滑动轴承设计规范

滑动轴承设计规范
滑动轴承设计规范

滑动轴承设计规范

《滑动轴承的设计》word文档

滑动轴承的设计 § 1 滑动轴承概述 用于支撑旋转零件(转轴,心轴等)的装置通称为轴承。 按其承载方向的不同,轴承可分为: 径向轴承Radial bearing:轴承上的反作用力与轴心线垂直的轴承称为径向轴承; 推力轴承Thrust bearing:轴承上的反作用力与轴心线方向一致的轴承称为推力轴承。 按轴承工作时的摩擦性质不同,轴承可分为:滑动轴承和滚动轴承。 滑动轴承,根据其相对运动的两表面间油膜形成原理的不同,还可分为:流体动力润滑轴承(简称动压轴承)(Hydrodynamic lubrication) 流体静力润滑轴承(简称静压轴承)(Hydrostatic lubrication)。本章主要讨论动压轴承。 和滚动轴承相比,滑动轴承具有承载能力高、抗振性好,工作平稳可靠,噪声小,寿命长等优点,它广泛用于内燃机、轧钢机、大型电机及仪表、雷达、天文望远镜等方面。 在动压轴承中,随着工作条件和润滑性能的变化,其滑动表面间的摩擦状态亦有所不同。通常将其分为如下三种状态: 1、完全液体摩擦 完全液体摩擦状态(图8-1a)是指滑动轴承中相对滑动的两表面完全被润滑油膜所隔开,油膜有足够的厚度,消除了两摩擦表面的直接接触。此时,只存在液体分子之间的摩擦,故摩擦系数很小(f =0.001~0.008),显著地减少了摩擦和磨损。

2、边界摩擦 当滑动轴承的两相对滑动表面有润滑油存在时,由于润滑油与摩擦表面的吸附作用,将在摩擦表面上形成一层极薄的边界油膜(图8-1b),它能承受很高的压强而不破坏。边界油膜的厚度比一微米还小,不足以将两摩擦表面分隔开,所以,相对滑动时,两摩擦表面微观的尖峰相遇就会把油膜划破,形成局部的金属直接接触,故这种状态称为边界摩擦状态。一般而言,边界油膜可覆盖摩擦表面的大部分。虽它不能像完全液体摩擦完全消除两摩擦表面间的直接接触,却可起着减轻磨损的作用。这种状态的摩擦系数f =0.008~0.01。 3、干摩擦 两摩擦表面间没有任何物质时的摩擦称为干摩擦状态(图8-1c),在实际中,没有理想的干摩擦。因为任何金属表面上总存在各种氧化膜,很难出现纯粹的金属接触(除非在洁净的实验室,才有可能发生)。由于干摩擦状态,将产生大量的摩擦损耗和严重的磨损,故滑动轴承中不允许出现干摩擦状态,否则,将导致强烈的升温,把轴瓦烧毁。 完全液体摩擦是滑动轴承工作的最理想状况。对那些重要且高速旋转的机器,应确保轴承在完全液体摩擦状态下工作,这类轴承常称为液体摩擦滑动轴承。边界摩擦常与半液体摩擦状态、半干摩擦状态并存,通称为非液体摩擦状态。对那些在低速且有冲击条件下工作的不太重要的机器,可按非液体摩擦状态设计轴承,称为非液体摩擦滑动轴承。 § 2 滑动轴承的结构形式 一、向心滑动轴承的结构形式 1、剖分式 普通剖分式轴承结构(图8-2)由轴承盖、轴承座、剖分轴瓦和螺栓组成。轴瓦是直接和轴颈相接触的重要零件。为了安装时易对中,轴承盖和轴承座的剖分面常作出阶梯形的榫口。润滑油通过轴承盖上的油孔和轴瓦上的油沟流入轴承间隙润滑摩擦面。轴承剖分面最好与载荷方向近于垂直,以防剖分面位于承载区出现泄漏,降低承载能力。通常,多数轴承剖面为水平剖分,也称正剖分(图8-2a、8-2b),也有斜剖分的(图8-2c、8-2d)。

机械设计习题与答案22滑动轴承

二十二章滑动轴承习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措

施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(m in χψ-=d h B. )1(m in χψ+=d h C. 2/)1(m in χψ-=d h D. 2/)1(m in χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 。

滑动轴承的故障诊断分析 (DEMO)

滑动轴承的故障诊断分析 一、滑动轴承的分类及其特点 1、静压轴承 静压轴承的间隙只影响润滑油的流量,对承载能力影响不大,因此、静压轴承可以不必调整间隙,静压轴承在任何转速下都能保证液体润滑,所以理论上对轴颈与轴瓦的材料无要求。实际上为防止偶然事故造成供油中断,磨坏轴承轴承,轴颈仍用45#,轴瓦用青铜等。 2、动压轴承 动压滑动轴承必须在一定的转速下才能产生压力油膜。因此、不适用于低速或转速变化范围较大而下限转速过低的主轴。 轴承中只产生一个压力油膜的单油楔动压轴承,当载荷、转速等条件变化时,单油楔动压轴承的油膜厚度和位置也随着变化,使轴心线浮动,而降低了旋转精度和运动平稳性。 多油楔动压轴承一定的转速下,在轴颈周围能形成几个压力油楔,把轴颈推向中央,因而向心性好。 异常磨损:由于安装时轴线偏斜、负载偏载、轴承背钢与轴承座孔之间有硬质点和污物,轴或轴承座的刚性不良等原因,造成轴承表面严重损伤。其特征为:轴承承载不均、局部磨损大,表面温度升高,影响了油膜的形成,从而使轴承过早失效。 二、常见的滑动轴承故障 ●轴承巴氏合金碎裂及其原因 1.固体作用:油膜与轴颈碰摩引起的碰撞及摩擦,以及润滑油中所含杂质(磨粒)引起 的磨损。 2.液体作用:油膜压力的交变引起的疲劳破坏。 3.气体作用:润滑膜中含有气泡所引起的汽蚀破坏。 ●轴承巴氏合金烧蚀 轴承巴氏合金烧蚀是指由于某种原因造成轴颈与轴瓦发生摩擦,使轴瓦局部温度偏高,巴氏合金氧化变质,发生严重的转子热弯曲、热变形,甚至抱轴。 当发生轴承与轴颈碰摩时,其油膜就会被破坏。摩擦使轴瓦巴氏合金局部温度偏高,而导致巴氏合金烧蚀,由此引起的轴瓦和轴颈的热胀差,进一步加重轴瓦和轴颈的摩擦,形成恶性循环。

滑动轴承设计

滑动轴承的设计准则,是根据其工作方式及特点确定的。对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。 1.非流体润滑状态滑动轴承的设计准则 对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。此设计条件也可作为流体润滑轴承的初步设计计算条件。 (1)轴承承载面平均压强的设计计算 由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足: 其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。 对于径向轴承,一般只能承担径向载荷: 其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。DB是承载面在F方向上的投影面积。 推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承: 其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。 (2) 轴承摩擦热效应的限制性计算 滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。滑动轴承设计中,用限制 pv值的办法,控制其工作温升,其设计准则为: 其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。这样,上式也可写为: (3) 轴承最大滑动速度的条件性计算 非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。设计准则为: 其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。 (4) 滑动轴承的几何参数 滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示: 其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。滑动轴承设计时,ψ常在0.004~0.012范围取值。 滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。 2. 流体润滑状态滑动轴承的设计 流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。 (1) 滑动轴承形成流体动力润滑的条件 实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。 条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。 条件2:有充足的流体供给,且其具有一定的粘度;

液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算 流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。 (一)流体动力润滑的基本方程 流体动力润滑理论的基本方程是流体膜压力分布的微分方程。它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。 假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。 图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。现从层流运动的油膜中取一微单元体进行分析。 作用在此微单元体右面和左面的压力分别为p 及p p dx x ??? +???? ?, 作用在单元体上、下两面的切应力分别为τ及dy y τ τ???+????? 。根据x 方向的平衡条件,得: 整理后得 根据牛顿流体摩擦定律,得 ,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。 下面进一步介绍流体动力润滑理论的基本方程。 1.油层的速度分布 将上式改写成 (a)

对y 积分后得 (c) 根据边界条件决定积分常数C1及C2: 当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得: 代入(c)式后,即得 (d) 由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。 2、润滑油流量 当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为: 将式(d)代入式(e)并积分后,得 (f) 设在 p=p max处的油膜厚度为h0(即时 当润滑油连续流动时,各截面的流量相等,由此得 : 整理后得 该式为一维雷诺方程。它是计算流体动力润滑滑动轴承(简称流体动压轴承)的基本方程。可以看出,油膜压力的变化与润滑油的粘度、表面滑动速度和油膜厚度及其变化有关。经积分后可求出油膜的承载能力。由雷诺方程及图示的压力分布也可以看出,在h>h0段,速 度分布曲线呈凹形,,即压力沿x方向逐渐增大;而在h

最新第七部分滑动轴承设计

第七部分滑动轴承设计 1.考研重点和难点 【重点】非液体摩擦滑动轴承的设计计算; 【难点】形成液体摩擦的条件; §7.1滑动轴承的特点、类型及应用 滑动轴承的运动形式是以轴颈与轴瓦相对滑动为主要特征,也即摩擦性质为滑动摩擦。实践表明,由于滑动轴承的润滑条件不同,会出现不同的摩擦状态。轴承工作面的摩擦状态分为干摩擦状态、边界摩擦状态、混合摩擦状态和流体摩擦状态四类,如图所示。 两摩擦表面直接接触,相对滑动,又不加入任何润滑剂,称为干摩擦;两摩擦表面被流体(液体或气体)层完全隔开,摩擦性质仅取决于流体内部分子之间粘性阻力称为流体摩擦;两摩 图13-1 擦表面被吸附在表面的边界膜隔开,摩擦性质取决于边界膜和表面吸附性质的称为边界摩擦状态;实际上,干摩擦状态和边界摩擦状态很难精确区分,所以这两种摩擦状态也常常归并为边界摩擦状态。在实际应用中,轴承工作表面有时是边界摩擦和流体摩擦并存的混合状态,称为混合摩擦。边界摩擦和混合摩擦又长称为非液体摩擦。 所以,滑动轴承按其摩擦性质可以分为液体滑动摩擦轴承和非液体滑动摩擦轴承两类。 1)液体滑动摩擦轴承:由于在液体滑动轴承中,轴颈和轴承的工作表面被一层润滑油膜隔开,两零件之间没有直接接触,轴承的阻力只是润滑油分子之间的摩擦,所以摩擦系数很小,一般仅为0.001~0.008。这种轴承的寿命长、效率高,但是制造精度要求也高,并需要在一定的条件下才能实现液体摩擦。 2)非液体滑动摩擦轴承:非液体滑动摩擦轴承的轴颈与轴承工作表面之间虽有润滑油的存在,但在表面局部凸起部分仍发生金属的直接接触。因此摩擦系数较大,一般为0.1~0.3,容易磨损,但结构简单,对制造精度和工作条件的要求不高,故此在机械中得到广泛使用。 干摩擦的摩擦系数大,磨损严重,轴承工作寿命短。所以在滑动轴承中应力求避免。 所以,高速长期运行的轴承要求工作在液体摩擦状态下,一般工作条件下轴承则维持在边界摩擦或混合摩擦状态下工作。因此本章主要讨论非液体滑动摩擦轴承。

典型的配合实例

典型的配合实例 为了便于在实际的设计中合理的确定其配合,下面举例说明某些配合在实际中的应用,以供参考。1. 间隙配合的选用 基准孔H与相应公差等级的轴a ~ h形成间隙配合,其中H/a组成的配合间隙最大,H/h的配合间隙最小,其最小间隙为零。 (1)H/a ,H/b , H/c 配合 这三种配合的间隙很大,不常使用,一般使用在工作条件较差,要求灵活动作的机械上,或用于受力变形大,轴在高温下工作需保证有较大间隙的场合,如起重机吊钩的铰链,带槽的法兰盘,内燃机的排气阀和导管。 (2) H/d , H/e 配合 这两种的配合间隙建达,用于要求不高,易于转动的支承。其中H/d适用于较松的转动配合,如密封盖,滑轮和空转带轮等与轴的配合,也适用于大直径滑动轴承的配合,如球磨机、轧钢机等重型机械的滑动轴承,适用于IT7 ~ 11级,例如滑轮和轴的配合。H/e适用于要求有明显间隙,易于转动的支承配合,如大跨度支承、多支点支承等配合。高等级的也适用于大的高速、重载的支承,如蜗轮发电机、大电动机的支承以及凸轮轴支承等。 (3)H/f 配合 这个配合的间隙多用于IT7~9级的一般转动配合,如齿轮箱、小电动机、泵等的转轴及滑动支承的配合。 (4)H/g配合 此种配合间隙很小,除了轻负荷的精密机构外,一般不用作转动配合,多用于IT5 ~ 7级,适合于作往复摆动和滑动的精密配合。有时也用于插销等定位配合,如精密连杆轴承、活塞及滑阀,以及精密机床的主轴于轴承分度头轴颈与轴的配合等。 (5)H/ h配合 这个配合的最小间隙为零,用于IT4~11级,适用于无相对转动而有定心和导向要求的定位配合,若无温度、变形影响,也适用于滑动配合。推荐配合H6/ h5,H8/ h7,H9/ h9,H11/ h11 ,如车床尾座顶尖套筒与尾座的配合。 2. 过渡配合的选用 基准孔H与相应的公差等级轴的基本偏差代号j~n,形成过渡配合,(n与高精度的H孔形成过盈配合)。(1)H/jH/ js 配合 这两种过渡配合获得间隙配合的机会较多,多用于IT4~7级,适用于要求间隙比h小,并允许略有过盈的定位配合,如联轴节,齿圈与钢制轮毂以及滚动轴承与箱体的配合等. (2)H/ k 配合 此种配合获得的平均间隙接近于零,定心较好,装备后,零件受到的接触应力较小,能够拆卸,适用于IT4~7级,如刚性联轴器配合。 (3)H/m,H/ n配合 这两种配合获得过盈的机会多,定心好,装配较紧,适用于IT4~7级,如蜗轮青铜轮缘与铸铁轮辐的配合。 3、过盈配合的选用 基准孔H与相应公差等级的轴p~zc过盈配合(p,r与较低精度的H孔形成过渡配合)。 (1)H/ p,H/ r配合 这两种配合在高公差等级时为过盈配合,可用捶打或压力机装配,只宜在大修时拆卸。它主要用于定心精度很高,零件有足够的刚性,受冲击负载的定位配合,多用于IT6~8级,如齿轮与衬套的配合,连杆小头孔与衬套的配合。 (2)H/ s,H/ t配合 这两种配合属于中等过盈配合,多采用IT6,IT7级,它用于钢铁件的永久或半永久结合,不用辅助件,

滑动轴承项目规划设计方案

滑动轴承项目规划设计方案 规划设计/投资方案/产业运营

摘要说明— 轴承是用于确定旋转轴与其他零件相对运动位置,起支承或导向作用 的零部件。轴承的主要功能是支承旋转轴或其它运动体,引导转动或移动 运动并承受由轴或轴上零件传递而来的载荷。根据轴承工作时的摩擦性质,可分为滑动轴承和滚动轴承两大类。滑动轴承与滚动轴承相比较,各有优 缺点,各有不同的适用场合。滚动轴承已实现标准化、系列化、通用化, 且适用范围广泛,但某些特殊的工况,如高速、重载、高精度等场合下, 通常只能配套使用滑动轴承,并且需要根据不同的工况进行定制化生产。 该滑动轴承项目计划总投资17091.80万元,其中:固定资产投资13645.03万元,占项目总投资的79.83%;流动资金3446.77万元,占项目 总投资的20.17%。 达产年营业收入27044.00万元,总成本费用20322.90万元,税金及 附加315.00万元,利润总额6721.10万元,利税总额7963.15万元,税后 净利润5040.83万元,达产年纳税总额2922.33万元;达产年投资利润率39.32%,投资利税率46.59%,投资回报率29.49%,全部投资回收期4.89年,提供就业职位424个。 报告内容:概述、背景和必要性研究、市场分析、建设规划、选址可 行性分析、土建工程研究、项目工艺原则、环境保护、清洁生产、项目安

全保护、风险应对说明、项目节能概况、实施方案、项目投资估算、项目盈利能力分析、项目综合评价结论等。 规划设计/投资分析/产业运营

滑动轴承项目规划设计方案目录 第一章概述 第二章背景和必要性研究 第三章建设规划 第四章选址可行性分析 第五章土建工程研究 第六章项目工艺原则 第七章环境保护、清洁生产第八章项目安全保护 第九章风险应对说明 第十章项目节能概况 第十一章实施方案 第十二章项目投资估算 第十三章项目盈利能力分析 第十四章招标方案 第十五章项目综合评价结论

第九章滑动轴承设计

第二篇 第九章滑动轴承设计

第三章摩擦、磨损与润滑 §3-0 引言 §3-1 摩 擦 §3-2 磨 损 §3-3润滑 §3-4 流体动力润滑的基本原理

概述 用于支撑和约束旋转零件(转轴,心轴等)的装置通称为轴承。 一、按轴承工作时的摩擦性质不同,轴承可分为: 1.滑动轴承 2.滚动轴承。 二、按其承载方向的不同,轴承可分为: 1.径向轴承:承受径向载荷 2.推力轴承:承受轴向载荷 三、按相对运动的两表面间油膜形成原理的不同分类 1、流体动力润滑轴承(简称动压轴承) 2、流体静力润滑轴承(简称静压轴承)

?滑动轴承是一种工作在滑动摩擦状态下的轴承,其基本结构包括轴承座、轴套(瓦)和轴颈。滑动轴承具有一些独特的优点,主要应用于以下几种情况: ?工作转速特高的轴承 ?要求对轴的支承位置特别精确的轴承 ?特重型的轴承 ?承受巨大的冲击和振动载荷的轴承 ?装配要求做成剖分式的轴承(如曲轴的轴承) ?特殊条件下(如水或腐蚀性介质中)工作的轴承 ?在径向空间尺寸受到限制时,也常采用滑动轴承

?对轴承的基本要求: ①方向精度(置中,定向); ②运转灵便性; ③对温度变化的不敏感性; ④耐磨性; ⑤承载能力; ⑥成本; ⑦装配调整、维修是否方便。?按结构形式可分为: ①圆柱形滑动轴承; ②圆锥形滑动轴承; ③球形滑动轴承。

第一节圆柱形滑动轴承 圆柱性滑动轴承——轴颈与轴承的配合部分为圆柱形表面。它是轴承中应用最广的一种,圆柱形滑动轴承主要用来支承水平轴。 特点: ①接触面大,承载能力强,能承受冲击和振动; ②置中精度差,特别是磨损后,精度要更低; ③摩擦力矩大; ④对温度变化比较敏感。

滑动轴承的应用

滑动轴承的应用 1工作转速特高的情况 原因:因转速高,用滚动轴承,寿命将大大降低。 应用实例:汽轮机轴承 简介:汽轮机采用的轴承有推力轴承和支持轴承。支持轴承的重量和不平衡重量产生的离心力,并确定转子的径向位置,保证转子中心和汽缸中心一致,以保持转子与静止部分位置的径向间隙。推力轴承承受蒸汽作用在转子上的轴向推力,并确定转子的轴向位置,并保证通流部分动静间正确的轴向间隙。下为推力轴承: 1—球面座;2—挡油环;3—调节套筒;4—推力轴承瓦块安装环;5—反向推力瓦;6—正向推力瓦;7—出油挡油环;8—进油挡油环;9—拉弹簧 2特重型轴承; 原因:若采用滚动轴承,造价太高(需单件生产) 应用实例:支重轮轴承 简介:支重轮是履带式工程机械底盘四轮一带中的一种,它的主要作用是支撑着挖掘机与推土机的重量,让履带沿着轮子前进。支重轮的主要轮体、支重轮轴、轴套、密封圈、端盖等相关部件构成。

3对轴的支承位置特别精确的轴承; 原因:滑动轴承比滚动轴承影响精度的零件数要少,故可制造得更精确。 应用实例:精密机床的精密轴承 4承受巨大冲击和振动载荷的轴承; 原因:滑动轴承的轴瓦和轴颈间的支承面一般都较大,且有油层的缓冲和阻尼作用,所以显示出较滚动轴承更优越。 应用实例:颚式破碎机轴承 简介:鄂式破碎机的主轴承大多采用对开式滑动轴承,轴承内衬大多是由巴氏合金制成,这种轴承刮研技术要求较高,刮研不好或间隙调整不当,会导致研瓦或烧瓦事故。组装时,首先要把轴瓦、轴颈、集油器及润滑油管路清理干净。然后将主轴瓦、连杆瓦等组装完毕。安装三角带时,应使其比正常运转时略松一点。试车时,先开动油泵,并使供油量比正常运转时略大一些。

滑动轴承设计

滑动轴承 1 概述 1.1滑动轴承的分类 滑动轴承按照承受载荷的方向主要分为:1)径向滑动轴承,主要承受径向载荷;2)推力滑动轴承,承受轴向载荷。 按照滑动表面间润滑状态的不同可分为:1)液体润滑轴承;2)不完全液体润滑轴承;3)自润滑轴承。 按照液体润滑承载机理不同,液体润滑轴承又分为1)液体动压润滑轴承;2)液体静压润滑轴承。 1.2滑动轴承的特点及应用 与滚动轴承相比,滑动轴承有如下特点:1)在高速重载下能正常工作,寿命长;2)精度高;3)滑动轴承能做成剖分式的,能满足特殊结构需要;4)液体摩擦轴承具有很好的缓冲和阻尼作用,可以吸收振动、缓和冲击;5)滑动轴承的径向尺寸比滚动轴承小;6)启动摩擦阻力较大;7)非液体摩擦滑动轴承具有结构简单、使用方便等优点。 2 滑动轴承的主要结构形式 2.1径向滑动轴承 2.1.1整体式径向滑动轴承 组成:轴承座(常为铸铁)、轴瓦(开油孔,内表面开油沟以送油)。 优点:结构简单。 缺点:1)磨损后,间隙无法调整;2)轴颈只能从一端装入,对中间轴颈的轴无法安装。 2.1.2剖分式径向滑动轴承 它是由轴承盖、轴承座、剖分轴瓦和联接螺栓等所组成。轴承中直接支承轴颈的零件是轴瓦。为了安装时容易对心,在轴承盖与轴承座的中分面上做出阶梯形的梯口。轴承盖应当适度压紧轴瓦,使轴瓦不能在轴承孔中转动。轴承盖上制有螺纹孔,以便安装油杯或油管。

当载荷垂直向下或略有偏斜时,轴承的中分面常为水平方向。若载荷方向有较大偏斜时,则轴承的中分面也斜着布置(通常倾斜45°,使中分平面垂直于或接近垂直于载荷)。 2.2推力滑动轴承 轴上的轴向力应采用推力轴承来承受。止推面可以利用轴的端面,也可在轴的中段做出凸肩或装上推力圆盘。后面将论述两平行平面之间是不能形成动压油膜的,因此须沿轴承止推面按若干块扇形面积开出楔形。 实心式空心式 单环式多环式

滑动轴承设计1

§13—5 液体动力润滑径向滑动轴承的设计计算一、动压油膜和液体摩擦状态的建立过程 流体动力润滑的工作过程:起动、不稳定运转、稳定运转三个阶段 起始时n=0,轴颈与轴承孔在最下方位置接触 1、起动时,由于速度低,轴颈与孔壁金属直接接触,在摩擦力作用下,轴颈沿孔内壁向右上方爬开。 2、不稳定运转阶段,随转速上升,进入油楔腔内油逐渐增多,形成压力油膜,把轴颈浮起推向左下方。(由图b→图c) 3、稳定运转阶段(图d):油压与外载F平衡时,轴颈部稳定在某一位置上运转。转速越高,轴颈中心稳定位置愈靠近轴孔中心。(但当两心重合时,油楔消失,失去承载能力)

图13-12向心轴承动压油膜形成过程 从上述分析可以得出动压轴承形成动压油膜的必要条件是 (1)相对运动两表面必须形成一个收敛楔形 (2)被油膜分开的两表面必须有一定的相对滑动速度v s,其运动方向必须使润滑从大口流进,小口流出。 (3)润滑油必须有一定的粘度,供油要充分。 v 越大,η 越大,油膜承载能力越高。 实际轴承的附加约束条件: 压力 pv值 速度 最小油膜厚度 温升 二、最小油膜厚度h min 1、几何关系

图13-13 径向滑动轴承的几何参数和油压分布 O—轴颈中心,O1—轴承中心,起始位置F与OO1重合,轴颈直径-d,轴承孔直径D ∴直径间隙:(13-6-1) 半径间隙:(13-6) 相对间隙:(13-7) 偏心距:(13-8) 偏心率:(13-9) 以OO1为极轴,任意截面处相对于极轴位置为φ处对应油膜厚度为h, (13-10)

h的推导:在中,根据余弦定律可得 (13-11)略去高阶微量,再引入半径间隙,并两端开方得 (13-12) 三.流体动力润滑基本方程(雷诺方程) 流体动力润滑基本方程(雷诺方程)是根据粘性流体动力学基本方程出发,作了一些假设条件后简化而得的。 假设条件是: 1)忽略压力对润滑油粘度的影响;2)流体为粘性流体;3)流体不可压缩,并作层流;4)流体膜中压力沿膜厚方向是不变的; 2)略去惯性力和重力的影响。 可以得出: ∴(13-13)一维雷诺流体动力润滑方程 上式对x取偏导数可得 (13-14) 若再考虑润滑油沿Z方向的流动,则

滑动轴承的设计..

毕业论文继续教育学院级专业 题目:滑动轴承的设计 学生姓名: 指导老师 2013 年 3 月

南京工程学院成人教育毕业设计(论文)开题报告 班级:专业: 学生姓名 设计(论)题目滑动轴承的设计 开题报告: 滑轴承动的一体化结构设计,是将传统上分别属于两个不同装置的润滑与密封有机地结合在一起作为一个部件使用,并使用水润滑。这给轴承的使用、安装和维护带来了一个全新的概念。合理的密封形式对水润滑复合橡胶轴承动密封体的性能有重要的影响。不同介质、不同转速、不同载荷以及不同的温升对泄漏量有着不同的影响。为确保被试部件在不同载荷情况下的密封能力,满足使用要求,必须对密封部件进行动态检测,获取详细的性能指标,以便对产品进行全面评估。 指导教师意见: 指导教师签名: 填表时间:2013年3月

南京工程学院成人教育毕业设计(论文)任务书班级:07机电技师班专业:机电一体化学生姓名指导教师 设计(论文) 题目 滑动轴承的设计 设计(论文)的工作内容1.查阅资料第1-2周 2.结构设计,绘制装配草图第3-5周 3.完成全套图纸第6-8周 4 撰写论文第9-12周 设计(论文)的主要技术指标一是不断研制新的轴承材料及结构,以适应轴承的工作特点及其负荷指标不断提高的要求; 二是深入地研究发生在轴承内部的各种工作状态,从而在设计中采取相应的措施,保证轴承在最理想的条件下运转。 设计(论文)的基本要求 1. 字数:6000-8000字。 2. 字体:正文标题用黑体、小二号打印,标题下面不再标明作者姓名。正文一般用仿宋体四号字打印。文章中的各段标题用黑体、四号字打印,并且前后要一致。全文的文字格式要统一。独立成行的标题后面不再加标点符号。

机械设计禁忌500个例子

机械设计当中禁忌,500例 第1章提高强度和刚度的结构设计 1.1避免受力点与支持点距离太远 1.2避免悬臂结构或减小悬臂长度 1.3勿忽略工作载荷可以产生的有利作用 1.4受振动载荷的零件避免用摩擦传力 1.5避免机构中的不平衡力 1.6避免只考虑单一的传力途径 1.7不应忽略在工作时零件变形对于受力分布的影响1.8避免铸铁件受大的拉伸应力 1.9避免细杆受弯曲应力 1.10受冲击载荷零件避免刚度过大 1.11受变应力零件避免表面过于粗糙或有划痕 1.12受变应力零件表面应避免有残余拉应力 1.13受变载荷零件应避免或减小应力集中 1.14避免影响强度的局部结构相距太近 1.15避免预变形与工作负载产生的变形方向相同 1.16钢丝绳的滑轮与卷筒直径不能太小 1.17避免钢丝绳弯曲次数太多,特别注意避免反复弯曲1.18起重时钢丝绳与卷筒联接处要留有余量 1.19可以不传力的中间零件应尽量避免受力

1.20尽量避免安装时轴线不对中产生的附加力 1.21尽量减小作用在地基上的力 第2章提高耐磨性的结构设计 2.1避免相同材料配成滑动摩擦副 2.2避免白合金耐磨层厚度太大 2.3避免为提高零件表面耐磨性能而提高对整个零件的要求 2.4避免大零件局部磨损而导致整个零件报废 2.5用白合金作轴承衬时,应注意轴瓦材料的选择和轴瓦结构设计2.6润滑剂供应充分,布满工作面 2.7润滑油箱不能太小 2.8勿使过滤器滤掉润滑剂中的添加剂 2.9滑动轴承的油沟尺寸、位置、形状应合理 2.10滚动轴承中加入润滑脂量不宜过多 2.11对于零件的易磨损表面增加一定的磨损裕量 2.12注意零件磨损后的调整 2.13同一接触面上各点之间的速度、压力差应该小 2.14采用防尘装置防止磨粒磨损 2.15避免形成阶梯磨损 2.16滑动轴承不能用接触式油封 2.17对易磨损部分应予以保护 2.18对易磨损件可以采用自动补偿磨损的结构 第3章提高精度的结构设计

机械设计考研练习题-滑动轴承

滑动轴承 一 选择题 (1) 宽径比d B /是设计滑动轴承时首先要确定的重要参数之一,通常取 d B / C 。 A. 1~10 B.0.1~1 C. 0.3~1.5 D. 3~5 (2) 下列材料中 C 不能作为滑动轴承轴瓦或轴承衬的材料。 A. ZSnSb11Cu6 B. HT200 C. GCr15 D. ZCuPb30 (3) 在非液体润滑滑动轴承中,限制p 值的主要目的是 C 。 A. 防止出现过大的摩擦阻力矩 B. 防止轴承衬材料发生塑性变形 C. 防止轴承衬材料过度磨损 D. 防止轴承衬材料因压力过大而过度发热 (4) 在滑动轴承材料中, B 通常只用于作为双金属或三金属轴瓦的表层材料。 A. 铸铁 B. 轴承合金 C. 铸造锡磷青铜 D. 铸造黄铜 (5) 在滑动轴承轴瓦材料中,最易用于润滑充分的低速重载轴承的是 C 。 A. 铅青铜 B. 巴氏合金 C. 铝青铜 D. 锡青铜 (6) 滑动轴承的润滑方法,可以根据 A C 来选择。 A. 平均压强p B. 3pv C. 轴颈圆周速度v D. pv 值 (7) B 不是静压滑动轴承的特点。 A. 起动力矩小 B. 对轴承材料要求高 C. 供油系统复杂 D. 高、低速运转性能均好 (8) 设计液体动压径向滑动轴承时,若通过热平衡计算发现轴承温升过高,下列改进措施中,有效的是 C 。 A. 增大轴承宽径比 B. 减小供油量 C. 增大相对间隙 D. 换用粘度较高的油 (9) 巴氏合金用于制造 B 。 A. 单层金属轴瓦 B. 双层及多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 (10) 含油轴承是采用 D 制成的。 A. 塑料 B. 石墨 C 铜合金 D. 多孔质金属 (11) 下述材料中, C 是轴承合金(巴氏合金)。 A. 20CrMnTi B. 38CrMnMo C. ZSnSb11Cu6 D. ZCuSnl0Pbl (12) 液体摩擦动压径向轴承的偏心距e 随 B 而减小。

第七部分滑动轴承设计

第七部分 滑动轴承设计 1.考研重点和难点 【重点】 非液体摩擦滑动轴承的设计计算; 【难点】 形成液体摩擦的条件; §滑动轴承的特点、类型及应用 滑动轴承的运动形式是以轴颈与轴瓦相对滑动为主要特征,也即摩擦性质为滑动摩擦。实践表明,由于滑动轴承的润滑条件不同,会出现不同的摩擦状态。轴承工作面的摩擦状态分为干摩擦状态、边界摩擦状态、混合摩擦状态和流体摩擦状态四类,如图所示。 两摩擦表面直接接触,相对滑动,又不加入任何润滑剂,称为干摩擦;两摩擦表面被流体(液体或气体)层完全隔开,摩擦性质仅取决于流体内部分子之间粘性阻力称为流体摩擦;两摩擦表面被吸附在表面的边界膜隔开,摩擦性质取决于边界膜和表面吸附性质的称为边界摩擦状态;实际上,干摩擦状态和边界摩擦状态很难精确区分,所以这两种摩擦状态也常常归并为边界摩擦状态。在实际应用中,轴承工作表面有时是边界 摩擦和流体摩 擦并存的混合状态,称为混合摩擦。边界摩擦和混合摩擦又长称为非液体摩擦。 所以,滑动轴承按其摩擦性质可以分为液体滑动摩擦轴承和非液体滑动摩擦轴承两类。 1)液体滑动摩擦轴承:由于在液体滑动轴承中,轴颈和轴承的工作表面被一层润滑油膜隔开,两零件之间没有直接接触,轴承的阻力只是润滑油分子之间的摩擦,所以摩擦系数很小,一般仅为~。这种轴承的寿命长、效率高,但是制造精度要求也高,并需要在一定的条件下才能实现液体摩擦。 2)非液体滑动摩擦轴承:非液体滑动摩擦轴承的轴颈与轴承工作表面之间虽有润滑油的存在,但在表面局部凸起部分仍发生金属的直接接触。因此摩擦系数较大,一般为~,容易磨损,但结构简单,对制造精度和工作条件的要求不高,故此在机械中得到广泛使用。 干摩擦的摩擦系数大,磨损严重,轴承工作寿命短。所以在滑动轴承中应力求避免。 所以,高速长期运行的轴承要求工作在液体摩擦状态下,一般工作条件下轴承则维持在边界摩擦或混合摩擦状态下工作。因此本章主要讨论非液体滑动摩擦轴承。 按照轴承承受的载荷分类可以分为:1)径向滑动轴承,主要承受径向载荷F R ;2)止推滑动轴承,主要承受轴向载荷F A (如图所示)。 在机械中,虽然广泛采用滚动轴承,但在许多情况下又必须采用滑动轴承。这是因为滑动轴承有其独特的优点是滚动轴承不能代替的。滑动轴承的主要优点是:1)结构简单,制造、加工、拆装 方便;2)具有良好的耐冲击性和良好的吸振性能,运转平稳,旋转精度高;3)寿命长。但是也有其缺点,主要有:1)维护复杂,对润滑条件较高;2)边界润滑轴承,摩擦损耗较大。因而在大型汽轮机、发电机、压缩机、轧钢机及高速磨床上多采用滑动轴承。此外,在低速而带有冲击载荷的机器中,如水泥搅拌器、滚筒清砂机、破碎机等冲压机械、农业机械中也多采用滑动轴承。 § 滑动轴承的结构 1、径向滑动轴承 常用的径向滑动轴承,我国已经制定了标准,通常情况下可以根据工作条件进行选用。径向滑动轴承可以分为整体式 图13-1

液体动力润滑径向滑动轴承的设计计算

§13—5液体动力润滑径向滑动轴承的设计计算一、动压油膜和液体摩擦状态的建立过程 流体动力润滑的工作过程:起动、不稳定运转、稳定运转三个阶段 起始时n=0,轴颈与轴承孔在最下方位置接触 1、起动时,由于速度低,轴颈与孔壁金属直接接触,在摩擦力作用下,轴颈沿孔壁向右上方爬开。 2、不稳定运转阶段,随转速上升,进入油楔腔油逐渐增多,形成压力油膜,把轴颈浮起推向左下方。(由图b→图c) 3、稳定运转阶段(图d):油压与外载F平衡时,轴颈部稳定在某一位置上运转。转速越高,轴颈中心稳定位置愈靠近轴孔中心。(但当两心重合时,油楔消失,失去承载能力) 从上述分析可以得出动压轴承形成动压油膜的必要条件是 (1)相对运动两表面必须形成一个收敛楔形

(2)被油膜分开的两表面必须有一定的相对滑动速度v ,其运动方向必须使润滑从大口流进, s 小口流出。 (3)润滑油必须有一定的粘度,供油要充分。 v越大,η越大,油膜承载能力越高。 实际轴承的附加约束条件: 压力 pv值 速度 最小油膜厚度 温升 二、最小油膜厚度h min 1、几何关系

图13-13 径向滑动轴承的几何参数和油压分布 O —轴颈中心,O 1—轴承中心,起始位置F 与OO 1重合,轴颈半径-r ,轴承孔半径R ∴半径间隙: (13-6-1) 半径间隙: (13-6) 相对间隙: (13-7) 偏心距: (13-8) 偏心率: (13-9) 以OO 1为极轴,任意截面处相对于极轴位置为φ 处对应油膜厚度为h , (13-10) h 的推导:在 中,根据余弦定律可得 (13-11) 略去高阶微量 ,再引入半径间隙 ,并两端开方得

最新机械设计章节练习题(含答案)——滑动轴承

第16章滑动轴承 【思考题】 16-1 滑动轴承的性能特点有哪些?主要的应用场合有哪些? 16-2 滑动轴承的主要结构型式有哪几种?各有什么特点? 16-3 轴承材料应具备哪些性能?是否存在着能同时满足这些性能的材料? 16-4 非液体润滑轴承的设计依据是什么?限制p和pv的目的是什么? 16-5 液体动压润滑的必要条件是什么?叙述向心滑动轴承形成动压油膜的过程? 16-6 找出一滑动轴承应用实例,确定滑动轴承类型,分析其特点和选用的原因。 A级能力训练题 1.下述各点中,不能作为优点的滑动轴承是________。 (1)径向尺寸小(2)内部间隙小,旋转精度高 (3)运转平稳,噪音小(4)没有极限转速限制,可用于高速 2.含油轴承是采用________制成的。 (1)硬木(2)塑料(3)硬橡胶(4)粉末冶金 3.在下述材料中,不能作为滑动轴承轴瓦或轴承衬材料的是________。 (1)GCr15 (2)HT250 (3)ZQSn10-5 (4)ZChSnSb11-6 4.在滑动轴承轴瓦或轴承衬的材料中,承载能力最高的是________。 (1)灰铸铁(2)巴氏合金 (3)铅锡表青铜(4)铅青铜等铜基轴承合金 5.滑动轴承在液体摩擦工况下的摩擦系数很小,约为__________。 (1)0.1~0.8 (2)0.01~0.08 (3)0.001~0.008 (4)0.0001~0.0008 6.滑动轴承校核pv值、蜗杆传动进行温升计算都是为了防止__________出现失效。 (1)胶合(2)点蚀(3)磨损(4)塑性变形 7.在非液体摩擦滑动轴承设计中,限制比压p的主要目的是__________。 (1)防止轴承衬的塑性变形(2)防止轴承衬的过度磨损

《机械基础》单元设计 轴承

《机械基础》课程单元设计 2013~2014 学年第2 学期 授课专业汽车运用技术授课教师安军 一、教学综合分析 学习领域机械基础 授课班级汽车应用技术201203班 课时4课时 学习单元轴承课题轴承的类型与结构、代号及选用,滚动轴承的组合结构 教学内容 轴承的特点和应用场合,轴承的典型结构,滚动轴承的型号选择,内径代号、尺寸代号、前置、后置代号的表示方法、轴承润滑和密封方式。 重点:轴承的结构和类型。 难点:滚动轴承的代号及组成。 教学目标 能力目标知识目标情感目标 会识别简单轴承的类型,会 根据轴承代号分析轴承参 数。 1、掌握滑动轴承的类型和 结构; 2、掌握轴承基本代号、滚 动轴承组合结构基本知 识。 1、体验与人合作的理念; 2、具有团队协作的精神; 3、具有良好的语言表达能力; 目标群体大专学生,毕业后定位为一线高技能生产工人教学方法实物举例法、提问、启发 参考资料教材、高职教改课程教学设计案例集等

二、教学具体过程 教学程序教学内容教学方 法运用 教学意图和目标 新课引入1、新课导入: 2、教学内容介绍: 讲解轴承的特点和应用场合,轴承的典型结构,滚 动轴承的型号选择,内径代号、尺寸代号、前置、后置 代号的表示方法、轴承润滑和密封方式。 讲授法 通过举例、提问等方 法,引入本节课题, 使学生明确本节课 的学习目的,激发学 生的学习兴趣。 知识点讲 解一、情境引入:教师通过举例法和讲解法,指出本单元 的学习内容和任务: 1.1滑动轴承: 工作时轴承和轴颈的支承面间形成直接或间接接触 摩擦的轴承,称为滑动轴承 1.2滑动轴承的结构 (1)整体式滑动轴承: 这种轴承结构形式较多,优点是结构简单、成本 低;缺点是轴颈只能从端部装入,安装和维修不便,而 且轴承磨损后不能调整间隙,只能更换轴套,所以只能 用在轻载、低速及间歇性工作的机器上。 (2)剖分式滑动轴承(对开式滑动轴承): 这种轴承装拆方便,又能调整间隙,克服了整体式 轴承的缺点,得到了广泛的应用。 (3)调心式滑动轴承: 这种轴承就是利用球面支承,自动调整轴套的位 置,以适应轴的偏斜。 1.3轴瓦的结构 常用的轴瓦有整体式和剖分式两种结构。 1.4油孔和油沟的开设原则是: 讲授法 演示法 图文结合,使学生清 晰明了的掌握所学 知识,举例说明,让 知识贴近生活,进一 步引起学生对该课 程的兴趣。

相关文档
最新文档