Kalman滤波LMS算法RLS算法清华大学《现代信号处理》讲义
(完整word版)自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1.2自适应滤波发展前景 (2)1.2.1小波变换与自适应滤波 (2)1.2.2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2.1最小均方自适应滤波器 (4)2.1.1最速下降算法 (4)2.1.2最小均方算法 (6)2.2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别:第二小组组员:黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上,一个滤波器可以看成是一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号,即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时,该滤波器称为线性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。
1.1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。
清华大学《现代信号处理》课件

现代信号处理(离散随机信号处理)电子工程系本课程要讨论的主要问题:(1)对信号特性的了解随机信号(随机过程,时间序列––随机过程的一个实现)信号模型→参数估计→现代谱估计:参数化谱估计讨论信号模型及模型参数的估计问题,比较参数谱估计方法和周期图方法的优劣。
(2)对统计意义下最优滤波器设计的研究平稳条件下:Wiener滤波器理论非平稳条件下:Kalman滤波理论上的目标,实际算法可达到的最佳结果(3)对环境的自适应,具备“学习能力”的滤波算法自适应均衡、波束形成、线性自适应滤波器(4)更多信息的利用,挖掘(针对非高斯问题)线性系统、功率谱:二阶矩,高斯过程的完全刻划非线性、多谱:高阶量,循环平稳(5)对时间(空间)–––频率关系的适应性:全局特性与局域特性,小波变换,时频分析信号处理算法设计面向的几个主要因素n信噪比n先验知识n雷达n通信系统n电子对抗n对先验知识的利用:统计基础上的假设、学习过程n算法复杂性与性能要求的匹配性一些进展中的课题盲自适应信号处理序列贝叶斯估计、粒子滤波阵列信号处理等等与信号处理紧密关联的学科人工神经网络统计学习理论模式识别等等教材n张旭东,陆明泉:离散随机信号处理,2005年10月,清华大学出版社主要参考书①S. Haykin, Adaptive Filter theory, Third Edition, Prentice-Hall, 1996,//Fouth Edition 2001 (电子工业出版社均有影印本)①S.M. Kay, Modern Spectral Estimation: Theory & Application,Prentice-Hall, 1988①S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, 1993.①S. Mallat, A Wavelet Tour of Signal Processing, Academic press, 1998,Second Edition 1999①扬福生, 小波变换的工程分析与应用, 科学出版社, 2000.① D. G. Manolakis, et,al. Statistical and Adaptive Signal Processing, Mcgraw-Hall, 2000.①J. G. Proakis, et al. Algorithms for Statistical Signal Processing, Prentice hall, 2002①张贤达现代信号处理第2版清华大学出版社课程成绩n平时作业10%n2个Matlab作业40%(布置后2周内提交)n期末开卷考试50%1.1随机信号基础被噪声干扰的初相位是随机值的正弦波信号本质上均是随机的,但将信号作为随机信号处理,还是做为确定信号处理,与我们的应用目标和我们的先验知识有关,一般地,我们总是选择对应用有利的处理方式。
Kalman滤波__LMS算法__RLS算法_清华大学《现代信号处理》讲义

线性状态模型、高斯噪声 v1 (n), v 2 (n)
Kalman 滤波问题 (一步预报 : 一步预报): 一步预报
无噪声的估计值: 已知含噪数据 y (1),L , y (n) ,求 y (i ) 无噪声的估计值
ˆ ⑴ i = n (滤波 ):已知 y (1),L , y ( n ),求 y ( n ) ˆ ⑵ i < n (平滑 ):已知 y (1),L , y ( n ),求 y (i ), i < n ˆ ⑶ i > n (预测):已知 y (1), L , y ( n ),求 y (i ), i > n ˆ 一步预测:已知 y (1),L , y ( n ),求 y ( n+1) ˆ 数学符号: y 1 ( n + 1) = y ( n + 1 | y (1),L , y ( n ) )
要求不同时间的输入信号向量 u ( n ) 线性 独立 [因为瞬时梯度向量为 e* ( n )u ( n )]。
LMS 算法的均值收敛 µ ( n )的选择 LMS 算法的均方收敛
E {e( n )} = 0
均值收敛: 均值收敛:
E {w ( n )} = w opt = R −1r
均方收敛: 均方收敛: E w ( n ) − w opt
k (1, 0) = E { x 2 ( n )} = E { x 2 (1)} = P0
依次可以递推出 g (1), k (2,1); g (2), k (3, 2);L
4.4 LMS自适应算法 LMS自适应算法
LMS: Least Mean Squares
随机优化问题 Wiener 滤波器 滤波器: 最陡下降法
新息方法: 新息方法: 新息 (innovation)
Kalman滤波原理及算法

Kalman滤波原理及算法kalman滤波器一(什么是卡尔曼滤波器卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯, 我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
二.卡尔曼滤波器算法的介绍以下是卡尔曼滤波器核心的5个式子。
X(k|k-1)=A X(k-1|k-1)+B U(k) (1)P(k|k-1)=A P(k-1|k-1) A’+Q (2)X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)P(k|k)=(I-Kg(k) H)P(k|k-1) (5)下面我们详细介绍卡尔曼滤波的过程。
首先,我们要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances来估算系统的最优化输出。
首先我们要利用系统的过程模型,来预测下一状态的系统。
kalman滤波器算法原理

卡尔曼滤波总结假设条件:系统的状态由图1所给出的模型决定。
假定),1(k k+Φ,),1(k k+Γ,)0(P 和)(k Q 是已知的,并且是确定性的。
而观测模型由图2给出,其中)1(+kH 和)(k R 也是已知的,并且是确定性的。
它们可以写为,1,0),(),1()(),1()1(=+Γ++Φ=+k k w k k k x k k k x 状态方程)1()1()1()1(++++=+k v k x k H k z 量测方程)1(+k w激励)1(+k图1 一个离散-时间线性系统的状态方程和输出方程的矢量结构图观测转移矩阵 )1(+k xv (k+1)矢量求和激励)1(+k观测矢量 观测误差新状态矢量图2 观测模型的矢量结构图卡尔曼滤波算法:滤波估计由Kalman 所给出的最优线性滤波估计)1|1(ˆ++k k x是由下面的递归矩阵公式决定的,即,0)0|0(ˆ)]|(ˆ),1()1()1()[1()|(ˆ),1()1|1(≥=+Φ+-++++Φ=++k xk k xk k k H k z k K k k xk k k k x 初始条件这里)1(+kK 称为卡尔曼增益卡尔曼增益卡尔曼增益的表达式为,1,0,)]1()1()|1()1([)1()|1()1(1=+++++⨯++=+-k k R k H k k P k H k H k k P k K TT其中)|1(k kP +表示单步预测误差协方差矩阵。
单步预测误差协方差矩阵(单步性能)1,0)0()0|0(),1()(),1(),1()|(),1()|1(==+Γ+Γ++Φ+Φ=+k P P k k k Q k k k k k k P k k k k P TT,初始条件滤波误差的误差协方差矩阵(协方差递归形式)1,0),|1()]1()1([)1|1(=+++-=+k k k P k H k K I k k P +性能评价(系统状态的卡尔曼滤波估计的协方差矩阵)1,0],))1|1(ˆ)1(ˆ))(1|1(ˆ)1([()1|1(=++-+++-+=+k k k x k x k k xk x E k k P T+11|11|----Γ+Φ=k k k k k k kW XXkkk k V XH Z +=式中:k X —— 是一个1⨯n 维矢量,称为k t 时刻的状态矢量。
RLS和LMS自适应算法分析

RLS和LMS自适应算法分析RLS (Recursive Least Squares) 和 LMS (Least Mean Squares) 是两种常见的自适应滤波算法。
它们在信号处理、通信系统和自适应控制等领域得到广泛应用。
本文将对这两种算法进行分析比较。
首先,我们来看看RLS算法。
RLS算法使用最小均方误差准则来自适应调整滤波器系数。
它利用递归方式计算出均方误差的最小值。
RLS算法基于Wiener-Hopf方程,通过解析方法来计算最优系数。
这种方法计算量较大,但是提供了更好的性能。
RLS算法根据观测数据和期望输出之间的误差信号来不断调整滤波器的权重,并且在递归过程中更新这些权重。
相比于LMS算法,RLS算法具有更快的收敛速度和更高的精度。
但是,RLS 算法也存在一些问题,比如计算复杂度高、存储要求大以及对噪声和系统不确定性敏感。
接下来,我们来看看LMS算法。
LMS算法是一种基于随机梯度下降的自适应算法。
在LMS算法中,滤波器的系数通过逐步调整以减小误差标准差。
LMS算法利用误差信号和输入信号之间的乘积来更新滤波器系数。
这种算法简单易于实现,计算复杂度低,并且对存储要求不高。
LMS算法适用于非平稳环境下的自适应滤波问题。
然而,LMS算法的收敛速度较慢,需要一定的迭代次数才能达到最优解,而且对于高阶滤波器,可能存在稳定性问题。
此外,LMS算法对输入信号的统计特性有一定的要求。
综上所述,RLS算法和LMS算法都是常见的自适应滤波算法,它们在不同的应用领域有不同的适用性和特点。
RLS算法在计算复杂度和存储要求上较高,但是具有更快的收敛速度和更高的精度。
LMS算法计算复杂度低,存储要求小,但是收敛速度较慢。
一般情况下,对于较小的系统和较简单的滤波器,可以使用LMS算法,而对于复杂的系统和高阶滤波器,可以使用RLS算法。
在实际应用中,需要根据具体的要求和约束来选择合适的算法。
此外,还可以根据实时计算需求和系统资源限制等因素,对RLS 和LMS算法进行优化和改进,如考虑快速RLS算法和正则化LMS算法等。
卡尔曼滤波方法资料课件

线性最小方差估计方法的优 点
适用于线性系统状态估计,计算量较小,易于实现。
线性最小方差估计方法的 缺点
对非线性系统效果不佳,需要先验知识或模 型参数。
04
卡尔曼滤波方法的实现 和应用案例
卡尔曼滤波方法的软件实现
软件平台
可以使用Python、C、Matlab等编程语言实现卡尔曼滤波算法。
卡尔曼滤波方法在控制系统中的应用案例
应用场景
卡尔曼滤波方法在控制系统中主要用于估计系统的状态变量。
案例分析
通过实际控制系统的数据和实验,验证卡尔曼滤波方法在控制系统中的可行性和稳定性。
卡尔曼滤波方法在雷达系统中的应用案例
应用场景
卡尔曼滤波方法在雷达系统中主要用于 目标跟踪和运动参数估计。
VS
案例分析
卡尔曼滤波方法的基本概念和原理
基本概念
卡尔曼滤波方法是一种递归估计方法,通过建立状态方程和观测方程,对系统状态进行最优估计。
原理
卡尔曼滤波方法基于最小均方误差准则,通过不断更新估计值来逼近真实值,具有计算量小、实时性 强的优点。
卡尔曼滤波方法的应用领域
机器人
用于机器人的定位、路径规划、 避障等。
描述系统状态和观测之间的关系。
定义初始状态和误差协方差
02
确定系统初始状态和误差协方差的估计值,为后续的滤波过程
提供初始条件。
选择合适的模型参数
03
根据实际情况选择合适的模型参数,如系统动态参数、观测参
数等,以更好地描述系统特性。
预测步骤
01
根据上一时刻的状态和误差协方 差,预测当前时刻的系统状态和 误差协方差。
卡尔曼滤波算法

卡尔曼滤波器不断的把covariance递归, 从而估算出最优的温度值。其运
行的很快,而且它只保留了上一时刻的covarian2c02e1/3。/28
12
三:卡尔曼滤波引例
2021/3/28
13
四:卡尔曼滤波算法数学推导
引入一个离散控制过程的系统。 该系统可用一个线性随机微分方程来描述:
X(k)=F X(k-1)+B U(k)+W(k) 加上系统的测量值:
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(c)有反馈式分布融合系统
融合中心到各传感器有反 馈通道,提高各传感器状态 估计和预测精度。
2021/3/28
27
五:卡尔曼滤波的典型应用—多传感器数据融合处理
• 卡尔曼滤波器源于他的博士论文和1960年 发表的论文《A New Approach to Linear Filtering and Prediction Problems》 (线性滤波与预测问题的新方法)。
卡尔曼将状态变量引入虑波理论,提出了递推滤波算法,建 立了后来被自动控制界称道的“卡尔曼滤波”。
25
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(b)无反馈式分布融合系统
各传感器分别滤波,将
各局部状态估计送给 融合中心进行融合,最 后给出融合结果。
2021/3/28
26
四:卡尔曼滤波算法数学推导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q1 (n), 若n k E v1 (n) v (k ) 其他 0,
H 1
Q2 (n), 若n k E v 2 (n) v (k ) 其他 0,
H 2
已知:
状态转移矩阵 F(n 1, n) 观测矩阵 C(n)
过程噪声相关矩阵 Q1 (n) 观测噪声相关矩阵 Q2 (n)
k (1, 0) E x 2 (n) E x 2 (1) P0
依次可以递推出 g (1), k (2,1); g (2), k (3, 2);
4.4 LMS自适应算法
LMS: Least Mean Squares
随机优化问题 Wiener 滤波器: 最陡下降法
min E{| d (n) w H (n)u(n) |2 }
H E { v ( n ) v 假设: 1 2 (n)} O
线性状态模型、高斯噪声 v1 (n), v2 (n)
Kalman 滤波问题 (一步预报):
已知含噪数据 y(1),
, y(n) ,求 y(i) 无噪声的估计值:
⑴ i n (滤波):已知y (1), ⑵ i n(平滑):已知y (1), ⑶ i n(预测):已知y (1), 一步预测:已知y (1),
Kalman滤波器
状态空间方程:
x(n 1) F(n 1, n)x(n) v1 (n) y (n) C(n)x(n) v 2 (n) 观测方程
状态(转移)方程
x(n):状态向量,不可观测的、待求的向量 y (n):观测数据向量 F(n 1, n):状态转移矩阵 C(n):观测矩阵 v1 (n):过程噪声向量; v 2 (n):观测噪声向量
dx (t ) x (t ) 0 dt
x(n 1) x(n) 0
状态方程 观测方程
x(n 1) x(n) y(n) x(n) v(n)
F(n 1, n) 1
Q1 (n) 0
2 Q2 (n) v
C(n) 1
k ( n, n 1) g ( n) k ( n, n 1) 2 v y ( n) x ( n) x( n 1) x (n) g (n) 2 k (n 1, n) k (n, n 1) 1 g (n) g (n) v
ˆ ( n) , y (n),求y ˆ (i ),i n , y (n),求y ˆ (i),i n , y ( n),求y
ˆ (n+1) , y (n),求y , y ( n)
ˆ n 1| y (1), 数学符号:y1 (n 1) y
新息方法: 新息 (innovation)
牛顿法:
w(n) w(n 1) (n)[2 J (w(n 1))]1w* J (w(n 1))
J (w(n 1)) : 共轭梯度的梯度(Hessian矩阵)
2
例如,若 J (w (n 1)) w H (n 1) Aw(n 1), 则 w* J (w (n 1)) Aw (n 1) w* J (w (n 1)) J (w (n 1)) A T w (n 1)
w
1 wopt Ruu rud
w(n) w(n 1) (n) w* J (w(n 1)) w* J (w(n 1)) w* E{| d (n) w H (n 1)u(n) |2 }
真实梯度
最陡下降法的改进:
w(n) w(n 1) (n)Q(n)w* J (w(n 1))
2
确定性优化 min
w
H 2 | d ( n ) w ( n ) u ( n ) | n 1
N
也称随机逼近最优化。求解的方法称为随机逼近方法。
w(n 1)
w (n)
w(n) w(n 1) 校正项(用误差控制)
后验估计误差: (n) d (n) y(n) d (n) w (n)u(n)
, y(n) α(1), , α(n)(一一对应关系) α(n) 保留有 y (n) 的所有信息
ˆ 1 (n) 估计 x(n) 状态向量估计误差:ε(n, n 1) x(n) x
相关矩阵:K (n, n Байду номын сангаас1) E ε(n, n 1)ε H (n, n 1)
G (n) F(n 1, n)K (n, n 1)CH (n) C( n)K ( n, n 1)C H ( n) Q ( n) 1 2 α (n) y (n) C(n)x ˆ 1 ( n) 校正项 ˆ x ( n 1) F ( n 1, n ) x ( n ) G ( n ) α ( n ) 1 1 1 P ( n ) K ( n , n 1) F (n 1, n)G (n)C(n)K (n, n 1) K (n 1, n) F(n 1, n)P(n)F H (n 1, n) Q1 ( n)
ˆ 1 (n) α(n) y(n) y
称 α(n) 为 y (n) 的新息过程向量。 性质1: E α (n)y H (n) 0 (正交), α(n) 是不同于 y (n) 的新过程 性质2: E α (n)α H (n) 0, n k, α(n) 是个白噪声过程 性质3: y(1),
G ( n) :Kalman 增益矩阵 α(n) :Kalman 新息
例:x(t ) 是一个时不变的标量随机变量,y(t ) x(t ) v(t ) 为 观测数据,其中 v(t ) 为白噪声。若用 Kalman 滤波器自适应 估计 x(t ),设计 Kalman 滤波器。 设计过程:⑴ 构造状态空间方程;⑵ 设计x(n)的更新公式