2013-2018全国新课标1.2卷文科数学立体几何题(附答案)
2013年全国高考文科数学 :立体几何

2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题错误!未指定书签。
.(2013年高考重庆卷 )某几何体的三视图如题(8)所示,则该几何体的表面积为( )A .180B .200C .220D .240错误!未指定书签。
.(2013年高考大纲卷)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23BCD .13【答案】A错误!未指定书签。
.(2013年高考浙江卷 )已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是A .108cm 3B .100 cm 3C .92cm 3D .84cm 3错误!未指定书签。
.(2013年高考北京卷 )如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有 ( ) A .3个B .4个C .5个D .6个错误!未指定书签。
.(2013年高考湖南 )已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个的矩形,则该正方体的正视图的面积等于______ ( )A B .1 C D错误!未指定书签。
.(2013年高考浙江卷 )设m.n 是两条不同的直线,α.β是两个不同的平面, ( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β错误!未指定书签。
.(2013年高考辽宁卷 )已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A B .C .132D .错误!未指定书签。
.(2013年高考广东卷 )设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 ( )1A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥错误!未指定书签。
2018年高考文数立体几何真题精选

2018年高考文数——立体几何一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .23.【2018全国一卷10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为A .B .C .D .5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是6.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为 A .B .C .D .1111ABCD A B C D -E 1CC AE CD 22325272A B C D ,,,ABC △93D ABC -1231832435437.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形个数为A.1B.2C.3D.4第7题图 第8题图8.【2018浙江卷3】某几何体的三视图如图所示,则该几何体的体积是 A .2B .4C .6D .89.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A ) 4 (B )8 (C )12 (D )16 二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.3.【2018江苏10】如图正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.__________.侧视图俯视图正视图2211S SA SB SA 30 SAB △8三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点, 且23BP DQ DA ==,求三棱锥Q ABP -的体积.2.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上且,求点到平面的距离.3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.P ABC -22AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM ABCD CD M CDC D AMD ⊥BMC AM P MC ∥PBD4.【2018北京卷18】如图,在四棱锥P−ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .5.【2018天津卷17】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案 一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D 10.D 二、填空题 1.π8 2.31 3.43三、解答题1.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE=13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.2解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB .因为AB =BC =,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC ==2,CM ==,∠ACB =45°.2322AC 12AC222OP OB PB +=12AC 23BC 423所以OM=,CH ==.所以点C 到平面POM 的距离为.3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP . MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .4.解:(Ⅰ)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥.∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(Ⅱ)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接,FG GD .253sin OC MC ACB OM ⋅⋅∠455455⊂CD ⊂⊄⊂∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .5.解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM=又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角. 在Rt △CAD 中,CD. 在Rt △CMD中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为34.6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,222),BP AC ==--,故111||||cos ,|||||5BP AC BP AC BP AC ⋅-===⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A BAB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(Ⅱ)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB ,由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D =111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C 因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=-由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C . (Ⅱ)设直线1AC 与平面1ABB 所成的角为θ. 由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===设平面1ABB 的法向量(,,)x y z =n . 由10,0,ABBB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅n |n n |因此,直线1AC 与平面1ABB 所成的角的正弦值是13. 9.解:(1)依题意可知:圆锥的高度为322422=-=OP , 所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。
2018年高考数学立体几何试题汇编

2018 年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.2 17 B.2 5 C.3 D.218.如图,在平行四边形ABCM 中,AB AC 3 ,∠ACM 90 ,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P为线段BC 上一点,且2BP DQ DA ,求三棱锥Q ABP 的体积.3全国1 卷理科理科第7 小题同文科第9 小题18. 如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点ABCD E, F AD ,BC DF △DFC C P 的位置,且PF BF .(1)证明:平面PEF 平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.全国 2 卷理科:9.在长方体ABCD A1B1C1D1 中,AB BC 1 ,AA1 3 ,则异面直线A D 与DB1 所成角的余弦值为1A.15B.56C.55D.2220.如图,在三棱锥P ABC 中,AB BC 2 2 ,PA PB PC AC 4 ,O 为AC 的中点.(1)证明:PO 平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30 ,求PC 与平面PAM 所成角的正弦值.全国3 卷理科3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是19.(12 分)如图,边长为 2 的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.ABCD CD M CD C D (1)证明:平面AMD⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.2018 年江苏理科:10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.15.(本小题满分14 分)在平行六面体A BCD A B C D 中,AA1 AB, AB1 B1C1.1 1 1 1求证:(1)A B∥平面A B C ;1 1(2)ABB A A BC平面平面.1 1 12018 年北京:(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2 (C)3 (D)4(16)(本小题14 分)如图,在三棱柱ABC - A1 B1 C1 中,C C 平面ABC,D,E,F,G 分别为1 AA ,AC,1AC ,1 1BB中点,AB=BC = 5 ,AC= AA =2.1(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD -C1 的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.2018 年浙江:3)是3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cmA .2 B.4 C.6 D.819.(本题满分15 分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C 均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB =BC =B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1 与平面ABB1 所成的角的正弦值.2018 年上海19.已知圆锥的顶点为P , 底面圆心为O, 半轻为 21. 设圆锥的母线长为 4 , 求圆锥的体积o2. 设PO 4, OA,OB 是底面半径, 且AOB 90 , M 为线段AB 的中点, 如图, 求异面直线PM 与OB 所成的角的大小。
2018年新课标I-、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018年普通高等学校招生全国统一考试(Ⅰ卷)文科数学注意事项:1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱 侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()f x f x x a =++( ),若()g x 存在2个零点,则a 的取值围是 A .[)10-,B .[)+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,ABC△的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p,2p,3p,则()A.12p p=B.13p p=C.23p p=D.123p p p=+ 11.已知双曲线2213xC y-=:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN△为直角三角形,则MN=()A.32B.3 C.23D.412.设函数()2010x xf xy-⎧=⎨>⎩,≤,,则满足()()12f x f x+<的x的取值围是()A.(]1-∞,B.()0+∞,C.()10-,D.()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22logf x x a=+,若()31f=,则a=________.14.若x y,满足约束条件22010x yx yy--⎧⎪-+⎨⎪⎩≤≥≤,则32z x y=+的最大值为________.15.直线1y x=+与圆22230x y y++-=交于A B,两点,则AB= ________.16.ABC△的角A B C,,的对边分别为a b c,,,已知sin sin4sin sinb Cc B a B C+=,2228b c a+-=,则ABC△的面积为________.三、解答题(共70分。
2018年全国卷文数(新课标1)立体几何

2018年全国卷文数(新课标1)立体几何5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】D【解析】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,可得:,解得,则该圆柱的表面积为:.故选:D.利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是基本知识的考查.9.某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. B. C. 3 D. 2【答案】B【解析】解:由题意可知几何体是圆柱,底面周长16,高为2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:.故选:B.判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.10.在长方体中,,与平面所成的角为,则该长方体的体积为A. 8B.C.D.【答案】C【解析】解:长方体中,,与平面所成的角为,即,可得.可得.所以该长方体的体积为:.故选:C.画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.18.如图,在平行四边形ABCM中,,,以AC为折痕将折起,使点M到达点D的位置,且.证明:平面平面ABC;为线段AD上一点,P为线段BC上一点,且,求三棱锥的体积.【答案】解:证明:在平行四边形ABCM中,,,又且,面ADC,面ABC,平面平面ABC;,,,,由得,又,面ABC,三棱锥的体积.【解析】可得,且,即可得面ADC,平面平面ABC;首先证明面ABC,再根据,可得三棱锥的高,求出三角形ABP的面积即可求得三棱锥的体积.本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.。
2013-2018全国新课标1.2卷文科数学立体几何题(附答案)

2013-2018高考立体几何题文科数学(Ⅰ)(2013年):(11)某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ (15)已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O所得截面的面积为π,则球O 的表面积为_______。
(19)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=o 。
(Ⅰ)证明:1AB A C ⊥;(Ⅱ)若2AB CB ==,16AC =,求三棱柱111ABC A B C -的体积。
(2014年):(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是 A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱C 1B 1AA B C(19)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(Ⅰ)证明:证明:;1AB C B ⊥(Ⅱ)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高.(2015年):6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )816、已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面, (I )证明:平面AEC ⊥平面BED ; (II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.(2016年):7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是283π,则它的表面积是A . 17πB . 18πC . 20πD . 28π11.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面, 11ABB A n α⋂=平面,则m ,n 所成角的正弦值为A .32 B . 22 C . 33 D . 1318.如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于G(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(2017年):6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A. B. C. D.16.已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球O 的表面积为________.18.如图,在四棱锥P ABCD -中, AB CD P ,且90BAP CDP ∠=∠=︒. (1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===, 90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.(2018年):5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .B .C .D .9某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为 A.B.C. D. 210. 在长方体中,,与平面所成的角为,则该长方体的体积为 A. B. C.D.18.如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.2013-2018高考立体几何题文科数学(Ⅱ)(2013年):9、一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()(A) (B) (C) (D)(15)已知正四棱锥O ABCD -32,3则以O 为球心,OA 为半径的球的表面积为________。
2013--2015全国新课标二卷立体几何分类汇编(含答案).

2013年新课标全国Ⅱ卷文科立体几何9.(2013课标全国Ⅱ,文9一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1,(1,1,0,(0,1,1,(0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( .答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.15.(2013课标全国Ⅱ,文15已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为__________.答案:24π解析:如图所示,在正四棱锥O -ABCD 中, V O -ABCD =13×S 正方形ABCD ·|OO 1|=13×2(3×|OO 1|=322,∴|OO 1|=322,|AO 1|=62, 在Rt△OO 1A 中,OA =2211||||OO AO +=22326622⎛⎫⎛⎫+= ⎪⎪⎪⎪⎝⎭⎝⎭,即6R =, ∴S 球=4πR 2=24π.18.(2013课标全国Ⅱ,文18(本小题满分12分如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点. (1证明:BC 1∥平面A 1CD ;(2设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.证明:(1连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD .(2因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,22AB =得∠ACB =90°,2CD =,16A D =,3DE =,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以VC -A 1DE =1163232⨯⨯⨯⨯=1. 2014年新课标全国Ⅱ卷文科立体几何6.如图,网格纸上正方形小格的边长为1(表示1cm ,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为(A. 1727B. 59C. 1027D. 13【解析】..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π7.正三棱柱111C B A ABC -的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥11DC B A -的体积是(A. 3B.23 C. 1 D. 23 【解析】 ..13322131,//∴//111111---111111C V V V C AB D B C AB BD BD C B ABB C C AB B C AB D 故选的距离相等到面和点面=••••===∴18. (本小题满分12分如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ证明:PB ∥平面AEC ;(Ⅱ设置AP=1,AD=3,三棱锥 P-ABD 的体积V=43,求A 到平面PBD 的距离。
2012~2018高考立体几何文科真题 教师版

2012~2018立体几何文科真题目录2018高考真题 (1)一.选择题 (1)二.填空题 (7)三.解答题 (11)2017高考真题 (22)一.选择题 (22)二.填空题 (29)三.解答题 (33)2016高考真题 (48)一.选择题 (48)二.填空题 (53)三.解答题 (55)2015高考真题 (70)一.选择题 (70)二.填空题 (78)三.解答题 (81)2014高考真题 (104)一.选择题 (104)二.填空题 (115)三.解答题 (120)2013高考真题 (144)一.选择题 (144)二.填空题 (154)三.解答题 (162)2012高考真题 (185)一.选择题 (185)二.填空题 (195)三.解答题 (201)2018高考真题一.选择题(共9小题)1.(2018•新课标Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12√2πB.12πC.8√2πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=√2,则该圆柱的表面积为:π⋅(√2)2×2+2√2π×2√2=12π.故选:B.2.(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2√17B.2√5C.3D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:√22+42=2√5.故选:B.3.(2018•新课标Ⅰ)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6√2C.8√2D.8√3【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1=ABtan30°=2√3.可得BB1=√(2√3)2−22=2√2.所以该长方体的体积为:2×2×2√2=8√2.故选:C.4.(2018•新课标Ⅰ)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.√22B.√32C.√52D.√72【解答】解以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1棱长为2,则A (2,0,0),E (0,2,1),D (0,0,0),C (0,2,0),AE →=(﹣2,2,1),CD →=(0,﹣2,0),设异面直线AE 与CD 所成角为θ,则cosθ=|AE →⋅CD →||AE →|⋅|CD →|=√9⋅2=23, sinθ=√1−(23)2=√53, ∴tanθ=√52. ∴异面直线AE 与CD 所成角的正切值为√52. 故选:C .5.(2018•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A.2B.4C.6D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=12(1+2)⋅2⋅2=6.故选:C.6.(2018•浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1=SNNE =SNOM,tanθ3=SOOM,SN≥SO,∴θ1≥θ3,又sinθ3=SOSM ,sinθ2=SOSE,SE≥SM,∴θ3≥θ2.故选:D.7.(2018•新课标Ⅰ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.8.(2018•新课标Ⅰ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9√3,则三棱锥D﹣ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√3【解答】解:△ABC为等边三角形且面积为9√3,可得√34×AB2=9√3,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C=23×√32×6=2√3,OO′=√42−(2√3)2=2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:13×√34×63=18√3.故选:B.9.(2018•北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=√5,CD=√5,PC=3,PD=2√2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.二.填空题(共5小题)10.(2018•新课标Ⅰ)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为8π.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:12SA 2=8,解得SA=4,SA 与圆锥底面所成角为30°.可得圆锥的底面半径为:2√3,圆锥的高为:2, 则该圆锥的体积为:V=13×π×(2√3)2×2=8π. 故答案为:8π.11.(2018•江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 43 .【解答】解:正方体的棱长为2,中间四边形的边长为:√2,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×13×√2×√2×1=43. 故答案为:43.12.(2018•天津)如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,则四棱锥A 1﹣BB 1D 1D 的体积为 13.【解答】解:由题意可知四棱锥A 1﹣BB 1D 1D 的底面是矩形,边长:1和√2,四棱锥的高:12A 1C 1=√22.则四棱锥A 1﹣BB 1D 1D 的体积为:13×1×√2×√22=13.故答案为:13.13.(2018•全国)已知三棱锥O ﹣ABC 的体积为1,A 1、B 1、C 1分别为OA 、OB 、OC 的中点,则三棱锥O ﹣A 1B 1C 1的体积为 18.【解答】解:如图,∵A 1、B 1、C 1分别为OA 、OB 、OC 的中点,∴△A 1B 1C 1∽△ABC ,则S △A 1B 1C 1=14S △ABC ,过O 作OG ⊥平面ABC ,交平面A 1B 1C 1于G 1,则OG 1=12OG .∴V 三棱锥O−A 1B 1C 1=13S △A 1B 1C 1⋅OG 1=18×13S △ABC ⋅OG=18V O−ABC =18. 故答案为:18.14.(2018•全国)长方体ABCD ﹣A 1B 1C 1D 1,AB=AD=4,AA 1=8,E 、F 、G 为AB 、A 1B 1、DD 1的中点,H 为A 1D 1上一点,则A 1H=1,求异面直线FH 与EG 所成角的余弦值4√515.【解答】解:∵长方体ABCD ﹣A 1B 1C 1D 1,AB=AD=4,AA 1=8, E 、F 、G 为AB 、A 1B 1、DD 1的中点, H 为A 1D 1上一点,则A 1H=1,∴以D 为原点,DA 为x 国,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, F (4,2,8),H (3,0,8),E (4,2,0), G (0,0,4),FH →=(﹣1,﹣2,0),EG →=(﹣4,﹣2,4), 设异面直线FH 与EG 所成角为θ, 则cosθ=|FH →⋅EG →||FH →|⋅|EG →|=√5⋅√36=4√515. 故答案为:4√515.三.解答题(共9小题)15.(2018•新课标Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3√2,∴BP=DQ=23DA=2√2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V=13S△ABP×13DC=13×23S△ABC×13DC=13×23×12×3×3×13×3=1.16.(2018•新课标Ⅰ)如图,在三棱锥P﹣ABC中,AB=BC=2√2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解答】(1)证明:∵AB=BC=2√2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=√PA2−AO2=2√3,在△COM中,OM=√OC2+CM2−2OC⋅CMcos450=2√5 3.S△POM=12×PO×OM=12×2√3×2√53=2√153,S△COM=12×23×S△ABC=43.设点C到平面POM的距离为d.由V P﹣OMC =V C﹣POM⇒13×S△POM⋅d=13×S △OCM ×PO ,解得d=4√55,∴点C 到平面POM 的距离为4√55.17.(2018•浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅰ)求直线AC 1与平面ABB 1所成的角的正弦值.【解答】(I )证明:∵A 1A ⊥平面ABC ,B 1B ⊥平面ABC , ∴AA 1∥BB 1,∵AA 1=4,BB 1=2,AB=2,∴A 1B 1=√(AB)2+(AA 1−BB 1)2=2√2,又AB 1=√AB 2+BB 12=2√2,∴AA 12=AB 12+A 1B 12, ∴AB 1⊥A 1B 1,同理可得:AB 1⊥B 1C 1, 又A 1B 1∩B 1C 1=B 1, ∴AB 1⊥平面A 1B 1C 1.(II )解:取AC 中点O ,过O 作平面ABC 的垂线OD ,交A 1C 1于D , ∵AB=BC ,∴OB ⊥OC ,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=√3,以O 为原点,以OB ,OC ,OD 所在直线为坐标轴建立空间直角坐标系如图所示:则A (0,﹣√3,0),B (1,0,0),B 1(1,0,2),C 1(0,√3,1), ∴AB →=(1,√3,0),BB 1→=(0,0,2),AC 1→=(0,2√3,1), 设平面ABB 1的法向量为n →=(x ,y ,z ),则{n →⋅AB →=0n →⋅BB 1→=0, ∴{x +√3y =02z =0,令y=1可得n →=(﹣√3,1,0),∴cos <n →,AC 1→>=n →⋅AC 1→|n →||AC 1→|=√32×√13=√3913. 设直线AC 1与平面ABB 1所成的角为θ,则sinθ=|cos <n →,AC 1→>|=√3913. ∴直线AC 1与平面ABB 1所成的角的正弦值为√3913.18.(2018•江苏)在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC .【解答】证明:(1)平行六面体ABCD ﹣A 1B 1C 1D 1中,AB ∥A 1B 1,AB ∥A 1B 1,AB ⊄平面A 1B 1C ,A 1B 1⊂∥平面A 1B 1C ⇒AB ∥平面A 1B 1C ;(2)在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB ,⇒四边形ABB 1A 1是菱形,⊥AB 1⊥A 1B .在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1⇒AB 1⊥BC . ∴{AB 1⊥A 1B ,AB 1⊥BC A 1B ∩BC =B A 1B ⊂面A 1BC ,BC ⊂面A 1BC⇒AB 1⊥面A 1BC ,且AB 1⊂平面ABB 1A 1⇒平面ABB 1A 1⊥平面A 1BC .19.(2018•江苏)如图,在正三棱柱ABC ﹣A 1B 1C 1中,AB=AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【解答】解:如图,在正三棱柱ABC ﹣A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB , 故以{OB →,OC →,OO 1→}为基底, 建立空间直角坐标系O ﹣xyz ,∵AB=AA 1=2,A (0,﹣1,0),B (√3,0,0), C (0,1,0),A 1(0,﹣1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP →=(−√32,−12,2),AC 1→=(0,2,2).|cos <BP →,AC 1→>|=|BP →⋅AC 1→||BP →|⋅|AC 1→|=√5×2√2=3√1020. ∴异面直线BP 与AC 1所成角的余弦值为:3√1020;(2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ →=(√32,32,0),AC 1→=(0,2,2),CC 1→=(0,0,2),设平面AQC 1的一个法向量为n →=(x ,y ,z ),由{AQ →⋅n →=√32x +32y =0AC 1→⋅n →=2y +2z =0,可取n →=(√3,﹣1,1),设直线CC 1与平面AQC 1所成角的正弦值为θ,sinθ=|cos <CC 1→,n →>|=|CC 1→⋅n →||CC 1→|⋅|n →|=√5×2=√55,∴直线CC 1与平面AQC 1所成角的正弦值为√55.20.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD ̂所在平面垂直,M 是CD̂上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD ̂所在平面垂直,所以AD ⊥半圆弦CD̂所在平面,CM ⊂半圆弦CD ̂所在平面, ∴CM ⊥AD ,M 是CD̂上异于C ,D 的点.∴CM ⊥DM ,DM ∩AD=D ,∴CM ⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ; (2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得MC ∥OP ,MC ⊄平面BDP ,OP ⊂平面BDP , 所以MC ∥平面PBD .21.(2018•上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA 、OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.【解答】解:(1)∵圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4,∴圆锥的体积V=13×π×r 2×ℎ=13×π×22×√42−22=8√3π3.(2)∵PO=4,OA ,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,∴以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴, 建立空间直角坐标系,P (0,0,4),A (2,0,0),B (0,2,0), M (1,1,0),O (0,0,0), PM →=(1,1,﹣4),OB →=(0,2,0), 设异面直线PM 与OB 所成的角为θ, 则cosθ=|PM →⋅OB →||PM →|⋅|OB →|=√18⋅2=√26. ∴θ=arccos√26. ∴异面直线PM 与OB 所成的角的为arccos√26.22.(2018•北京)如图,在四棱锥P ﹣ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA=PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅰ)求证:平面PAB ⊥平面PCD ;(Ⅰ)求证:EF ∥平面PCD .【解答】证明:(Ⅰ)PA=PD ,E 为AD 的中点,可得PE ⊥AD ,底面ABCD 为矩形,可得BC ∥AD ,则PE ⊥BC ;(Ⅰ)由于平面PAB 和平面PCD 有一个公共点P ,且AB ∥CD ,在平面PAB 内过P 作直线PG ∥AB ,可得PG ∥CD ,即有平面PAB ∩平面PCD=PG ,由平面PAD ⊥平面ABCD ,又AB ⊥AD ,可得AB ⊥平面PAD ,即有AB ⊥PA ,PA ⊥PG ;同理可得CD ⊥PD ,即有PD ⊥PG ,可得∠APD 为平面PAB 和平面PCD 的平面角,由PA ⊥PD ,可得平面PAB ⊥平面PCD ;(Ⅰ)取PC 的中点H ,连接DH ,FH ,在三角形PCD 中,FH 为中位线,可得FH ∥BC ,FH=12BC , 由DE ∥BC ,DE=12BC ,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.23.(2018•天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2√3,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅰ)求异面直线BC与MD所成角的余弦值;(Ⅰ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅰ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=√AD2+AM2=√13,∵AD⊥平面ABC,故AD⊥AC,在Rt △DAN 中,AN=1,故DN=√AD 2+AN 2=√13,在等腰三角形DMN 中,MN=1,可得cos ∠DMN=12MN DM =√1326. ∴异面直线BC 与MD 所成角的余弦值为√1326; (Ⅰ)解:连接CM ,∵△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM=√3,又∵平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,则∠CDM 为直线CD 与平面ABD 所成角.在Rt △CAD 中,CD=√AC 2+AD 2=4,在Rt △CMD 中,sin ∠CDM=CM CD =√34. ∴直线CD 与平面ABD 所成角的正弦值为√34.2017高考真题一.选择题(共8小题)1.(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.2.(2017•新课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A .90πB .63πC .42πD .36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣12•π•32×6=63π, 故选:B .3.(2017•新课标Ⅰ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r=√12−(12)2=√32,∴该圆柱的体积:V=Sh=π×(√32)2×1=3π4. 故选:B .4.(2017•新课标Ⅰ)在正方体ABCD ﹣A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC【解答】解:法一:连B 1C ,由题意得BC 1⊥B 1C ,∵A 1B 1⊥平面B 1BCC 1,且BC 1⊂平面B 1BCC 1,∴A 1B 1⊥BC 1,∵A 1B 1∩B 1C=B 1,∴BC 1⊥平面A 1ECB 1,∵A 1E ⊂平面A 1ECB 1,∴A 1E ⊥BC 1.故选:C .法二:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为2,则A 1(2,0,2),E (0,1,0),B (2,2,0),D (0,0,0),C 1(0,2,2),A (2,0,0),C (0,2,0),A 1E →=(﹣2,1,﹣2),DC 1→=(0,2,2),BD →=(﹣2,﹣2,0),BC 1→=(﹣2,0,2),AC →=(﹣2,2,0),∵A 1E →•DC 1→=﹣2,A 1E →⋅BD →=2,A 1E →⋅BC 1→=0,A 1E →⋅AC →=6, ∴A 1E ⊥BC 1.故选:C .5.(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1D.3π2+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为12×13×π×12×3+13×12×√2×√2×3=π2+1,故选:A.6.(2017•浙江)如图,已知正四面体D ﹣ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为AB 、BC 、CA 上的点,AP=PB ,BQ QC =CR RA=2,分别记二面角D ﹣PR ﹣Q ,D ﹣PQ ﹣R ,D ﹣QR ﹣P 的平面角为α、β、γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC 的中心为O . 不妨设OP=3.则O (0,0,0),P (0,﹣3,0),C (0,6,0),D (0,0,6√2),B (3√3,﹣3,0).Q (√3,3,0),R (−2√3,0,0),PR →=(−2√3,3,0),PD →=(0,3,6√2),PQ →=(√3,6,0),QR →=(−3√3,−3,0), QD →=(−√3,−3,6√2).设平面PDR 的法向量为n →=(x ,y ,z ),则{n →⋅PR →=0n →⋅PD →=0,可得{−2√3x +3y =03y +6√2z =0, 可得n →=(√6,2√2,−1),取平面ABC 的法向量m →=(0,0,1).则cos <m →,n →>=m →⋅n →|m →||n →|=√15,取α=arccos √15. 同理可得:β=arccos√681.γ=arccos √2√95. ∵√15>√2√95>√681. ∴α<γ<β.解法二:如图所示,连接OP ,OQ ,OR ,过点O 分别作垂线:OE ⊥PR ,OF ⊥PQ ,OG ⊥QR ,垂足分别为E ,F ,G ,连接DE ,DF ,DG .设OD=h .则tanα=OD OE .同理可得:tanβ=OD OF ,tanγ=OD OG .由已知可得:OE >OG >OF .∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B .7.(2017•北京)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60B.30C.20D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积=13×12×5×3×4=10.故选:D.8.(2017•全国)正三棱柱ABC﹣A1B1C1各棱长均为1,D为AA1的中点,则四面体A1BCD的体积是()A.√34B.√38C.√312D.√324【解答】解:如图,∵ABC﹣A1B1C1为正三棱柱,∴底面ABC为正三角形,侧面BB1C1C为正方形,V A1BCD =V ABC−A1B1C1−V A1−BB1C1C﹣V D﹣ABC=12×1×√32×1−13×1×√32−13×12×1×√32×12=√324.故选:D .二.填空题(共7小题)9.(2017•新课标Ⅰ)已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为 36π .【解答】解:三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r ,可得13×12×2r ×r ×r =9,解得r=3.球O 的表面积为:4πr 2=36π. 故答案为:36π.10.(2017•新课标Ⅰ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 14π .【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为:12√32+22+12=√142.则球O 的表面积为:4×(√142)2π=14π.故答案为:14π.11.(2017•江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是 32.【解答】解:设球的半径为R ,则球的体积为:43πR 3,圆柱的体积为:πR 2•2R=2πR 3.则V 1V 2=2πR 34πR 33=32. 故答案为:32.12.(2017•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为9π2.【解答】解:设正方体的棱长为a , ∵这个正方体的表面积为18, ∴6a 2=18,则a 2=3,即a=√3,∵一个正方体的所有顶点在一个球面上, ∴正方体的体对角线等于球的直径, 即√3a=2R ,即R=32,则球的体积V=43π•(32)3=9π2;故答案为:9π2.13.(2017•上海)已知球的体积为36π,则该球主视图的面积等于 9π .【解答】解:球的体积为36π,设球的半径为R ,可得43πR 3=36π,可得R=3,该球主视图为半径为3的圆, 可得面积为πR 2=9π. 故答案为:9π.14.(2017•上海)如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标是 (﹣4,3,2) .【解答】解:如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点, 过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系, ∵DB 1→的坐标为(4,3,2),∴A (4,0,0),C 1(0,3,2), ∴AC 1→=(−4,3,2). 故答案为:(﹣4,3,2).15.(2017•山东)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 2+π2.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V 1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V 2=14×π×12×1=π4,则该几何体的体积V=V 1+2V 1=2+π2,故答案为:2+π2.三.解答题(共11小题)16.(2017•新课标Ⅰ)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P ﹣ABCD 中,∠BAP=∠CDP=90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD=P ,∴AB ⊥平面PAD ,∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .解:(2)设PA=PD=AB=DC=a ,取AD 中点O ,连结PO , ∵PA=PD=AB=DC ,∠APD=90°,平面PAB ⊥平面PAD , ∴PO ⊥底面ABCD ,且AD=√a 2+a 2=√2a ,PO=√22a , ∵四棱锥P ﹣ABCD 的体积为83,由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =13×S 四边形ABCD ×PO=13×AB ×AD ×PO =13×a ×√2a ×√22a =13a 3=83, 解得a=2,∴PA=PD=AB=DC=2,AD=BC=2√2,PO=√2,∴PB=PC=√4+4=2√2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=12×PA×PD+12×PA×AB+12×PD×DC+12×BC×√PB2−(BC2)2=12×2×2+12×2×2+12×2×2+12×2√2×√8−2=6+2√3.17.(2017•新课标Ⅰ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2√7,求四棱锥P﹣ABCD的体积.【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面PAD,BC⊄平面PAD,∴直线BC∥平面PAD;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.设AD=2x,则AB=BC=x,CD=√2x,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=√22x ,PO=√3x ,PE=√PO 2+OE 2=√7x √2, △PCD 面积为2√7,可得:12PE ⋅CD =2√7,即:12×√7√2x ⋅√2x =2√7,解得x=2,PO=2√3.则V P ﹣ABCD =13×12(BC +AD )×AB ×PO=13×12×(2+4)×2×2√3=4√3.18.(2017•新课标Ⅰ)如图四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB=BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.【解答】证明:(1)取AC 中点O ,连结DO 、BO , ∵△ABC 是正三角形,AD=CD , ∴DO ⊥AC ,BO ⊥AC ,∵DO ∩BO=O ,∴AC ⊥平面BDO , ∵BD ⊂平面BDO ,∴AC ⊥BD .解:(2)法一:连结OE ,由(1)知AC ⊥平面OBD , ∵OE ⊂平面OBD ,∴OE ⊥AC ,设AD=CD=√2,则OC=OA=1,EC=EA , ∵AE ⊥CE ,AC=2,∴EC 2+EA 2=AC 2, ∴EC=EA=√2=CD ,∴E 是线段AC 垂直平分线上的点,∴EC=EA=CD=√2, 由余弦定理得:cos ∠CBD=BC 2+BD 2−CD 22BC⋅BD =BC 2+BE 2−CE 22BC⋅BE,即4+4−22×2×2=4+BE 2−22×2×BE,解得BE=1或BE=2, ∵BE <<BD=2,∴BE=1,∴BE=ED ,∵四面体ABCE 与四面体ACDE 的高都是点A 到平面BCD 的高h , ∵BE=ED ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1.法二:设AD=CD=√2,则AC=AB=BC=BD=2,AO=CO=DO=1, ∴BO=√4−1=√3,∴BO 2+DO 2=BD 2,∴BO ⊥DO ,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系, 则C (﹣1,0,0),D (0,0,1),B (0,√3,0),A (1,0,0),设E (a ,b ,c ),DE →=λDB →,(0≤λ≤1),则(a ,b ,c ﹣1)=λ(0,√3,﹣1),解得E (0,√3λ,1﹣λ),∴CE →=(1,√3λ,1−λ),AE →=(﹣1,√3λ,1−λ), ∵AE ⊥EC ,∴AE →⋅CE →=﹣1+3λ2+(1﹣λ)2=0,由λ∈[0,1],解得λ=12,∴DE=BE ,∵四面体ABCE 与四面体ACDE 的高都是点A 到平面BCD 的高h , ∵DE=BE ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1.19.(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊄平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.20.(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅰ的高均为32cm,容器Ⅰ的底面对角线AC的长为10√7cm,容器Ⅰ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅰ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅰ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴AN AM =NP MC ,AN 40=1230,得AN=16cm . ∴玻璃棒l 没入水中部分的长度为16cm .(2)设玻璃棒在GG 1上的点为M ,玻璃棒与水面的交点为N , 在平面E 1EGG 1中,过点N 作NP ⊥EG ,交EG 于点P , 过点E 作EQ ⊥E 1G 1,交E 1G 1于点Q ,∵EFGH ﹣E 1F 1G 1H 1为正四棱台,∴EE 1=GG 1,EG ∥E 1G 1, EG ≠E 1G 1,∴EE 1G 1G 为等腰梯形,画出平面E 1EGG 1的平面图, ∵E 1G 1=62cm ,EG=14cm ,EQ=32cm ,NP=12cm , ∴E 1Q=24cm ,由勾股定理得:E 1E=40cm ,∴sin ∠EE 1G 1=45,sin ∠EGM=sin ∠EE 1G 1=45,cos ∠EGM=﹣35,根据正弦定理得:EM sin∠EGM =EG sin∠EMG ,∴sin ∠EMG=725,cos ∠EMG=2425,∴sin ∠GEM=sin (∠EGM +∠EMG )=sin ∠EGMcos ∠EMG +cos ∠EGMsin ∠EMG=35,∴EN=NP sin∠GEM =1235=20cm .∴玻璃棒l 没入水中部分的长度为20cm .21.(2017•江苏)如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB=AD=2,AA 1=√3,∠BAD=120°. (1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B ﹣A 1D ﹣A 的正弦值.【解答】解:在平面ABCD 内,过A 作Ax ⊥AD , ∵AA 1⊥平面ABCD ,AD 、Ax ⊂平面ABCD , ∴AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系.∵AB=AD=2,AA 1=√3,∠BAD=120°,∴A (0,0,0),B (√3,−1,0),C (√3,1,0), D (0,2,0),A 1(0,0,√3),C 1(√3,1,√3).A 1B →=(√3,−1,−√3),AC 1→=(√3,1,√3),DB→=(√3,−3,0),DA 1→=(0,−2,√3).(1)∵cos <A 1B →,AC 1→>=A 1B →⋅AC 1→|A 1B →||AC 1→|=√7×√7=−17. ∴异面直线A 1B 与AC 1所成角的余弦值为17;(2)设平面BA 1D 的一个法向量为n →=(x ,y ,z),由{n →⋅DB →=0n →⋅DA 1→=0,得{√3x −3y =0−2y +√3z =0,取x=√3,得n →=(√3,1,2√33); 取平面A 1AD 的一个法向量为m →=(1,0,0).∴cos <m →,n →>=m →⋅n→|m →||n →|=√31×√3+1+3=34. ∴二面角B ﹣A 1D ﹣A 的余弦值为34,则二面角B ﹣A 1D ﹣A 的正弦值为√1−(34)2=√74.22.(2017•浙江)如图,已知四棱锥P ﹣ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC=AD=2DC=2CB ,E 为PD 的中点. (Ⅰ)证明:CE ∥平面PAB ;(Ⅰ)求直线CE 与平面PBC 所成角的正弦值.【解答】证明:(Ⅰ)取AD 的中点F ,连结EF ,CF , ∵E 为PD 的中点,∴EF ∥PA ,在四边形ABCD 中,BC ∥AD ,AD=2DC=2CB ,F 为中点, ∴CF ∥AB ,∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅰ)连结BF ,过F 作FM ⊥PB 于M,连结PF , ∵PA=PD ,∴PF ⊥AD ,推导出四边形BCDF 为矩形,∴BF ⊥AD , ∴AD ⊥平面PBF ,又AD ∥BC , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC=CB=1,由PC=AD=2DC=2CB ,得AD=PC=2, ∴PB=√PC 2−BC 2=√4−1=√3,BF=PF=1,∴MF=12,又BC ⊥平面PBF ,∴BC ⊥MF ,∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF=12,D 到平面PBC 的距离应该和MF 平行且相等,为12,E 为PD 中点,E 到平面PBC 的垂足也为垂足所在线段的中点,即中位线,∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2, 由余弦定理得CE=√2,设直线CE 与平面PBC 所成角为θ,则sinθ=14CE =√28.23.(2017•天津)如图,在四棱锥P ﹣ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅰ)求证:PD ⊥平面PBC ;(Ⅰ)求直线AB 与平面PBC 所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=2+PD2=√5,故cos∠DAP=ADAP=√55.所以,异面直线AP与BC所成角的余弦值为√5 5.证明:(Ⅰ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅰ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得sin∠DFP=PDDF=√55.所以,直线AB与平面PBC所成角的正弦值为√5 5.24.(2017•北京)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD ⊂平面BDE ,可得平面BDE ⊥平面PAC ;(3)PA ∥平面BDE ,PA ⊂平面PAC , 且平面PAC ∩平面BDE=DE , 可得PA ∥DE , 又D 为AC 的中点,可得E 为PC 的中点,且DE=12PA=1,由PA ⊥平面ABC , 可得DE ⊥平面ABC ,可得S △BDC =12S △ABC =12×12×2×2=1,则三棱锥E ﹣BCD 的体积为13DE•S △BDC =13×1×1=13.25.(2017•上海)如图,直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC ﹣A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小.【解答】解:(1)∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. ∴三棱柱ABC ﹣A 1B 1C 1的体积: V=S △ABC ×AA 1=12×AB ×AC ×AA 1 =12×4×2×5=20. (2)连结AM ,∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5,M 是BC 中点,∴AA 1⊥底面ABC ,AM=12BC =12√16+4=√5,∴∠A 1MA 是直线A 1M 与平面ABC 所成角,tan ∠A 1MA=AA 1AM =√5=√5,∴直线A 1M 与平面ABC 所成角的大小为arctan √5.26.(2017•山东)由四棱柱ABCD ﹣A 1B 1C 1D 1截去三棱锥C 1﹣B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:A 1O ∥平面B 1CD 1;(Ⅰ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【解答】证明:(Ⅰ)取B1D1中点G,连结A1G、CG,∵四边形ABCD为正方形,O为AC与BD 的交点,OC,∴四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,A1G∥=∴四边形OCGA1是平行四边形,∴A1O∥CG,∵A1O⊄平面B1CD1,CG⊂平面B1CD1,∴A1O∥平面B1CD1.B1D1,(Ⅰ)四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,BD∥=∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥A1E,∵四边形ABCD为正方形,O为AC与BD 的交点,∴AO⊥BD,∵M是OD的中点,E为AD的中点,∴EM⊥BD,∵A1E∩EM=E,∴BD⊥平面A1EM,∵BD∥B1D1,∴B1D1⊥平面A1EM,∵B1D1⊂平面B1CD1,∴平面A1EM⊥平面B1CD1.2016高考真题一.选择题(共8小题)1.(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π【解答】解:由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图:可得:78×43πR 3=28π3,R=2.它的表面积是:78×4π•22+34×π⋅22=17π. 故选:A .2.(2016•新课标Ⅰ)平面α过正方体ABCD ﹣A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为( )A .√32B .√22C .√33D .13【解答】解:如图:α∥平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABA 1B 1=n , 可知:n ∥CD 1,m ∥B 1D 1,∵△CB 1D 1是正三角形.m 、n 所成角就是∠CD 1B 1=60°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2018高考立体几何题文科数学(Ⅰ)(2013年):(11)某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ (15)已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O 的表面积为_______。
(19)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=。
(Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,1AC 111ABC A B C -的体积。
(2014年):(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是 A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱1(19)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(Ⅰ)证明:证明:;1AB C B ⊥(Ⅱ)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.(2015年):6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )816、已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 . 18. (本小题满分12分)如图四边形ABCD为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ; (II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为3.(2016年):7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是283π,则它的表面积是A . 17πB . 18πC . 20πD . 28π11.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面, 11ABB A n α⋂=平面,则m ,n 所成角的正弦值为A .B . 2C .D . 1318.如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于G(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(2017年):6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A. B. C. D.16.已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球O 的表面积为________.18.如图,在四棱锥P ABCDBAP CDP∠=∠=︒.-中,AB CD,且90(1)证明:平面PAB⊥平面PAD;(2)若PA PD AB DC∠=︒,且四棱锥===,90APD,求该四棱锥的侧面积.-的体积为8P ABCD3(2018年):5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.9某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B. C. D. 210. 在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.18.如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.2013-2018高考立体几何题文科数学(Ⅱ)(2013年):9、一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()(A) (B) (C) (D)(15)已知正四棱锥O ABCD -的体积为2,则以O 为球心,OA 为半径的球的表面积为________。
(18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,。
(Ⅰ)证明:1//BC 平面11ACD ;(Ⅱ)设12AA AC CB ===,AB =1C A DE -的体积。
(2014年):(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727(B ) 59 (C )1027 (D) 13(7)正三棱柱111ABC A B C -的底面边长为2D 为BC 中点则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D)1A(18)(本小题满分12分)如图,四凌锥p —ABCD 中,底面ABCD 为矩形,PA 上面ABCD ,E 为PD 的点。
(I )证明:PP//平面AEC; (II)设置AP=1,AD=3,三棱锥 P-ABD 的体积V=43,求A 到平面PBD 的距离。
(2015年):6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.510. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.36π B. 64π C.144π D. 256π19. (本小题满分12分)如图,长方体1111ABCD A BC D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由);(II )求平面α把该长方体分成的两部分体积的比值.(2016年):4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为(A )12π (B )323π(C )8π (D )4π7.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π19.如图,菱形ABCD 的对角线AC 与BD 交于点O ,点,E F 分别在,AD CD 上,,AE CF EF =交BD 于点H,将DEF ∆沿EF 折起到'D EF ∆的位置. (Ⅰ)证明: 'AC HD ⊥;(Ⅱ)若55,6,,'4AB AC AE OD ====求五棱锥'D ABCFE -的体积.(2017年):6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .B .C .D .15.长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为__________.17.四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为P ABCD -的体积.(2018年):9.在正方体中,为棱的中点,则异面直线与所成角的正切值为A .B .C .D .16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.19.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.2013-2018高考立体几何题文科数学参考答案1(2013年):(11)A (15)29π(2014年):(8)B (16)15019.【解析】(I )连结1BC ,则O 为1BC 与1B C 的交点,因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,又AO ⊥平面11BB C C ,故1B C AO⊥1B C ⊥平面ABO ,由于AB ⊂平面ABO ,故1B C ⊥AB .(II )作OD ⊥BC,垂足为D,连结AD,作OH ⊥AD,垂足H, 由于BC ⊥AO,BC ⊥OD,故BC ⊥平面AOD,所以OH ⊥BC. 又OH ⊥AD,所以OH ⊥平面ABC.因为1,601==∠BC CBB ,所以△1CBB 为等边三角形,又BC=1,可得,由于1AB AC ⊥,所以11122OA B C ==,由 OH ·AD=OD ·OA,且AD ==又O 为B 1C 的中点,所以点B 1 到平面ABC ,.(2015年):(6)B(11)B18.(II )设AB =x ,在菱形ABCD 中,由ÐABC =120°,可得AG =GC x ,GB =GD =2x .因为AE ^EC ,所以在Rt D AEC 中,可得EG x .由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE x .由已知得,三棱锥E-ACD 的体积31132243E ACD V AC GD BEx -=醋?=.故x =2从而可得AE =EC =ED .所以D EAC 的面积为3,D EAD 的面积与D ECD故三棱锥E-ACD 的侧面积为(2016年):(7)A 【解析】试题分析:由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的18,即该几何体是78个球,设球的半径为R ,则37428R 833V ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和,即22734221784πππ⨯⨯+⨯⨯=,故选A. (11)A 【解析】试题分析:如图,设平面11CB D ⋂平面ABCD ='m ,平面11CB D ⋂平面11ABB A = 'n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111,BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60︒,故,m n A.18.(Ⅰ)见解析;(Ⅱ)作图见解析,体积为43.【解析】试题分析:证明.AB PG ⊥由PA PB =可得G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.根据正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE ==在等腰直角三角形EFP 中,可得 2.EF PF ==四面体PDEF 的体积114222.323V =⨯⨯⨯⨯=试题解析:(Ⅰ)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥ 因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥, PB PC ⊥,又EF PB ,所以EF PA EF PC ⊥⊥,,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连结CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(Ⅰ)知, G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB , DE ⊥平面PAB ,所以DE PC ,因此21,.33PE PG DE PC == 由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF == 所以四面体PDEF 的体积114222.323V =⨯⨯⨯⨯=(2017年):(7)A 【解析】对于B ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于C ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于D ,易知AB ∥NQ ,则直线AB ∥平面MNQ .故排除B ,C ,D ,选A .(16)36π【解析】三棱锥S−ABC的所有顶点都在球O 的球面上,SC是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9,可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得,解得r=3.球O 的表面积为:.18.(1)证明见解析;(2)6+【解析】试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥, CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且,2AD PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥, CD PD ⊥. 由于AB CD ,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知, AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =, 2PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==, AD BC ==, PB PC ==. 可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin6062BC +︒=+.(2018年):(5)B 详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.(9)B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.(10)C【解析】分析:首先画出长方体,利用题中条件,得到,根据,求得,可以确定,之后利用长方体的体积公式详解:在长方体中,连接,根据线面角的定义可知,因为,所以,从而求得,所以该长方体的体积为,故选C.点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.18.【解析】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=.又,所以.作QE⊥AC,垂足为E,则.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥的体积为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.2013-2018高考立体几何题文科数学2(2013年):(9)【答案】A 【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分), 所以选A.(15)【答案】24π【解析】设正四棱锥的高为h ,则2132h ⨯=,解得高2h =。