文科立体几何解答题类型总结及其答案

合集下载

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题文(含答案)

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题文(含答案)

高考数学真题分项汇编专题:06 立体几何(解答题)(文科专用)1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;√3.(2)6403【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CD BD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB≅△CDB,所以∠FBA=∠FBC,由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH//DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.3.【2021年甲卷文科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥. 【答案】(1)13;(2)证明见解析.【解析】 【分析】(1)先证明ABC 为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论. 【详解】(1)由于11BF A B ⊥,11//AB A B ,所以AB BF ⊥, 又AB ⊥BB 1,1BB BF B ⋂=,故AB ⊥平面11BCC B , 则AB BC ⊥,ABC 为等腰直角三角形, 111221222BCE ABC S S ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥, 又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH , 从而BF ⊥DE . 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.4.【2021年乙卷文科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2 【解析】 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出. 【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD . (2)[方法一]:相似三角形法 由(1)可知AM BD ⊥. 于是∽ABD BMA ,故=AD ABAB BM.因为1,,12===BM BC AD BC AB ,所以2112BC =,即BC =故四棱锥P ABCD -的体积13=⋅⋅=V AB BC PD . [方法二]:平面直角坐标系垂直垂直法由(2)知⊥AM DB ,所以1⋅=-AM BD k k . 建立如图所示的平面直角坐标系,设2(0)BC a a =>.因为1DC =,所以(0,0)A ,(1,0)B ,(0,2)D a ,()1,M a . 从而2020(2)211001--⋅=⨯=⨯-=-=---AM BD a a k k a a a .所以2a =,即DA =. [方法三]【最优解】:空间直角坐标系法 建立如图所示的空间直角坐标系D xyz -,设||=DA t ,所以(0,0,0)D ,(0,1,0)C ,(0,0,1)P ,(,0,0)A t ,(,1,0)B t . 所以,1,02t M ⎛⎫ ⎪⎝⎭,(,1,1)PB t =-,,1,02t AM ⎛⎫=- ⎪⎝⎭.所以2110(1)1022t t PB AM t ⎛⎫⋅=⋅-+⨯+⨯-=-+= ⎪⎝⎭.所以t ,即||=DA . [方法四]:空间向量法由PB AM ⊥,得0PB AM ⋅=. 所以()0++⋅=PD DA AB AM . 即0⋅+⋅+⋅=PD AM DA AM AB AM .又PD ⊥底面ABCD ,AM 在平面ABCD 内, 因此PD AM ⊥,所以0⋅=PD AM . 所以0⋅+⋅=DA AM AB AM ,由于四边形ABCD 是矩形,根据数量积的几何意义,得221||||02-+=DA AB ,即21||102-+=BC .所以||2BC =,即BC =. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积; 方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.5.【2020年新课标1卷文科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积.【答案】(1)证明见解析;(2【解析】 【分析】(1)根据已知可得PA PB PC ==,进而有PAC △≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,AP ==在Rt PAO 中,PO ===∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.6.【2020年新课标2卷文科】如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24. 【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形, 1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN ∴BC ⊥平面1A AMN又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP =//AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC 中EFAPBC AM =即2AP BCEF AM ⋅===由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=, ∴1243243V =⨯⨯=. 【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.7.【2020年新课标3卷文科】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形, 1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.。

2020年高考文科数学《立体几何》题型归纳与训练

2020年高考文科数学《立体几何》题型归纳与训练

2020年高考文科数学《立体几何》题型归纳与训练【题型归纳】题型一立体几何证明例1如图五面体中,四边形ABCD是矩形,AD⊥面ABEF,AB//EF,AD=1,AB=1EF=22,2AF=BE=2,P、Q、M分别为AE、BD、EF的中点.(1)求证:PQ//面BCE;(2)求证:AM⊥面ADF.【答案】见解析【解析】(1)连结AC.因为四边形ABCD是矩形,且Q为BD的中点,所以Q为AC的中点.又因为P为AE的中点,所以PQ//EC,又因为PQ⊄面BCE,EC⊆面BCE,所以PQ//面BCE.(2)取EF的中点M,连结AM.因为AB//EM,且QB=EM=22,所以四边形ABEM为平行四边形,所以AM//BE,且AM=BE=2.在∆AMF中,A M=AF=2,MF=22.所以AM2+AF2=MF2,故AM⊥AF.由AD⊥面ABEF,得AD⊥AM,因为AD I AF=A,所以AM⊥面ADF.【易错点】定理证明所用知识点不清楚【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.如该题中的(1)问需要利用五面体中的面ABCD是矩形,根据对角线的性质确定线段BD与AC的中点.(2)问中利用勾股定理验证线线垂直关系,这些都是证明空间平行与垂直关系的基础.例2在平行六面体ABCD-A B C D中,AA=AB,AB⊥B C.11111111A 1D1B1C1A DBC求证:(1)AB∥平面A B C;11(2)平面ABB A⊥平面A BC.111【答案】见解析【解析】(1)在平行六面体ABCD-A B C D中,AB∥A B.111111因为AB⊄平面A B C,A B⊂平面A B C,所以AB∥平面A B C.11111111A 1D1B1C1A DBC(2)在平行六面体ABCD-A B C D中,四边形ABB A为平行四边形.111111又因为AA=AB,所以四边形ABB A为菱形,因此AB⊥A B.11111又因为AB⊥B C,BC∥B C,所以AB⊥BC.111111又因为A B I BC=B,A B⊂平面A BC,BC⊂平面A BC,所以AB⊥平面A BC.111111因为AB⊂平面ABB A,所以平面ABB A⊥平面A BC.111111【易错点】定理证明所用知识点不清楚【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.2(题型二 立体几何体积求解例 1 如图所示,在三棱锥V - ABC 中,平面VAB ⊥ 平面 ABC ,三角形VAB 为等边三角形, AC ⊥ BC ,且 AC = BC = 2 , O , M 分别为 AB ,V A 的中点.(1)求证:VB // 平面 MOC .V(2)求证:平面 MOC ⊥ 平面 VAB .M(3)求三棱锥V - ABC 的体积.AO BC【答案】 见解析【解析】(1)依题意, O , M 分别为 AB ,V A 的中点,则 O M 是 △VAB 的中位线,所以 OM //VB , OM ⊂ 平面 MOC ,VB ⊄ 平面 MOC ,故VB // 平面 MOC .(2)因为在 △ABC 中, AC = BC ,且 O 为 AB 的中点,所以 O C ⊥ AB ,又平面VAB ⊥ 平面 ABC ,平面VAB I 平面 ABC = AB , OC ⊂ 平面 ABC ,所以 OC ⊥ 平面VAB ,又 OC ⊂ 平面 MOC ,故平面 MOC ⊥ 平面VAB .(3)由(2)知, O C ⊥ 平面VAB ,所以V V - ABC= V C -VAB 1 1 3 3= ⋅ OC = ⨯ ⨯ 22 ⨯1 =3 △SVAB 3 4 3【易错点】定理证明所用知识点不清楚【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.例 2 如图所示,在三棱锥 P – ABC 中, P A ⊥ AB , P A ⊥ BC , AB ⊥ BC , P A = AB = BC = 2 , D 为线段 AC 的中点, E 为线段 PC 上一点.(1)求证: P A ⊥ BD ;P(2)求证:平面 BDE ⊥ 平面 PAC ;ED C(3)当 P A // 平面 BDE 时,求三棱锥 E – BCD 的体积.AB【答案】 见解析 【解析】1)因为 P A ⊥ AB ,P A ⊥ BC ,AB I BC = B ,所以 P A ⊥ 平面 ABC .又因为 BD ⊂ 平面 ABC ,所以 PA ⊥ BD .(2)因为 AB ⊥ BC , AB = BC , D 为线段 AC 的中点,所以在等腰 △RtABC 中, BD ⊥ AC .又由(1)可知,P A ⊥ BD ,P A I AC = A ,所以 BD ⊥ 平面 PAC .由 E 为线段 PC 上一点,则 DE ⊂ 平面 PAC ,所以BD⊥ED.又因为BD⊂平面BDE,所以平面BDE⊥平面PAC.(3)当P A//平面BDE时,P A⊂平面PAC,且平面PAC I平面BDE=DE,可得P A//DE.由D是AC边的中点知,E为PC边的中点.故而ED=面BDC.12P A=1,ED∥P A,因为PA⊥平面ABC,所以ED⊥平由AB=BC=2,AB⊥BC,D为AC边中点知,BD=CD= 2.又BD⊥AC,有BD⊥DC,即∠BDC=90︒.因此,VE-BCD1111 =⋅ED=⨯⨯2⨯2⨯1=.3△SBCD323【易错点】注意体积几何证明题条件的严谨性【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.掌握线面平行的性质定理的应用及其体积的求解方法.题型三几何体的外接球问题例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π(2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是.【答案】C;9π【解析】(1)V=a2h=16,a=2,4R2=a2+a2+h2=4+4+16=24,S=24π,选C;(2)4R2=3+3+3=9,S=4πR2=9π【易错点】外接球球心位置不好找【思维点拨】应用补形法找外接球球心的位置题型四立体几何的计算例1如图,已知三棱锥的底面是直角三角形,直角边边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()【答案】B4, 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B .【易错点】 该题易出现的问题是误以为 y 轴上的点在 xoy 面的射影落在 x 轴的正半轴上而误选 D , 【思维点拨】判断几何体的三视图应注意以下几个方面:(1)明确几何体的放置位置和角度,注意投影线和投影面;(2)准确把握几何体的结构特征,特别是几何体中的线面垂直关系等;(3)注意实线和虚线的区别.【巩固训练】题型一 立体几何的证明1.如图,在四棱锥 P - ABCD 中,底面 ABCD 为菱形, ∠BAD = 60° P A = PD = AD = 2 ,点 M 在线段PC 上,且 PM = 2MC , N 为 AD 的中点.(1)求证: AD ⊥ 平面 PNB ;(2)若平面 P AD ⊥ 平面 ABCD ,求三棱锥 P - NBM 的体积.【答案】(1)见解析;(2)23.【解析】(1)∵ P A = PD, N 为 AD 的中点,∴ PN ⊥ AD ,∵底面 ABCD 为菱形, ∠BAD = 60︒ ,∴ BN ⊥ AD ,∵ PN I BN = N ,∴ AD ⊥ 平面 PNB .(2)∵ PN = PD = AD = 2 ,∴ PN = NB = 3 ,∵平面 P AD ⊥ 平面 ABCD ,平面 P AD I 平面 ABCD = AD , PN ⊥ AD ,∴ PN ⊥ 平面 ABCD ,∴ PN ⊥ NB ,∴S3⨯3⨯3=. 22∵AD⊥平面PNB,AD//BC,∴BC⊥平面PNB.∵PM=2MC,∴VP-NRM =VM-PNB22132=V=⨯⨯⨯2=.3C-PNB33232.如图,在直三棱柱ABC-A B C中,D是AB的中点.111(1)证明:BC//平面A CD;11(2)若AC=CB,求证:A D⊥CD.1【答案】见解析.【解析】证明:(1)如图,连接AC,交A C于点O,连结OD.11据直三棱柱性质知四边形ACC A为平行四边形,所以O为AC的中点.111又因为D是AB的中点,所以BC//OD.1又因为BC⊄平面A CD,OD⊂平面A CD,111所以BC//平面A CD.11(2)因为AC=BC,D为AB的中点,所以CD⊥AB.据直三棱柱ABC-A B C性质知AA⊥平面ABC,又因为C D⊂平面1111所以AA⊥CD.1又因为AA I AB=A,AA,AB⊂平面ABB A,1111所以CD⊥平面ABB A,11又因为A D⊂平面ABB A,所以C D⊥A D,即A D⊥CD.11111ABC,题型二立体几何体积求解1.如图所示,四棱锥P-ABCD中,P A⊥底面ABCD,AD//BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN//平面PAB;P6NA MB DC【答案】(1)(2) N -BCM 2 3 63 .AD = BC = 所以V △S ABC = ⨯ 4 ⨯ 2 5 = 2 3 6 3 . 1 2 ⨯ (2 + 4)(2)求四面体 N - BCM 的体积.1 1 14 5V = ⨯ P A ⋅= ⨯ 4 ⨯ 2 5 =△S ABC【解析】(1)取 PB 中点 Q ,连接 AQ 、 NQ ,因为 N 是 PC 中点, NQ //BC ,且 NQ = 1BC ,又2AM = 2 2 ⨯ 3 1 BC ,且 AM // BC ,所以 QN // AM ,且3 34 2QN = AM ,所以四边形 AQNM 是平行四边形.所以 MN // AQ .又 MN ⊄ 平面PAB , AQ ⊂ 平面 PAB ,所以 MN // 平面 PAB .PQ NAMD(2)由(1) QN // 平面 ABCD .BC所以VN -BCM= VQ -BCM1 = V2 P -BCM 1= V 2 P -BCA.N -BCM1 1 14 5 = ⨯ P A ⋅2.如图所示,四棱锥 P - ABCD 中,侧面 P AD 为等边三角形且垂直于底面 ABCD , PAB = BC = 1AD , ∠BAD = ∠ABC = 90o .2(1)证明:直线 BC // 平面 P AD ;(2)若 △PCD 面积为 2 7 ,求四棱锥 P - ABCD 的体积.【答案】(1)(2) V = ⨯⨯ 2 3 = 4 3 .32BACD【解析】(1)在平面 ABCD 内,因为 ∠BAD = ∠ABC = 90o ,所以 BC //AD .又 BC ⊄ 平面 P AD , AD ⊂ 平面 P AD ,故 BC // 平面 P AD .(2)取 AD 的中点 M ,联结 PM , CM .由 AB = BC = 1AD ,及 BC //AD , ∠ABC = 90o ,得四边形 ABCM 为正方形,则 CM ⊥ AD .2因为侧面 P AD 是等边三角形且垂直于底面 ABCD ,平面 P AD I 平面 ABCD = AD ,所以 PM ⊥ AD ,因为PM ⊂ 平面 P AD ,所以 PM ⊥ 平面 ABCD .因为 CM ⊂ 平面 ABCD ,所以 PM ⊥ CM .因为 △PCD 的面积为 2 7 ,所以 ⨯ 2x ⨯ 1 2 ⨯ (2 + 4)设 BC = x ,则 CM = x , CD = 2 x , PM = 3x , PC = PD = 2x .取 CD 的中点 N ,联结 PN ,则 PN ⊥ CD ,所以 PN =14 x .21 142 2x = 2 7 ,解得 x = -2 (舍去), x = 2 ,于是 AB = BC = 2 ,AD = 4 , PM = 2 3 .所以四棱锥 P - ABCD 的体积V = ⨯3 2⨯ 2 3 = 4 3 .题型三 几何体的外接球问题1. 在正三棱锥 S - ABC 中, M 、N 分别是棱 SC 、BC 的中点,且 AM ⊥ MN ,若侧棱 SA = 2 3 ,则正三棱锥 S - ABC 外接球的表面积是.【答案】 36π【解析】正三棱锥的对棱互垂直。

高中数学文科立体几何大题复习

高中数学文科立体几何大题复习

高中数学文科立体几何大题复习文科立体几何大题复习一.解答题(共12小题)1.如图1,在正方形ABCD中,点,E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.(1)求证:GR⊥平面PEF;(2)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.2.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD 是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.3.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.4.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.5.如图所示,△ABC所在的平面与菱形BCDE所在的平面垂直,且AB⊥BC,AB=BC=2,∠BCD=60°,点M为BE的中点,点N在线段AC上.(Ⅰ)若=λ,且DN⊥AC,求λ的值;(Ⅱ)在(Ⅰ)的条件下,求三棱锥B﹣DMN的体积.6.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.7.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.8.如图,已知多面体ABCDEF中,△ABD、△ADE均为正三角形,平面ADE⊥平面ABCD,AB∥CD∥EF,AD:EF:CD=2:3:4.(Ⅰ)求证:BD⊥平面BFC;(Ⅱ)若AD=2,求该多面体的体积.9.如图,在四棱锥中P﹣ABCD,底面ABCD为边长为的正方形,PA⊥BD.(Ⅰ)求证:PB=PD;(Ⅱ)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥的D﹣ACE体积.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.11.如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=ED=1.(Ⅰ)求二面角E﹣AC﹣D的正切值;(Ⅱ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.12.如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥AB,AB=BC=CP=BP=2,CD=1.(1)求点B到平面DCP的距离;(2)点M为线段AB上一点(含端点),设直线MP与平面DCP 所成角为α,求sinα的取值范围.文科立体几何大题复习参考答案与试题解析一.解答题(共12小题)1.如图1,在正方形ABCD 中,点,E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,点G ,R 分别在线段DH ,HB 上,且.将△AED ,△CFD ,△BEF 分别沿DE ,DF ,EF 折起,使点A ,B ,C 重合于点P ,如图2所示.(1)求证:GR ⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P ﹣DEF 的内切球的半径.【解答】证明:(Ⅰ)在正方形ABCD 中,∠A 、∠B 、∠C 均为直角,∴在三棱锥P ﹣DEF 中,PE ,PF ,PD 三条线段两两垂直,∴PD ⊥平面PEF ,∵=,即,∴在△PDH 中,RG ∥PD ,∴GR ⊥平面PEF .解:(Ⅱ)正方形ABCD 边长为4,由题意PE=PF=2,PD=4,EF=2,DF=2,∴S △PEF =2,S △PFD =S △DPE =4,=6,设三棱锥P ﹣DEF 的内切球半径为r ,则三棱锥的体积:=,解得r=,∴三棱锥P﹣DEF的内切球的半径为.2.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD 是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.【解答】(Ⅰ)证明:∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC?平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EA C∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BH⊥平面PAD,.∴==.3.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.【解答】证明:(1)如图,连结BD,由题意知四边形ABCD为菱形,∠BAD=60°,∴△ABD为正三角形,又∵AQ=QD,∴Q为AD的中点,∴AD⊥BQ,∵△PAD是正三角形,Q为AD中点,∴AD⊥PQ,又BQ∩PQ=Q,∴AD⊥平面PQB,又∵PB?平面PQB,∴AD⊥PB.解:(2)连结AC,交BQ于N,连结MN,∵AQ∥BC,∴,∵PN∥平面MQB,PA?平面PAC,平面MQB∩平面PAC=MN,∴根据线面平行的性质定理得MN∥PA,∴,综上,得,∴MC=2PM,∵MC=λPM,∴实数λ的值为2.4.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.【解答】解:(Ⅰ)连BD,设AC交BD于O,由题意SO⊥AC,在正方形ABCD中,AC⊥BD,所以AC⊥面SBD,所以AC⊥SD.(Ⅱ)若SD⊥平面PAC,则SD⊥OP,设正方形ABCD的边长为a,则SD=,OD=,则OD2=PD?SD,可得PD==,故可在SP上取一点N,使PN=PD,过N作PC的平行线与SC的交点即为E,连BN.在△BDN中知BN∥PO,又由于NE∥PC,故平面BEN∥面PAC,得BE∥面PAC,由于SN:NP=2:1,故SE:EC=2:1.5.如图所示,△ABC所在的平面与菱形BCDE所在的平面垂直,且AB⊥BC,AB=BC=2,∠BCD=60°,点M为BE的中点,点N在线段AC上.(Ⅰ)若=λ,且DN⊥AC,求λ的值;(Ⅱ)在(Ⅰ)的条件下,求三棱锥B﹣DMN的体积.【解答】解:(Ⅰ)取BC的中点O,连接ON,OD,∵四边形BCDE为菱形,∠BCD=60°,∴DO⊥BC,∵△ABC所在的平面与菱形BCDE所在平面垂直,∴DO⊥平面ABC,∵AC?平面ABC,∴DO⊥AC,又DN⊥AC,且DN∩DO=D,∴AC⊥平面DON,∵ON?平面DON,∴ON⊥AC,由O为BC的中点,AB=BC,可得,∴,即λ=3;(Ⅱ)由平面ABC⊥平面BCDE,AB⊥BC,可得AB⊥平面BCDE,由,可得点N到平面BCDE的距离为,由菱形BCDE中,∠BCD=60°,点M为BE的中点,可得DM⊥BE,且,∴△BDM的面积,∴三棱锥N﹣BDM的体积.=V B﹣DMN,又V N﹣BDM∴三棱锥B﹣DMN的体积为.6.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.【解答】解:(I)取BC中点M,连结AM,B1M,∵AB=AC,M是BC的中点,∴AM⊥BC,∵侧面BB1C1C是菱形,∠B1BC=60°,∴B1M⊥BC,又AM?平面AB1M,B1M?平面AB1M,AM∩B1M=M,∴BC⊥平面AB1M,∵AB1?平面AB1M,∴BC⊥AB1.(II)设AB=x,则AC=x,BC=x,∵M是BC的中点,∴AM=,BB1=,B1M=,又∵AB1=BB1,∴AB1=,∴AB12=B1M2+AM2,∴B1M⊥AM.由(I)知B1M⊥BC,AM?平面ABC,BC?平面ABC,AM∩BC=M,∴B1M⊥平面ABC,∴V==,∴x=2,即AB=2.7.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.【解答】(1)证明:连接BE,∵ABCD为矩形且AD=DE=EC=2,∴AE=BE=2,AB=4,∴AE2+BE2=AB2,∴BE⊥AE,又D1AE⊥平面ABCE,平面D1AE∩平面ABCE=AE,∴BE⊥平面D1AE.(2)=.取D1E中点N,连接AN,FN,∵FN∥EC,EC∥AB,∴FN∥AB,且FN==AB,∴M,F,N,A共面,若MF∥平面AD1E,则MF∥AN.∴AMFN为平行四边形,∴AM=FN=.∴=.8.如图,已知多面体ABCDEF中,△ABD、△ADE均为正三角形,平面ADE⊥平面ABCD,AB∥CD∥EF,AD:EF:CD=2:3:4.(Ⅰ)求证:BD⊥平面BFC;(Ⅱ)若AD=2,求该多面体的体积.【解答】解:(Ⅰ)因为AB∥CD,所以∠ADC=120°,△ABD为正三角形,所以∠BDC=60°.设AD=a,因为AD:CD=2:4=1:2,所以CD=2a,在△BDC中,由余弦定理,得,所以BD2+BC2=CD2,所以BD⊥BC.取AD的中点O,连接EO,因为△ADE为正三角形,所以EO⊥AD,因为平面ADE⊥平面ABCD,所以EO⊥平面ABCD.取BC的中点G,连接FG,OG,则,且EF∥OG,所以四边形OEFG为平行四边形,所以FG∥EO,所以FG⊥平面ABCD,所以FG⊥BD.因为FG∩BC=G,所以BD⊥平面BFC.(Ⅱ)过G作直线MN∥AD,延长AB与MN交于点M,MN与CD交于点N,连接FM,FN.因为G为BC的中点,所以MG=OA且MG∥OA,所以四边形AOGM为平行四边形,所以AM=OG.同理DN=OG,所以AM=OG=DN=EF=3.又AB∥CD,所以AM∥DN,所以AM∥DN∥EF,所以多面体MNF﹣ADE为三棱柱.过M作MH⊥AD于H点,因为平面ADE⊥平面ABCD,所以MH⊥平面ADE,所以线段MH的长即三棱柱MNF﹣ADE的高,在△AMH中,,所以三棱柱MNF﹣ADE的体积为.因为三棱锥F﹣BMG与F﹣CNG的体积相等,所以所求多面体的体积为.9.如图,在四棱锥中P﹣ABCD,底面ABCD为边长为的正方形,PA⊥BD.(Ⅰ)求证:PB=PD;(Ⅱ)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥的D﹣ACE体积.【解答】解:(Ⅰ)连接AC交BD于点O,∵底面ABCD是正方形,∴AC⊥BD且O为BD的中点.又PA⊥BD,PA∩AC=A,∴BD⊥平面PAC,又PO?平面PAC,∴BD⊥PO.又BO=DO,∴Rt△PBO∽Rt△PDO,∴PB=PD.(Ⅱ)取PD的中点Q,连接AQ,EQ,则EQ CD,又AF,∴AFEQ为平行四边形,EF∥AQ,∵EF⊥平面PCD,∴AQ⊥平面PCD,∵PD?平面PCD,∴AQ⊥PD,∵Q是PD的中点,∴AP=AD=.∵AQ⊥平面PCD,CD?平面PCD,∴AQ⊥CD,又AD⊥CD,又AQ∩AD=A,∴CD⊥平面PAD∴CD⊥PA,又BD⊥PA,CD∩BD=D,∴PA⊥平面ABCD.故三棱锥D﹣ACE的体积为.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC?平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵BE⊥平面ABCD,∴BE⊥BG,则△EBG为直角三角形,∴EG=AC=AG=x,则BE==x,∵三棱锥E﹣ACD的体积V===,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB?BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA,EBG,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE=,∴从而得AE=EC=ED=,∴△EAC的面积S==3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE=,AF==,则EF=,∴△EAD的面积和△ECD的面积均为S==,故该三棱锥的侧面积为3+2.11.如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=ED=1.(Ⅰ)求二面角E﹣AC﹣D的正切值;(Ⅱ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.【解答】(本小题满分12分)解:(Ⅰ)设AC∩BD=O,连结OE,由AC⊥OD,AC⊥DE,OD∩DE=D,得AC⊥OE,∴二面角E﹣AC﹣D的平面角为∠EOD,∵AF=ED=1,∴tan∠EOD=,∴二面角E﹣AC﹣D的正切值为.(Ⅱ)时,AM∥平面BEF,理由如下:作MN∥E D,则,∵AF∥DE,DE=3AF,∴,∴AMNF是平行四边形,∴AM∥FN,∵AM?平面BEF,FN?平面BEF,∴AM∥平面BEF.。

立体几何题型汇总及详细答案

立体几何题型汇总及详细答案
(1)证明:平面ACD 平面 ;
(2)若 , , ,试求该几何体的体积V.
9.在长方体 中, ,
(1) 求证: ∥面 ;
(2)证明: ;
(3)一只蜜蜂在长方体 中飞行,求它飞入三棱锥 内的概率.
10. 如图甲,在平面四边形ABCD中,已知
, ,现将四边形ABCD沿BD折起,
使平面ABD 平面BDC(如图乙),设点E、F分别为棱
10.(2008江苏模拟)一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(1)求证:
(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.
立体几何中的动点问题
1.(2011五校联考)已知四边形 为矩形, 、 分别是线段 、
的中点, 平面
17.如图6,已知正三棱柱ABC—A1B1C1中,D是BC的中点。
(1)求证:平面AB1D⊥平面B1BCC1;
(2)求证:A1C//平面AB1D。
18.如图,已知 平面 , 平面 ,△ 为等边三角形,
, 为 的中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
19.如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90.E为BB1的中点,D点在AB上且DE= .
39.(2008中山市)如图,四棱锥P—ABCD中, PA 平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为PC中点.
(I) 求证:平面PDC 平面PAD;
(II) 求证:BE//平面PAD.
40.(2008华南师大附中) 如图,已知棱柱ABCD—A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1,F为棱AA1的中点,M为线段BD1的中点。

专题4:立体几何(文科)

专题4:立体几何(文科)

专题四:立体几何 【一、基础知识归类:】1、三视图画法规则:高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等2、空间几何体三视图:正视图(从前向后的正投影);侧视图(从左向右的正投影); 俯视图(从上向下正投影). 3、空间几何体的直观图——斜二测画法特点:①斜二测坐标系的y 轴与x 轴正方向成 45角; ②原来与x 轴平行的线段仍然与x 平行,长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 常用结论:平面图形面积与其斜二侧直观图面积之比为22:1. 4、特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线):ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 S 球面=24R π5、柱体、锥体、台体和球的体积公式:V Sh =柱 2V Sh r h π==圆柱 13V S h =锥 h r V 231π=圆锥'1()3V S S h =台'2211()()33V S S h r rR R h π=++=++圆台V 球=343R π 6、空间线面的位置关系①直线与直线:相交、平行、异面(不同在任何一个平面内的两条直线); ②直线与平面:属于a ⊂α、相交a∩α=A 、平行a ∥α;③ 平面与平面:平行—没有公共点:α∥β、相交—有一条公共直线:α∩β=b . 7、垂直和平行证明问题的解决方法须熟练掌握两类相互转化关系: ① 平行转化 ② 垂直转化同时注意结合运用中位线定理、勾股定理、等腰(等边)三角形“三线合一”; 平行四边形两组对边分别平行且相等,对角线互相平分;菱形对边平行且四边相等,对角线互相垂直平分并平分对角; 矩形对边平行且相等,四个角为直角,以及对角线互相平分且相等;正方形对边平行且四边相等,四个角为直角,对角线互相垂直平分且相等并平分对角; 梯形上底和下底平行; 圆直径对应圆周角为直角、垂径定理、过切点的半径垂直于切线等. 8、立体几何中体积的求法:直接法、割补法、等积转化等方法. 等积转化在三棱锥求体积或求点到面的距离问题中经常运用.【二、专题练习:】一、选择题(本大题共12小题,每小题5分,总分60分)1.(2009天津重点学校二模) 如图,直三棱柱的主视图面积为2a 2,则左视图的面积为( )A .2a 2B .a 2C .23a D .243a2.(2009枣庄市二模)一个几何体的三视图如图所示, 则这个几何体的体积等于( ) A .361a B .321a C .332a D .365a 3.(2009青岛二模)下图为长方体木块堆成的几何体三视图,则组成此几何体的长方体木块块数共有( )A .3块B .4块C .5块D .6块4.(2009广东省恩城中学)半径为2cm 的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( )A .4cmB .2cmC .cm 32D .cm 3aaa5.(2005全国卷Ⅰ)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) A.32B .33 C .34 D .23 6.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( ) A.48+ B.48+C.36+ D.36+7.(2009汕头一模)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A, B, C 到平面β的距离相等,则α∥β. 其中正确命题的个数为( )个.A .0B .1C .2D .38.(2007宁夏理)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3 B .38000cm 3C .32000cmD .34000cm 9.(2009泰安一模)一个几何体的三视图如图所示,则这个几何体的 体积等于( )A .4B .6C .8D .12正视图侧视图俯视图66663334410.设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( ) A .βαβα⊥⊥,//,b a B .βαβα//,,⊥⊥b a C .βαβα//,,⊥⊂b a D .βαβα⊥⊂,//,b a11.(2009玉溪市民族中学第四次月考)若球O 的半径为1,点A 、B 、C 在球面上,它们任意两点的球面距离都等于,2π则过A 、B 、C 的小圆面积与球表面积之比为 ( ) A .121 B .81 C .61 D .4112.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为( )A .1:1B .1:2C .2:1D .3:2二、填空题(本大题共4小题,每小题4分,总分16分)13.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是 .14.在半径为13的球面上有A , B , C 三点,AB=6,BC=8,CA=10,则球心到平面ABC 的距离为 . 15.图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是 .16.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D ,作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .三、解答题(本大题共6小题,总分74分)17.右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且2P D A D E C ===2.(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;(2)求四棱锥B -CEPD 的体积; (3)求证://BE 平面PDA .18.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º. (Ⅰ)证明:AB ⊥PC ;(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积.PABCDEDABC俯视图19.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC =12AD ,BE =12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE .20.如图,已知三棱柱ABC -A 1B 1C 1的所有棱长都相等,且侧棱垂直于底面,由B 沿棱柱侧面经过棱CC 1到点A 1的最短路线长为CC 1的交点为D . (1)求三棱柱ABC -A 1B 1C 1的体积;(2)在平面A 1BD 内是否存在过点D 的直线与平面ABC 平行?证明你的判断;(3)证明:平面A 1BD ⊥平面A 1ABB 1.DC 1B 1A 1CBA21.(2009届广东省重点中学高三模拟)如图:已知四棱柱ABCD—A1B1C1D1的底面是正方形,O1.O分别是上.下底面的中心,A1O⊥平面ABCD.(1)求证:平面O1DC⊥平面ABCD;(2)若点E在棱AA1上,且AE=2EA1,问在棱BC上是否存在点F,使得EF⊥BC?若存在,求出其位置;若不存在,说明理由.22.(2007-2008汕头市金山中学)已知等腰梯形PDCB 中(如图1),PB=3,DC=1,PD=BC =2,A 为PB 边上一点,且P A=1,将△P AD 沿AD 折起,使面P AD ⊥面ABCD (如图2). (Ⅰ)证明:平面P AD ⊥PCD ;(Ⅱ)试在棱PB 上确定一点M ,使截面AMC 把几何体分成的两部分1:2: MACB PD CMA V V ; (Ⅲ)在M 满足(Ⅱ)的情况下,判断直线PD 是否平行面AMC .正视图侧视图俯视图【参考答案】一、选择题1—5:C D B D A6.答案:A 解析:棱锥的直观图如右,则有PO =4,OD =3,由勾股定理,得PD =5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,故选A . 7—9:B B A10.答案:C 解析:由b β⊥,α∥β得b α⊥,又a α⊂,可知b a ⊥,故a b ⊥的一个充分条件是C . 11.答案 C12.【解析】选C .由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积 在底面正六边形ABCDER 中,BH =ABtan30°AB 而BD故DH =2BH 于是V D -GAC =2V B -GAC =2V P -GAC . 二、填空题13.恢复后的原图形为一直角梯形1(11)222S =+⨯=+ 14.答案:12解析:由ABC ∆的三边大小易知此三角形是直角三角形,所以过,,A B C 三点小圆的直径即为10,也即半径是5,设球心到小圆的距离是d ,则由222513d +=,可得12d =.15.【解析】向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,设长方体的高为x ,则()()42122214x x x +=++,所以3x =,所以长方体的体积为3.16.【解析】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面A D B ,即有CB BD ⊥,对于2,1,CD BC BD ==∴,又1,2AD AB ==,因此有AD BD ⊥,则有12t =,因此t 的取值范围是1,12⎛⎫⎪⎝⎭. 三、解答题17.解:(1)该组合体的主视图和侧视图如右图示:-----3分 (2)∵PD ⊥平面ABCD ,PD ⊂平面PDCE ∴平面PDCE ⊥平面ABCD∵BC CD ⊥ ∴BC ⊥平面PDCE ----------5分 ∵11()32322S PD EC DC =+⋅=⨯⨯=梯形PDCE --6分∴四棱锥B -CEPD 的体积1132233B CEPD PDCE V S BC -=⋅=⨯⨯=梯形.----8分 (3)证明:∵//EC PD ,PD ⊂平面PDA ,EC ⊄平面PDA∴EC//平面PDA ,------------------------------------10分 同理可得BC//平面PDA ----------------------------11分∵EC ⊂平面EBC,BC ⊂平面EBC 且ECBC C =∴平面BEC //平面PDA -----------------------------13分又∵BE ⊂平面EBC ∴BE//平面PDA------------------------------------------14分 18.解析:(Ⅰ)因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =. 如图,取AB 中点D ,连结PD ,CD ,则PD AB ⊥,CD AB ⊥, 所以AB ⊥平面PDC , 所以AB PC ⊥.(Ⅱ)作BE PC ⊥,垂足为E ,连结AE . 因为Rt PBC Rt PAC ∆≅∆,所以AE PC ⊥,AE BE =.由已知,平面PAC ⊥平面PBC ,故90AEB ∠=︒.因为Rt AEB Rt PEB ∆≅∆,所以,,AEB PEB CEB ∆∆∆都是等腰直角三角形. 由已知4PC =,得2AE BE ==, AEB ∆的面积2S =. 因为PC ⊥平面AEB , 所以三角锥P ABC -的体积1833V S PC =⨯⨯=.19.证明:(1)由题设知,FG =GA ,FH =HD ,所以GH =12AD .又BC =12AD ,故GH =BC ,所以四边形BCHG 是平行四边形. (2)C 、D 、F 、E 四点共面.理由如下:由BE =12AF ,G 是F A 的中点知,BE =GF ,所以EF ∥BG ,由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 直线FH 上,所以C 、D 、F 、E 四点共面.(3)连结EG ,由AB =BE ,BE =AG ,及∠BAG =90°知ABEG 是正方形,O B 2DC 1B 1A 1CBA故BG ⊥EA .由题设知,F A 、AD 、AB 两两垂直,故AD ⊥平面F ABE , 因此EA 是ED 在平面F ABE 内的射影,∴BG ⊥ED . 又EC ∩EA =E ,所以BG ⊥平面ADE . 又BG ∥CH ,所以CH ⊥平面ADE故由CH ⊂平面CDFE ,得平面ADE ⊥平面CDE .20.解:(1)如图,将侧面BB 1C 1C 绕棱CC 1旋转120°使其与侧面AA 1C 1C 在同一平面上,点B 运动到点B 2的位置,连接A 1B 2,则A 1B 2就是由点B 沿棱柱侧面经过棱CC 1到点A 1的最短路线。

北京文科高考立体几何大题题型总结

北京文科高考立体几何大题题型总结

立体几何复习一、点、直线、平面之间的关系 (一)、立体几何网络图:1.线线平行的判断:(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(12)、垂直于同一平面的两直线平行。

【例题】(2016丰台一模17)已知在ABC ∆中,90=∠B ,D ,E 分别为边BC ,AC 的中点,将CDE ∆沿DE 翻折后,使之成为四棱锥ABDE C -'(如图) (Ⅱ)设l ABC DE C =''平面平面 ,求证:l AB //ABED C C'DEFBA(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

【例题】(2016西城一模17)如图,在四棱柱1111D C B A ABCD -中,BC AD ABCD BB //,1底面⊥, BD AC BAD ⊥=∠,90(Ⅱ)求证:D B AC 1⊥;【例题】(2016延庆一模17)如图,已知四棱锥ABCD S -,底面ABCD 是边长为2的菱形,60=∠ABC ,侧面SAD 为正三角形,侧面ABCD SAD 底面⊥,M 为侧棱SB 的中点,E 为线段AD 的中点 (Ⅱ)求证:AC SE ⊥(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

判定定理:性质定理:★判断或证明线面平行的方法⑴ 利用定义(反证法):=αl α=∅,则l ∥α (用于判断); ⑵ 利用判定定理:线线平行线面平行 (用于证明); ⑶ 利用平面的平行:面面平行线面平行 (用于证明);⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

立体几何解答题汇总及答案

立体几何解答题汇总及答案

立体几何 1.如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD∥QA,QA=AB=12PD.(I )证明:平面PQC⊥平面DCQ (II )求二面角Q-BP-C 的余弦值.2.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.3.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.4.如图5,在椎体P ABCD -中,ABCD 是边长为1的棱形060DAB ∠=,2PA PD ==,2,PB =,E F 分别是,BC PC的中点,(1) 证明:AD DEF ⊥平面(2)求二面角P AD B--的余弦值。

5.如图,ABCDEFG 为多面体,平面ABED 与平面AGFD垂直,点O 在线段AD 上,1,2,OA OD ==OAB ,△OAC ,△ODE ,△ODF 都是正三角形。

(Ⅰ)证明直线BC ∥EF ;(II )求棱锥F-OBED 的体积。

6. 已知三棱柱,底面三角形ABC 为正三角形,侧棱1AA ⊥底面ABC , 4,21==AA AB ,E 为1AA 的中点,F 为BC 中111C B A ABC -点.(Ⅰ) 求证:直线//AF 平面1BEC ;(Ⅱ)求平面1BEC 和平面ABC 所成的锐二面角的余弦值.7. 如图,在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD折起,使A 移到A 1点,过点A 1作A 1O ⊥平面BCD ,垂足O恰好落在CD 上.(1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值.8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,PA=AB=1,PD 与平面ABCD 所成角是30°,点F 是PB 的中点,点E 在边BC 上移动.(Ⅰ)点E 为BC的中点时,试判断EF 与平面PAC 的位置关系,并说明理由;(Ⅱ)证明:无论点E 在边BC 的何处,都有PE ⊥AF ; (Ⅲ)当BE 等于何值时,二面角P-DE-A 的大小为45°.9. 如图,在四棱锥S ABCD -中,底面ABCD 为平行四边形,SA ⊥平面ABCD ,2,1,AB AD ==7SB =,120,BAD E ∠=在棱SD上.(I )当3SE ED =时,求证SD ⊥平面;AEC (II )当二面角S AC E --的大小为30时,求直线AE 与平面CDE 所成角的大小.10. 如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面上的 射影恰为点B ,且12AB AC A B ===.(Ⅰ)证明:平面1A AC ⊥平面1AB B ;(Ⅱ)求棱1AA 与BC 所成的角的大小;(Ⅲ)若点P 为11B C 的中点,并求出二面角1P AB A --的平面角的余弦值. 11. 已知平行四边形ABCD 中,AB =6,AD =10,BD =8,E 是线段AD 的中点.沿直线BD 将△BCD 翻折成△BC D ',使得平面BC D '⊥平面ABD .(Ⅰ)求证:C D '⊥平面ABD ;(Ⅱ)求直线BD 与平面BEC '所成角的正弦值;(Ⅲ)求二面角D BE C '--的余弦值. 12. 如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值. 13. 如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O =.将菱形ABCD 沿对角线AC 折起,使32BD =,得到三棱锥B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ;(Ⅱ)求二面角A BD O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N 点的位置,使得42CN =,并证明你的结论.CB A 1C 1B 1A A BD E C 'C ADO C P BE MAB C DEA 1B 1C 1 (第11题图) 14. 如图,在多面体ABCDEF 中,四边形ABCD 是矩形,AB ∥EF ,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE ⊥平面ABCD 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F EC ADB A 1C 1B 1BCAD FE ABC M NA 1B 1C 1BCB A 1C 1ADC 1D 1B 1A CD ABE《立体几何》解答题1.(2008年江苏卷)如图,在四面体ABCD 中,CB =CD , AD ⊥BD ,点E , F 分别是AB , BD 的中点. 求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD.2.(2009年江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中, E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C求证:(Ⅰ)EF ∥平面ABC ; (Ⅱ)平面A 1FD ⊥平面BB 1C 1C.(第1题) (第2题) (第3题) (第4题) 3. 如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,M 、N 分别为A 1B 、B 1C 1的中点. (Ⅰ)求证:BC ∥平面MNB 1; (Ⅱ)求证:平面A 1CB ⊥平面ACC 1A 1.4. 如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =CC 1,AC ⊥BC, 点D 是AB 的中点. (Ⅰ)求证:CD ⊥平面A 1ABB 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)线段AB 上是否存在点M ,使得A 1M ⊥平面CDB 15. 如图,已知正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点,E为BC 的中点. (Ⅰ)求证:BD ⊥平面AB 1E ; (Ⅱ)求直线AB 1与平面BB 1C 1C 所成角的正弦值; (Ⅲ)求三棱锥C -ABD 的体积.6. 如图,在正方体ABCD -A 1B 1C 1D 1中,F 为AA 1的中点.求证:(Ⅰ)A 1C ∥平面FBD ; (Ⅱ)平面FBD ⊥平面DC 1B.(第5题) (第6题) (第7题)C 1D 1B 1CDA 1MA BCD A 1 B 1C 1D 1 M AC ENF A11BC 1CEFD7. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (Ⅰ)求证:EF ∥平面CB 1D 1; (Ⅱ)求证:平面CAA 1C 1⊥平面CB 1D 1; (Ⅲ)如果AB =1,一个点从F 出发在正方体的表面上依次经过棱BB 1、B 1C 1、C 1D 1、D 1D 、DA 上的点,又回到F ,指出整个线路的最小值并说明理由.8. 正三棱柱ABC -A 1B 1C 1中,点D 是BC 的中点,BC =2BB 1, 设B 1D BC 1=F.(Ⅰ)求证:A 1C ∥平面AB 1D ; (Ⅱ)求证:BC 1⊥平面AB 1D. (第8题)9. 如图所示,在直四棱柱ABCD -A 1B 1C 1中, DB =BC, DB ⊥AC, 点M 是棱BB 1上一点.(Ⅰ)求证:B 1D 1 ∥面A 1BD ; (Ⅱ)求证:MD ⊥AC ; (Ⅲ)试确定点M 的位置, 使得平面DMC 1⊥平面CC 1D 1D. 10. 四棱锥P -ABCD 中,底面ABCD 是边长为8的菱形,∠BAD =60°,若PA =PD =5,平面PAD ⊥平面ABCD.(Ⅰ)求四棱锥P -ABCD 的体积; (Ⅱ)求证:AD ⊥PB ;(Ⅲ)若E 为BC 的中点,能否在棱PC 上找到一点F ,使平面DEF ⊥平面ABCD ,并证明你的结论(第9题) (第10题) (第11题) (第12题)11. 如图,四边形ABCD 为矩形,BC ⊥平面ABE ,F 为CE 上的点,且BF ⊥平面ACE. (Ⅰ)求证:AE ⊥BE ;(Ⅱ)设点M 为线段AB 的中点,点N 为线段CE 的中点.求证:MN ∥平面DAE .12. 如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=3, BC =2 ,D 是BC 的中点,F 是CC 1上一点,且CF =2,E 是AA 1上一点,且AE =2. (Ⅰ) 求证:B 1F ⊥平面ADF ; (Ⅱ)求证:BE ∥平面ADF.13. 如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(Ⅰ)若PA =PD ,求证:平面PQB ⊥平面PAD ;CBABCMP DDB A 1A FA C(第18题)(Ⅱ)点M 在线段PC 上,PM =t PC ,试确定实数t 的值,使得PA ∥平面MQB.14. 如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC , △PAD 是等边三角形,已知AD =4, BD =34,AB =2CD =8. (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(Ⅱ)当M 点位于线段PC 什么位置时,PA ∥平面MBD (Ⅲ)求四棱锥P -ABCD 的体积.(第13题) (第14题) (第16题)16. 已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点,M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.17. 如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;(Ⅲ)在线段AE 上找一点R ,使得面BDR ⊥面DCB ,并说明理由.(第17题)18. 在四棱锥P - ABCD 中,四边形ABCD 是梯形,AD ∥BC ,∠ABC =90°,平面PAB ⊥平面ABCD ,平面PAD ⊥平面ABCD. (Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)若平面PAB I 平面PCD l ,问:直线l 能否与平面ABCD 平行请说明理由.ADP 图乙A DBCP E FBACEFDF E P19. 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AC ⊥CD ,∠DAC =60°,AB =BC =AC ,E 是PD 的中点,F 为ED 的中点.(Ⅰ)求证:平面PAC ⊥平面PCD ; (Ⅱ)求证:CF ∥平面BAE. (第19题)20. 如图, ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD ,AB =4a ,BC =CF =2a ,P 为AB 的中点.(Ⅰ)求证:平面PCF ⊥平面PDE ; (Ⅱ)求四面体PCEF 的体积.(第20题) (第21题)21. 如图, 在直三棱柱ABC -A 1B 1C 1中, ∠ACB =90°, E , F , G 分别是AA 1 , AC , BB 1的中点,且CG ⊥C 1G.(Ⅰ)求证:CG ∥平面BEF ; (Ⅱ)求证:CG ⊥平面A 1C 1G.22. 如图甲,在直角梯形PBCD 中,PB ∥CD ,CD ⊥BC ,BC =PB =2CD ,A 是PB 的中点.现沿AD 把平面PAD 折起,使得PA ⊥AB (如图乙所示),E 、F 分别为BC 、AB 边的中点. (Ⅰ)求证:PA ⊥平面ABCD ; (Ⅱ)求证:平面PAE ⊥平面PDE ;(Ⅲ)在PA PDE.23. 已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD , (第23题) ∠ADB =60°,E 、F 分别是AC 、AD 上的动点,λ==ADAFAC AE (10<<λ). (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当为λ何值时,平面BEF ⊥平面ACD《立体几何》解答题参考答案1. 证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点, ∴EF 是△ABD 的中位线 ∴ EF ∥AD又∵EF ⊄面ACD ,AD ⊂面ACD, ∴直线EF ∥面ACD(Ⅱ)∵AD ⊥BD, EF ∥AD, ∴EF ⊥BD, ∵CB =CD, F 是BD 的中点, ∴CF ⊥BDABC MNA 1B 1C 1EBCB A 11ADF EC ADA 1C 1B 1BC AD FE 又EF ⋂CF =F, ∴BD ⊥面ECF, ∵BD ⊂面BCD, ∴面EFC ⊥面BCD 2. 证明:(Ⅰ)因为E, F 分别是A 1B, A 1C 的中点,所以EF ∥BC ,又EF ⊄平面ABC ,BC ⊂平面ABC ,所以EF ∥平面ABC ;(Ⅱ)因为直三棱柱ABC -A 1B 1C 1,所以BB 1 ⊥平面A 1B 1C 1,BB 1 ⊥A 1D ,又A 1D ⊥B 1C.所以A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD ,所以平面A 1FD ⊥平面BB 1C 1C.(第1题) (第2题) (第3题) (第4题) 3. 证明:(Ⅰ)因BC ∥B 1C 1, 且B 1C 1⊂平面MNB 1, BC ⊄平面MNB 1,故BC ∥平面MNB 1. (Ⅱ)因BC ⊥AC ,且ABC -A 1B 1C 1为直三棱柱,故BC ⊥平面ACC 1A 1. 因BC ⊂平面A 1CB , 故平面A 1CB ⊥平面ACC 1A 1.4. 证明:(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴平面ABC ⊥平面A 1ABB 1, ∵AC =BC ,点D 是AB 的中点,∴CD ⊥AB, 面ABC ⋂面A 1ABB 1 =AB ∴CD ⊥平面A 1ABB 1(Ⅱ)连结BC 1,设BC 1与B 1C 的交点为E ,连结DE .∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1∵DE ⊂平面CDB 1 , AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.(Ⅲ)存在点M 为B. 由(Ⅰ)知 CD ⊥平面A 1ABB ,又 A 1B ⊂平面A 1ABB ,∴CD ⊥A 1B∵AC =BC =CC 1,AC ⊥BC ,点D 是AB 的中点.∴A 1A : AB =BD : BB 1=1:2, ∴A 1B ⊥B 1D, 又CD ⋂B 1D =D, ∴A 1B ⊥平面CDB 1.5. 解:(Ⅰ)∵棱柱ABC -A 1B 1C 1是正三棱柱,且E 为BC 的中点, ∴平面ABC ⊥平面BCC 1B 1,又AE ⊥BC 且AE ⊂平面ABC, ∴AE ⊥平面BCC 1B 1而D 为CC 1中点,且BD ⊂平面BCC 1B 1 ∴ AE ⊥BD由棱长全相等知Rt △BCD ≌Rt △B 1BE, 即111+=+90CBD B EB BB E B EB ∠∠∠∠=︒,故BD ⊥B 1E, 又AE ⋂B 1E =E , ∴BD ⊥平面AB 1E(Ⅱ)由AE ⊥平面BCC 1B 1知∠AB 1E 是直线AB 1与平面BB 1C 1C 所成的角,设为θ∵正三棱柱ABC -A 1B 1C 1的所有棱长都为2 , ∴在Rt △AEB 1中136sin 422AE AB θ===FFC 1A 1CBB1(Ⅲ)C ABD A CBD V V --= 11121332BCD S AE ∆=⋅=⨯⨯⨯= 6. 证明:(Ⅰ)连结AC, 设AC ⋂BD =O.∵F 为AA 1的中点,O 为AC 的中点 ∴FO ∥A 1C ∵A 1C ⊄平面BFD ,FO ⊂平面BFD ∴A 1C ∥平面BFD(Ⅱ)设正方体棱长为1 . ∵23,26,22,2311====FC O C OC FO ∴21212FC OC FO =+ ∴ FO ⊥OC 1又∵AA 1 ⊥平面ABCD ∴ AA 1⊥BD ∵ BD ⊥AC ∴BD ⊥平面A 1ACC 1 ∵ FO ⊂平面A 1ACC 1 ∴ BD ⊥FO ∵ BD ⋂C 1O =O ∴ FO ⊥平面BDC 1 ∵ FO ⊂平面BFD ∴ 平面BFD ⊥平面C 1BD 另证:∵122CC AOOC FA == ∴ Rt △FAO ∽Rt △OCC 1 ∴∠FOA =∠OC 1C ∴∠FOA +∠COC 1 =∠OC 1C +∠COC 1=90° ∴∠FOC 1=90° ∴FO ⊥OC 1 7. (Ⅰ)证明:连结BD. 在长方体AC 1中,对角线BD ∥B 1D 1.又Q E 、F 为棱AD 、AB 的中点, ∴ EF ∥BD. ∴ EF ∥B 1D 1. 又B 1D 1⊂平面CB 1D 1,EF ⊄平面CB 1D 1, ∴ EF ∥平面CB 1D 1. (Ⅱ)证明:Q 在长方体AC 1中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂平面A 1B 1C 1D 1, ∴ AA 1⊥B 1D 1.又Q 在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴B 1D 1⊥平面CAA 1C 1. 又Q B 1D 1⊂平面CB 1D 1, ∴平面CAA 1C 1⊥平面CB 1D 1.(Ⅲ)解:最小值为23.如图,将正方体六个面展开,从图中F 到F ,两点之间线段最短,而且依次经过棱BB 1、B 1C 1、C 1D 1、D 1D 、DA 上的中点,所求的最小值为23.8. 证明:(Ⅰ)连结A 1B, 设A 1B 与AB 1交于E, 连结DE∵点D 是BC 的中点,点E 是A 1B 的中点 ∴ DE ∥A 1C ∵ A 1C ⊄平面AB 1D , DE ⊂平面AB 1D ∴ A 1C ∥平面AB 1D (Ⅱ)∵△ABC 是正三角形,点D 是BC 的中点 ∴ AD ⊥BC∵平面ABC ⊥平面B 1BCC 1 ,平面ABC ⋂平面B 1BCC 1=BC ,AD ⊂平面ABC∴ AD ⊥平面B 1BCC 1 ∵BC 1⊂平面B 1BCC 1 ∴ AD ⊥BC 11CAMABCDA 1B1 C 1D 1 NN 1O ∵ 点D 是BC 中点,BC =2BB 1 ∴ BD =22BB 1 ∵2211==BC CC BB BD ∴ Rt △B 1BD ∽Rt △BCC 1 ∴ ∠BDB 1=∠BC 1C, ∴ ∠FBD +∠BDF =∠C 1BC +∠BC 1C =90° ∴ BC 1 ⊥B 1D∵B 1D ⋂AD =D ∴ BC 1 ⊥平面AB 1D9. (Ⅰ)证明:由直四棱柱, 得BB 1∥DD 1 ,且BB 1=DD 1. 所以BB 1D 1D 是平行四边形, 所以B 1D 1 ∥BD 而BD ⊂平面A 1BD ,B 1D 1⊄平面A 1BD ,所以B 1D 1 ∥平面A 1BD(Ⅱ)证明:因为BB 1 ⊥面ABCD,AC ⊂面ABCD ,所以BB 1 ⊥AC又因为BD ⊥AC,且1BD BB B ⋂=,所以AC ⊥面BB 1D 而MD ⊂面BB 1D ,所以MD ⊥AC(Ⅲ)当点M 为棱BB 1的中点时, 平面DMC 1⊥平面CC 1D 1D取DC 的中点N, D 1C 1中点N 1, 连结NN 1交DC 1于O, 连结OM. 因为N 是DC 中点, BD =BC, 所以BN ⊥DC ;又因为DC 是面ABCD 与面DCC 1D 1的交线,而面ABCD ⊥面DCC 1D 1, 所以 BN ⊥面DCC 1D 1又可证得,O 是NN 1的中点,所以BM ∥ON 且BM =ON, 即BMON 是平行四边形,所以BN ∥OM,所以OM ⊥平面D D CC 11, 因为OM ⊂面DMC 1, ai 所以平面DMC 1 ⊥平面D D CC 11. 10. 解:(Ⅰ) 过P 作PM ⊥AD 于M , ∵面PAD ⊥面ABCD, ∴PM ⊥面ABCD , 又PA =PD =5 ∴M 为AD 的中点且PM =34522=-, ∴3323238831=⨯⨯⨯⨯=-ABCD P V (Ⅱ)证明:连结BM , ∵BD =BA =8, AM =DM, ∴AD ⊥BM 又AD ⊥PM , BM ⋂PM =M∴AD ⊥面PMB 又PB ⊂面PMB ∴ AD ⊥PB(Ⅲ) 能找到并且F 为棱PC 的中点证法一:∵F 为PC 的中点,∴EF ∥PB , 又由(Ⅱ)可知AD ⊥面PMB ,∴AD ⊥DE ,AD ⊥EF∴AD ⊥面DEF , 又AD ⊂面ABCD , ∴面DEF ⊥面ABCD证法二:设CM ⋂DE =O, 连结FO , ∴O 为MC 的中点在△PMC 中FO ∥PM , ∵PM ⊥面ABCD , ∴FO ⊥面ABCD 又FO ⊂面DEF , ∴面DEF ⊥面ABCD11. 证明:(Ⅰ)因为BC ⊥平面ABE ,AE ⊂平面ABE ,所以AE ⊥BC ,D CEA 1BCB又BF ⊥平面ACE ,AE ⊂平面ACE ,所以AE ⊥BF ,又BF ⋂BC =B ,所以AE ⊥平面BCE, 又BE ⊂平面BCE ,所以 (Ⅱ)取DE 的中点P ,连接PA ,PN ,因为点N 为线段CE 的中点.所以PN ∥DC ,且DC PN 21=,又四边形ABCD 是矩形,点M 为线段AB 的中点, 所以AM ∥DC ,且DC AM 21=, 所以PN ∥AM ,且PN =AM ,故四边形AMNP 是平行四边形,所以MN ∥AP 而AP ⊂平面DAE ,MN ⊄平面DAE ,所以MN ∥平面DAE. 12. 证明:(Ⅰ) 因为 AB =AC , D 为BC 的中点, 所以AD ⊥BC又在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,AD ⊂平面ABC,所以AD ⊥BB 1 , 又BC ⋂BB 1=B, 所以AD ⊥平面BCC 1B 1 , 又B 1F ⊂平面BCC 1B 1,所以AD ⊥B 1F, 在矩形BCC 1B 1中, C 1F =CD =1, CF =C 1B 1=2, 所以Rt △DCF ≌Rt △FC 1B 1 , 所以 ∠CFD =∠C 1B 1F 所以 ∠B 1FD =90°, 所以B 1F ⊥FD, 又AD ⋂FD =D, 所以B 1F ⊥平面ADF.(Ⅱ)连结EF, EC, 设EC ⋂AF =M, 连结DM, 因为AE =CF =2, 又AE ∥CF, AC ⊥AE,所以 四边形AEFC 是矩形,所以M 为EC 中点,又D 为BC 中点,所以 MD ∥BE , 因为MD ⊂平面ADF, BE ⊄平面ADF ,所以BE ∥平面ADF.13. 解:(Ⅰ)连结BD ,四边形ABCD 是菱形 ∵AD =AB ,∠BAD =60°∴△ABD 为正三角形,Q 为AD 的中点, ∴AD ⊥BQΘPA =PD , Q 为AD 的中点,∴ AD ⊥BQ 又BQ ⋂PQ =Q,∴ AD ⊥平面PQB, 又AD ⊂平面PAD, ∴ 平面PQB ⊥平面PAD(Ⅱ)当31=t 时,使得PA ∥平面MQB ,连结AC 交BQ 于N ,交BD 于O ,则O 为BD 的中点,又ΘBQ 为△ABD 边AD 上的中线,∴ N 为正△ABD 的中心,令菱形ABCD 的边长为a ,则a AN 33=,a AC 3=. ∵ PA ∥平面MQB , PA ⊂平面PAC ,平面PAC ⋂平面MQB =MN , ∴ PA ∥MNAB31333===a aAC AN PC PM 即:PC PM 31=, ∴ 31=t . 14. 解:(Ⅰ)在△ABD 中,∵AD =4, BD =34, AB =8,∴222AD BD AB +=. ∴ AD ⊥BD又 ∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD =AD ,BD ⊂平面ABCD , ∴BD ⊥平面PAD .又BD ⊂平面MBD , ∴平面MBD ⊥平面PAD. (Ⅱ)当M 点位于线段PC 靠近C 点的三等分点处时,PA ∥平面MBD.证明如下:连接AC ,交BD 于点N ,连接MN .∵AB ∥DC ,所以四边形ABCD 是梯形.∵AB =2CD , ∴ CN : NA =1 : 2.又 ∵CM : MP =1 : 2, ∴CN : NA =CM : MP ∴ PA ∥MN.∵ PA ⊄平面MBD ,MN ⊂平面MBD ,∴ PA ∥平面MBD.(Ⅲ)过P 作PO ⊥AD 交AD 于O , ∵平面PAD ⊥平面ABCD ,∴PO ⊥平面ABCD .即PO 为四棱锥P-ABCD 的高.又 ∵△PAD 是边长为4的等边三角形,∴4PO =.在Rt △ADB 中,斜边AB=ABCD 的高. ∴梯形ABCD 的面积482ABCD S+=⨯= 故1243P ABCD V -=⨯=. 16. 证明:(Ⅰ)由直三棱柱可知CC 1⊥平面ABC, 所以CC 1⊥AC又因为AC ⊥BE, CC 1⋂BE =E, AC ⊥面BCE, 所以AC ⊥BC 又在直三棱柱中,CC 1⊥BC, AC ⋂CC 1=C ,故BC ⊥平面ACC 1A 1 , C 1D ⊂平面ACC 1A 1 , 所以BC ⊥C 1D(Ⅱ)连结AE ,因为C 1E ∥DA ,且C 1E =DA ,所以四边形ADC 1E 为平行四边形,所以C 1D ∥EA ,在△AEB 中,因为M, F 分别为BE, BA 的中点,所以MF ∥EA , 所以C 1D ∥MF ,又C 1D ⊄平面B 1FM ,MF ⊂平面B 1FM , 所以C 1D ∥平面B 1FM17. 证明:(Ⅰ)由已知得:DE ⊥AE, DE ⊥EC, AE ⋂EC =E, ∴DE ⊥平面ABCE, ∴DE ⊥BC, 又BC ⊥CE, DE ⋂EC =E , ∴BC ⊥平面DCE(Ⅱ)取AB 中点H ,连接GH , FH. ∴GH ∥BD, FH ∥BC,∴GH ∥平面BCD, FH ∥平面BCD(第18题)BD ∴平面FHG ∥平面BCD, ∴GF ∥平面BCD (或证明CQ ∥FG )(Ⅲ)当R 点满足3AR =RE 时,平面BDR ⊥平面BDC.证明:取BD 中点Q ,连结DR , BR , CQ , RQ计算得2,2CD BD CR DR CQ =====在△BDR 中2BR DR BD ===Q 延长BQ 到S 使SQ =RQ ,则在平行四边形BRDS 中, 对角线的平方和等于四边的平方和.由2222)2()(2RQ BD DR BR +=+可知RQ =, ∴在△CRQ 中,222CQ RQ CR += , ∴ CQ ⊥RQ又在△CBD 中, CD =CB, Q 为BD 的中点,∴CQ ⊥BD, BD ⋂RQ =Q ∴CQ ⊥平面BDR , 又CQ ⊂平面BDC, ∴平面BDC ⊥平面BDR 18. 解:(Ⅰ)因为∠ABC =90°,AD ∥BC ,所以AD ⊥AB.而平面PAB ⊥平面ABCD ,且平面PAB I 平面ABCD =AB,所以AD ⊥平面PAB, 所以AD ⊥PA. 同理可得AB ⊥PA. 由于AB 、AD ⊂平面ABCD ,且AB I AD =C, 所以PA ⊥平面ABCD.(Ⅱ)(解法一)不平行.证明:假定直线l ∥平面ABCD,由于l ⊂平面PCD ,且平面PCD I 平面ABCD =CD, 所以l ∥CD. 同理可得l ∥AB, 所以AB ∥CD. 这与AB 和CD 是直角梯形ABCD 的两腰相矛盾,故假设错误,所以直线l 与平面ABCD 不平行.(解法二)因为梯形ABCD 中AD ∥BC, 所以直线AB 与直线CD 相交,设AB I CD =T. 由T ∈CD ,CD ⊂平面PCD 得T ∈平面PCD. 同理T ∈平面PAB. 即T 为平面PCD 与平面PAB 的公共点,于是PT 为平面PCD 与平面PAB 的交线.所以直线l 与平面ABCD 不平行. 19. 证明:(Ⅰ)因为PA ⊥底面ABCD ,所以PA ⊥CD ,又AC ⊥CD ,且AC ⋂PA =A , 所以CD ⊥平面PAC , 又CD ⊂平面PCD ,所以平面PAC ⊥平面PCD .GAB 1FP(Ⅱ)解法一:取AE 中点G ,连接FG ,B G .因为F 为ED 的中点,所以FG ∥AD 且FG =12AD . 在△ACD 中,AC ⊥CD ,∠DAC =60°, 所以AC =12AD ,所以BC =12AD .在△ABC 中,AB =BC =AC ,所以∠ACB =60°, 从而∠ACB =∠DAC ,所以AD ∥BC .综上,FG ∥BC ,FG =BC ,四边形FGBC 为平行四边形,所以CF ∥BG .又BG ⊂平面BAE ,CF ⊄平面BAE ,所以CF ∥平面BAE .解法二:延长DC 与AB 交于G 点,连接EG .因为在△ABC 中,AB =BC =AC ,所以∠CAB =60°, 所以∠CAB =∠CAD , 即AC 为∠DAG 的平分线.又AC ⊥CD ,所以AG =AD ,C 为DG 中点,又F 为ED 的中点. 所以CF ∥EG .根据EG ⊂平面BAE ,CF ⊄平面BAE ,所以CF ∥平面BAE .20. 解:(Ⅰ)因为ABCD 为矩形,AB =2BC, P 为AB 的中点,所以三角形PBC 为等腰直角三角形,∠BPC =45°.同理可证∠APD =45°. 所以∠DPC =90°,即PC ⊥PD. 又DE ⊥平面ABCD ,PC 在平面ABCD 内,所以PC ⊥DE.因为DE ⋂PD =D ,所以PC ⊥PDE . 又因为PC 在平面PCF 内,所以平面PCF ⊥平面PDE. (Ⅱ)因为CF ⊥平面ABCD ,DE ⊥平面ABCD ,所以DE ∥CF. 又DC ⊥CF ,所以211424.22CEF S DC CF a a a ∆=⋅=⨯⨯=在平面ABCD 内,过P 作PQ ⊥CD 于Q ,则PQ ∥BC ,PQ =BC =2a . 因为BC ⊥CD ,BC ⊥CF , 所以BC ⊥平面PCEF ,所以 PQ ⊥平面DCEF , 亦即P 到平面DCEF 的距离为PQ =2a.2311842.333PCEF P CEF CEF V V PQ S a a a -∆==⋅=⋅⋅=(注:本题亦可利用31863P CEF B CEF E BCF D BCF V V V V DC BC CF a ----====⋅⋅=求得)21. 证明:(Ⅰ)连结AG 交BE 于D, 连接DF , EG.E BCA∵ E , G 分别是AA 1 , BB 1的中点,∴AE ∥BG 且AE =BG, ∴四边形AEGB 是平行四边形. ∴ D 是AG 的中点,又∵ F 是AC 的中点, ∴DF ∥CG则由DF ⊂面BEF, CG ⊄面BEF, 得CG ∥面BEF (注:也可证明平面A 1CG ∥平面BEF)(Ⅱ) ∵在直三棱柱ABC -A 1B 1C 1中,C 1C ⊥底面A 1B 1C 1, ∴C 1C ⊥A 1C 1 . 又∵∠A 1C 1B 1=∠ACB =90°, 即C 1B 1 ⊥A 1C 1, ∴ A 1C 1⊥面B 1C 1CB 而CG ⊂面B 1C 1CB, ∴ A 1C 1⊥CG 又CG ⊥C 1G, ∴CG ⊥平面A 1C 1G22. 解:(Ⅰ)证明:因为PA ⊥AD, PA ⊥AB, AB ⋂AD =A ,所以PA ⊥平面ABCD.(Ⅱ)证明:因为BC =PB =2CD, A 是PB 的中点,所以ABCD 是矩形,又E 为BC 边的中点,所以AE ⊥ED.又由PA ⊥平面ABCD, 得PA ⊥ED, 且PA ⋂AE =A, 所以ED ⊥平面PAE , 而ED ⊂平面PDE ,故平面PAE ⊥平面PDE.(Ⅲ)过点F 作FH ∥ED 交AD 于H ,再过H 作GH ∥PD 交PA 于G, 连结FG.由FH ∥ED, ED ⊂平面PED, 得FH ∥平面PED ; 由GH ∥PD ,PD ⊂平面PED ,得GH ∥平面PED ,又FH ⋂GH =H ,所以平面FHG ∥平面PED.所以FG ∥平面PDE. 再分别取AD 、PA 的中点M 、N ,连结BM 、MN , 易知H 是AM 的中点,G 是AN 的中点, 从而当点G 满足AG =41AP 时,有FG ∥平面PDE.23. 证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD , ∵CD ⊥BC 且AB ⋂BC =B , ∴CD ⊥平面ABC. 又∵λ==ADAFAC AE (10<<λ) ∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ⊂平面BEF,∴不论λ为何值, 恒有平面BEF ⊥平面ABC. (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC =CD =1,∠BCD =90°,∠ADB =60°,∴,660tan 2,2===οAB BD ∴722=+=BC AB AC由AB 2=AE·AC 得76=AE , ∴76==AC AE λ 故当76=λ时,平面BEF ⊥平面ACD.。

相关文档
最新文档