轴瓦可以自动调位以适应轴颈在轴弯 曲时所产生的偏斜。
X 0:
pdydz ( p p dx )dydz dxdz ( dy )dxdz 0
x
y
p
x y
由于:
u y
p x
2u y 2
二次积分
u
1
2
p x
y
2
C1y
C2
代入边界条件:y=0,u=v;y=h,u=0
流速方程:u v (h y ) 1 p (y h)y
h
2 x
pmax
盖
杯体 接头 油芯
20°
§5 非液体摩擦滑动轴承的计算
一、混合摩擦滑动轴承失效形式 胶合、磨损等 设计准则:至少保持在边界润滑状态, 即维持边界油膜不破裂。
计算方法:简化计算(条件性计算)
磨损
点蚀及金属剥落
二、向心轴承
1、限制轴承平均压强
p F p
机械设计-滑动轴承PPT课件精选全文

4.调心式径向滑动轴承(自位轴承)
特点:轴瓦能自动调整位置,以适应轴的偏斜。
注:调心式轴承必须成对使用。
当轴倾斜时,可保证轴颈与轴承配合表面接触良好,从而避免产生偏载。
主要用于轴的刚度较小,轴承宽度较大的场合。
滑动轴承的结构
观看动画
第7页/共54页
二、止推滑动轴承的结构
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
◆设计准则 :维持边界膜不破裂。
◆条件性计算内容:限制压强 p 、pv 值、滑动速度v不超过许用值
失效形式:
磨损胶合
第18页/共54页
§12-6 滑动轴承的条件性计算
一、径向滑动轴承的计算
已知条件:径向载荷F (N)、 轴颈转速n (r/mm)轴颈直径d (mm)
1.限制轴承的平均压强 p
2.工作平稳,噪音低;
3.结构简单,径向尺寸小。
第3页/共54页
§12-2 滑动轴承的主要结构形式
一、径向滑动轴承的结构
1.整体式径向滑动轴承
特点:结构简单,成本低廉。
应用:低速、轻载或间歇性工作的机器中
磨损后间隙无法调整;只能沿轴向装拆。
常用的滑动轴承已经标准化,可根据使用要求从有关手册中合理选用。
-考虑油槽使承载面积减小的系数,其值=0.85~0.95。
Z-止推环数。
滑动轴承的条件性计算
第21页/共54页
注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
2.限制 值
vm-止推环平均直径dm=(d2+d1)/2 处的圆周速度。
1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。
滑动轴承结构优化设计

1.请简述滑动轴承结构优化设计的主要目标及其实现方法。
2.在滑动轴承的使用过程中,可能会遇到油膜破裂的问题。请分析可能导致油膜破裂的原因,并提出相应的解决措施。
标准答案
第一部分单选题
1. A
2. B
3. C
4. B
5. D
6. D
7. D
8. A
9. C
A.轴承材料的选择
B.轴承表面粗糙度
C.润滑油粘度
D.轴承的热处理
3.以下哪些方法可以优化滑动轴承的散热性能?()
A.增大轴承间隙
B.增加轴承长度
C.优化轴承油槽设计
D.使用高热导率的轴承材料
4.滑动轴承的承载能力受以下哪些因素影响?()
A.轴承的尺寸
B.轴承材料
C.油膜厚度
D.载荷分布
5.在滑动轴承设计中,哪些因素会影响油膜的稳定性?()
A.轴承间隙
B.轴承的几何形状
C.润滑油粘度
D.载荷的波动
6.以下哪些措施可以减少滑动轴承的摩擦和磨损?()
A.提高轴承表面粗糙度
B.使用耐磨材料
C.增加润滑油粘度
D.减小轴承间隙
7.滑动轴承结构优化设计中,以下哪些因素与降低噪音和振动相关?()
A.轴承的材料
B.轴承的安装精度
C.油槽的设计
D.润滑油的粘度
B.润滑油粘度过低
C.轴承间隙过大
D.轴承材料不合适
11.在滑动轴承的结构优化中,以下哪些设计可以减少边缘效应?()
A.增大轴承直径
B.减小轴承长度
C.优化油槽设计
D.增加轴承间隙
12.以下哪些因素会影响滑动轴承的动态性能?()
滑动轴承的设计计算

概述
• 滑动轴承——与轴颈表面形成滑动摩擦副的轴承 • 组成、 特点及应用 • 不同类型、不同应用场合的滑动轴承,其重要程度和运转参数差异非常大,结构的复杂程
度和价格差异亦极大。因而,滑动轴承的设计计算,在要求和工作量方面也有很大的差 别。 • 滑动轴承设计计算内容 •
决定轴承的结构型式 ; 选择轴瓦、衬层和涂覆层材料; 确定轴承几何参数; 选择润滑剂和润滑方法; 计算轴承工作能力,确定轴承运转参数。
将对p、、v的限制画在对数坐标图上,构成一条折线。
这种计算方法称为条件性计算。
[p]、[v]和[]数据查阅相关表格。
滑动轴承的设计计算
液体动力润滑轴承的计算
滑动轴承的设计计算
液体动力润滑轴承是利用轴颈与轴瓦的相对速度和表面与油的粘附性能,将润滑油带入轴承间 隙,建立起压力油膜而把轴颈与轴瓦隔开的一种液体摩擦轴承。描述这种润滑状态的基本方程 是雷诺方程。从数学观点看,流体润滑计算的基本内容就是对雷诺方程的应用和求解。
由雷诺方程得出流体动力润滑轴承形成承载油膜的条件:
流体动力润滑轴承形成承载油膜的条件: •润滑剂要有粘度,且油膜承载能力随粘度提高而增大; •轴颈要有相对速度,且油膜承载能力随速度提高而增大; •油膜厚度是变量,且沿速度方向逐渐减小方能形成正油膜 •压力,即需要轴颈和轴瓦表面形成收敛形间隙,称为油楔;
p F [p] Bd
推力轴承
pZ(d402Fdi2)[p]
2.限制轴承滑动速度v (防止高温下过快磨损 )
径向轴承 推力轴承
v=πdn≤[v] v=π(do+di)n/2≤[v]
滑动轴承的设计计算
3.限制轴承的值(限制轴承发热量)
径向轴承 推力轴承
机械设计滑动轴承

3)铝基合金 —— 耐腐蚀性好,疲劳强度较高摩擦性较好 4)灰铸铁及耐磨铸铁 —— 具有减磨性、耐磨性,性脆、磨合性差, 轻载、低速 5)多孔质金属材料 —— 不同金属粉末压制、烧结而成 —— 吸油 (自润滑性)——含油轴承 韧性小,平稳、无冲击 中低速 6)非金属材料 塑料、碳— 石墨、橡胶、木材等
p 6ηV = 3 (h h0 ) x h
A< 0
不能承载
4、形成流体动力润滑的必要条件 1)两运动表面间具有楔形间隙; 2)两表面应有相对速度,速度的方向是将油 由大口带向小口; 3)润滑油应有一定的粘度,且要充分
二、径向滑动轴承形成流体动力润滑的过程 F F F n n
n=0
n≈0 Ff与 n反相
4、润滑油的粘-温特性
粘 -温 曲 线
5、零件润滑方法 旋 套 式
油 环 润 滑
油 芯 油 杯 旋 盖 式 油 脂 杯
针 阀 油 杯
§2 滑动轴承类型、轴瓦结构及材料
一、 滑动轴承类型
承载形式: 径向轴承(承受径向载荷)
止推轴承(承受轴向载荷)
滑 动 轴 承
润滑状态:不完全液体润滑轴承(不许干摩擦)
2、失效形式与设计准则 失效形式: 承载油膜破裂。 设计准则: 保证液体润滑,hmin≥[h] 同时,因Δt↑→η↓→油膜破裂:限制Δt 3、承载能力计算 推导思路 1)将直角坐标系的雷诺方程转换极坐标系 2)求任意位置的油膜压力 3)pφ 在 F 方向上的分量 pφy 4)求单位宽度上的油膜承载能力 5)考虑轴承端泄,进行修正 承载能力
y
η——动力粘度 y 长、宽、高各1米的液体,上下板相对滑动速度 1 m/s ,需要的切向力为 1 N 时,即 η=1 Ns/m2 (1Pa s — 帕 秒) 动力粘度国际制单位(SI):
滑动轴承设计参数与计算方法

第三章滑动轴承设计参数与计算方法!"#滑动轴承的类型、特性与选用滑动轴承的种类繁多,分类方法亦繁多,按润滑原理不同,将其分为:无润滑轴承、粉末冶金含油轴承、动压轴承和静压轴承。
以粉末冶金含油轴承代表处于混合润滑状态下的轴承;无润滑轴承亦代表固体润滑轴承。
!"#"#滑动轴承的性能比较(表$%!%#)表$%!%#滑动轴承的性能比较轴承型式无润滑轴承粉末冶金含油轴承动压轴承静压轴承轴承性能承载能力!!高温适应性好,可以在材料的温度极限以下运转差,受润滑剂氧化的限制一般,可以在润滑剂温度极限以下运转低温适应性优一般好,摩擦阻力大真空适应性优好,需要专用润滑剂一般,需专用润滑剂差潮湿适应性好,轴须耐腐蚀好尘埃适应性好,需注意密封必须密封好,需密封和过滤装置好抗振性一般好旋转精度差好优摩擦阻力大较大小最小噪声一般小最小润滑装置最简单简单复杂程度差异较大复杂w w w.bz f x w.c om!"#"$滑动轴承的承载能力与极限转速几种主要滑动轴承的极限承载能力和极限转速曲线见图!"#"$和图!"#"%。
可供选择滑动轴承类型时参考。
对动压轴承,按中等粘度润滑油进行计算;对无润滑轴承和混合润滑轴承,按磨损寿命为$&’(计算;对静压轴承,理论上在材料强度允许图%&!&#径向轴承的极限载荷与转速""""无润滑轴承—·—液体动压轴承—··—粉末冶金含油轴承—滚动轴承图%&!&$推力轴承的极限载荷与转速""""无润滑轴承—·—液体动压轴承—··—粉末冶金含油轴承—滚动轴承w w w.bz f x w.c om的载荷和转速范围内均可应用。
为了便于比较,还将疲劳寿命为!"#$的滚动轴承的极限承载能力和极限转速曲线画出。
《机械设计基础》4版 教学资源 教材习题解答 滑动轴承设计

习题与参考答案一、复习思考题1 设计液体动力润滑滑动轴承时,为保证轴承正常工作,应满足哪些条件?2 试述径向动压滑动轴承油膜的形成过程。
3 就液体动力润滑的一维雷诺方程30)(6h h h v x p-=∂∂η,说明形成液体动力润滑的必要条件。
4 液体动力润滑滑动轴承的相对间隙ψ的大小,对滑动轴承的承载能力、温升和运转精度有何影响?5 有一液体动力润滑单油楔滑动轴承、在两种外载荷下工作时,其偏心率分别为6.01=χ、8.02=χ,试分析哪种情况下轴承承受的外载荷大。
为提高该轴承的承载能力,有哪些措施可供考虑?(假定轴颈直径和转速不允许改变。
)6 不完全液体润滑滑动轴承需进行哪些计算?各有何含义?7 为了保证滑动轴承获得较高的承载能力,油沟应做在什么位置?8 何谓轴承承载量系数C p ?C p 值大是否说明轴承所能承受的载荷也越大?9 滑动轴承的摩擦状态有哪几种?它们的主要区别如何? 10 滑动轴承的主要失效形式有哪些?11 相对间隙ψ对轴承承载能力有何影响?在设计时,若算出的h min 过小或温升过高时,应如何调整ψ值?12 在设计液体动力润滑径向滑动轴承时,在其最小油膜厚度h min 不够可靠的情况下,如何调整参数来进行设计?二、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 。
A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的几种情况下,可能形成流体动力润滑的有 。
3 巴氏合金是用来制造 。
A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。
A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。
A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑动轴承的设计准则,是根据其工作方式及特点确定的。
对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。
1.非流体润滑状态滑动轴承的设计准则
对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。
此设计条件也可作为流体润滑轴承的初步设计计算条件。
(1)轴承承载面平均压强的设计计算
由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足:
其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。
对于径向轴承,一般只能承担径向载荷:
其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。
DB是承载面在F方向上的投影面积。
推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承:
其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。
(2) 轴承摩擦热效应的限制性计算
滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。
滑动轴承设计中,用限制
pv值的办法,控制其工作温升,其设计准则为:
其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。
其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。
这样,上式也可写为:
(3) 轴承最大滑动速度的条件性计算
非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。
设计准则为:
其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。
(4) 滑动轴承的几何参数
滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示:
其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。
轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。
滑动轴承设计时,ψ常在0.004~0.012范围取值。
滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。
径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。
2. 流体润滑状态滑动轴承的设计
流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。
(1) 滑动轴承形成流体动力润滑的条件
实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。
通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。
条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。
条件2:有充足的流体供给,且其具有一定的粘度;
条件3:相对运动表面间的最小间距,即最小流体膜厚度hmm,大于两表面不平度之和,使滑动表面间不发生直接接触。
(2) 流体动压润滑轴承承载流体膜的力学特征
流体动压润滑轴承依赖承载区流体膜承载,承载区流体在相对运动表面间形成压力,如上所述,该压力分布与间隙形状,流体物化性质及轴承表面的运动状态和几何特征有关。
滑动轴承要正常工作,必须具备一定的承载能力,较小的摩擦功耗以控制温升,并需按流量要求供给流体,而这些设计参数均取决于在给定工况下,承载膜内流体的力学表现。