《立体几何》专题(文科)

合集下载

高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)

高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)

2012-2018年新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】 【2014,8】 【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C 6,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2018,18】如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA 。

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。

专题8.3 立体几何综合问题(原卷版)文科生

专题8.3 立体几何综合问题(原卷版)文科生

【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。

专题4:立体几何(文科)

专题4:立体几何(文科)

专题四:立体几何 【一、基础知识归类:】1、三视图画法规则:高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等2、空间几何体三视图:正视图(从前向后的正投影);侧视图(从左向右的正投影); 俯视图(从上向下正投影). 3、空间几何体的直观图——斜二测画法特点:①斜二测坐标系的y 轴与x 轴正方向成 45角; ②原来与x 轴平行的线段仍然与x 平行,长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 常用结论:平面图形面积与其斜二侧直观图面积之比为22:1. 4、特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线):ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 S 球面=24R π5、柱体、锥体、台体和球的体积公式:V Sh =柱 2V Sh r h π==圆柱 13V S h =锥 h r V 231π=圆锥'1()3V S S h =台'2211()()33V S S h r rR R h π=++=++圆台V 球=343R π 6、空间线面的位置关系①直线与直线:相交、平行、异面(不同在任何一个平面内的两条直线); ②直线与平面:属于a ⊂α、相交a∩α=A 、平行a ∥α;③ 平面与平面:平行—没有公共点:α∥β、相交—有一条公共直线:α∩β=b . 7、垂直和平行证明问题的解决方法须熟练掌握两类相互转化关系: ① 平行转化 ② 垂直转化同时注意结合运用中位线定理、勾股定理、等腰(等边)三角形“三线合一”; 平行四边形两组对边分别平行且相等,对角线互相平分;菱形对边平行且四边相等,对角线互相垂直平分并平分对角; 矩形对边平行且相等,四个角为直角,以及对角线互相平分且相等;正方形对边平行且四边相等,四个角为直角,对角线互相垂直平分且相等并平分对角; 梯形上底和下底平行; 圆直径对应圆周角为直角、垂径定理、过切点的半径垂直于切线等. 8、立体几何中体积的求法:直接法、割补法、等积转化等方法. 等积转化在三棱锥求体积或求点到面的距离问题中经常运用.【二、专题练习:】一、选择题(本大题共12小题,每小题5分,总分60分)1.(2009天津重点学校二模) 如图,直三棱柱的主视图面积为2a 2,则左视图的面积为( )A .2a 2B .a 2C .23a D .243a2.(2009枣庄市二模)一个几何体的三视图如图所示, 则这个几何体的体积等于( ) A .361a B .321a C .332a D .365a 3.(2009青岛二模)下图为长方体木块堆成的几何体三视图,则组成此几何体的长方体木块块数共有( )A .3块B .4块C .5块D .6块4.(2009广东省恩城中学)半径为2cm 的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( )A .4cmB .2cmC .cm 32D .cm 3aaa5.(2005全国卷Ⅰ)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) A.32B .33 C .34 D .23 6.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( ) A.48+ B.48+C.36+ D.36+7.(2009汕头一模)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A, B, C 到平面β的距离相等,则α∥β. 其中正确命题的个数为( )个.A .0B .1C .2D .38.(2007宁夏理)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3 B .38000cm 3C .32000cmD .34000cm 9.(2009泰安一模)一个几何体的三视图如图所示,则这个几何体的 体积等于( )A .4B .6C .8D .12正视图侧视图俯视图66663334410.设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( ) A .βαβα⊥⊥,//,b a B .βαβα//,,⊥⊥b a C .βαβα//,,⊥⊂b a D .βαβα⊥⊂,//,b a11.(2009玉溪市民族中学第四次月考)若球O 的半径为1,点A 、B 、C 在球面上,它们任意两点的球面距离都等于,2π则过A 、B 、C 的小圆面积与球表面积之比为 ( ) A .121 B .81 C .61 D .4112.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为( )A .1:1B .1:2C .2:1D .3:2二、填空题(本大题共4小题,每小题4分,总分16分)13.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是 .14.在半径为13的球面上有A , B , C 三点,AB=6,BC=8,CA=10,则球心到平面ABC 的距离为 . 15.图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是 .16.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D ,作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .三、解答题(本大题共6小题,总分74分)17.右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且2P D A D E C ===2.(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;(2)求四棱锥B -CEPD 的体积; (3)求证://BE 平面PDA .18.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º. (Ⅰ)证明:AB ⊥PC ;(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积.PABCDEDABC俯视图19.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC =12AD ,BE =12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE .20.如图,已知三棱柱ABC -A 1B 1C 1的所有棱长都相等,且侧棱垂直于底面,由B 沿棱柱侧面经过棱CC 1到点A 1的最短路线长为CC 1的交点为D . (1)求三棱柱ABC -A 1B 1C 1的体积;(2)在平面A 1BD 内是否存在过点D 的直线与平面ABC 平行?证明你的判断;(3)证明:平面A 1BD ⊥平面A 1ABB 1.DC 1B 1A 1CBA21.(2009届广东省重点中学高三模拟)如图:已知四棱柱ABCD—A1B1C1D1的底面是正方形,O1.O分别是上.下底面的中心,A1O⊥平面ABCD.(1)求证:平面O1DC⊥平面ABCD;(2)若点E在棱AA1上,且AE=2EA1,问在棱BC上是否存在点F,使得EF⊥BC?若存在,求出其位置;若不存在,说明理由.22.(2007-2008汕头市金山中学)已知等腰梯形PDCB 中(如图1),PB=3,DC=1,PD=BC =2,A 为PB 边上一点,且P A=1,将△P AD 沿AD 折起,使面P AD ⊥面ABCD (如图2). (Ⅰ)证明:平面P AD ⊥PCD ;(Ⅱ)试在棱PB 上确定一点M ,使截面AMC 把几何体分成的两部分1:2: MACB PD CMA V V ; (Ⅲ)在M 满足(Ⅱ)的情况下,判断直线PD 是否平行面AMC .正视图侧视图俯视图【参考答案】一、选择题1—5:C D B D A6.答案:A 解析:棱锥的直观图如右,则有PO =4,OD =3,由勾股定理,得PD =5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,故选A . 7—9:B B A10.答案:C 解析:由b β⊥,α∥β得b α⊥,又a α⊂,可知b a ⊥,故a b ⊥的一个充分条件是C . 11.答案 C12.【解析】选C .由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积 在底面正六边形ABCDER 中,BH =ABtan30°AB 而BD故DH =2BH 于是V D -GAC =2V B -GAC =2V P -GAC . 二、填空题13.恢复后的原图形为一直角梯形1(11)222S =+⨯=+ 14.答案:12解析:由ABC ∆的三边大小易知此三角形是直角三角形,所以过,,A B C 三点小圆的直径即为10,也即半径是5,设球心到小圆的距离是d ,则由222513d +=,可得12d =.15.【解析】向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,设长方体的高为x ,则()()42122214x x x +=++,所以3x =,所以长方体的体积为3.16.【解析】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面A D B ,即有CB BD ⊥,对于2,1,CD BC BD ==∴,又1,2AD AB ==,因此有AD BD ⊥,则有12t =,因此t 的取值范围是1,12⎛⎫⎪⎝⎭. 三、解答题17.解:(1)该组合体的主视图和侧视图如右图示:-----3分 (2)∵PD ⊥平面ABCD ,PD ⊂平面PDCE ∴平面PDCE ⊥平面ABCD∵BC CD ⊥ ∴BC ⊥平面PDCE ----------5分 ∵11()32322S PD EC DC =+⋅=⨯⨯=梯形PDCE --6分∴四棱锥B -CEPD 的体积1132233B CEPD PDCE V S BC -=⋅=⨯⨯=梯形.----8分 (3)证明:∵//EC PD ,PD ⊂平面PDA ,EC ⊄平面PDA∴EC//平面PDA ,------------------------------------10分 同理可得BC//平面PDA ----------------------------11分∵EC ⊂平面EBC,BC ⊂平面EBC 且ECBC C =∴平面BEC //平面PDA -----------------------------13分又∵BE ⊂平面EBC ∴BE//平面PDA------------------------------------------14分 18.解析:(Ⅰ)因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =. 如图,取AB 中点D ,连结PD ,CD ,则PD AB ⊥,CD AB ⊥, 所以AB ⊥平面PDC , 所以AB PC ⊥.(Ⅱ)作BE PC ⊥,垂足为E ,连结AE . 因为Rt PBC Rt PAC ∆≅∆,所以AE PC ⊥,AE BE =.由已知,平面PAC ⊥平面PBC ,故90AEB ∠=︒.因为Rt AEB Rt PEB ∆≅∆,所以,,AEB PEB CEB ∆∆∆都是等腰直角三角形. 由已知4PC =,得2AE BE ==, AEB ∆的面积2S =. 因为PC ⊥平面AEB , 所以三角锥P ABC -的体积1833V S PC =⨯⨯=.19.证明:(1)由题设知,FG =GA ,FH =HD ,所以GH =12AD .又BC =12AD ,故GH =BC ,所以四边形BCHG 是平行四边形. (2)C 、D 、F 、E 四点共面.理由如下:由BE =12AF ,G 是F A 的中点知,BE =GF ,所以EF ∥BG ,由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 直线FH 上,所以C 、D 、F 、E 四点共面.(3)连结EG ,由AB =BE ,BE =AG ,及∠BAG =90°知ABEG 是正方形,O B 2DC 1B 1A 1CBA故BG ⊥EA .由题设知,F A 、AD 、AB 两两垂直,故AD ⊥平面F ABE , 因此EA 是ED 在平面F ABE 内的射影,∴BG ⊥ED . 又EC ∩EA =E ,所以BG ⊥平面ADE . 又BG ∥CH ,所以CH ⊥平面ADE故由CH ⊂平面CDFE ,得平面ADE ⊥平面CDE .20.解:(1)如图,将侧面BB 1C 1C 绕棱CC 1旋转120°使其与侧面AA 1C 1C 在同一平面上,点B 运动到点B 2的位置,连接A 1B 2,则A 1B 2就是由点B 沿棱柱侧面经过棱CC 1到点A 1的最短路线。

高考立体几何文科大题及答案

高考立体几何文科大题及答案
(Ⅰ)证明: ;
(Ⅱ)求二面角A— —B的大小。
14.(2009宁夏海南卷文)如图,在三棱锥 中,⊿ 是等边三角形,∠PAC=∠PBC=90(Ⅰ)证明:AB⊥PC
(Ⅱ)若 ,且平面 ⊥平面 ,
求三棱锥 体积。
15.(2009福建卷文)如图,平行四边形 中, , 将
沿 折起到 的位置,使平面 平面
(I)求证:
又底面ABCD是正方形, CD AD,又SD AD=D, CD 平面SAD。
过点D在平面SAD内做DF AE于F,连接CF,则CF AE,
故 CFD是二面角C-AE-D的平面角,即 CFD=60°
在Rt△ADE中, AD= , DE= ,AE= 。
于是,DF=
在Rt△CDF中,由 cot60°=
得 ,即 =3
【解法2】如图,以D为原点建立空间直角坐标系 ,

则 ,
(Ⅰ)∵ ,
∴ ,
∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,
∴平面 .
(Ⅱ)当 且E为PB的中点时, ,
设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∵ ,
∴ ,
∴ ,即AE与平面PDB所成的角的大小为 .
由 得2AD= ,解得AD= 。
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(Ⅰ)设 ,则

高考文科数学专题5 立体几何 高考文科数学 (含答案)

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何第一讲 空间几何体1.棱柱、棱锥 (1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.(2)柱、锥的内切球找准切点位置,化归为平面几何 问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)体积公式①柱体的体积V =Sh ;②锥体的体积V =13Sh ;③台体的体积V =13(S ′+SS ′+S )h ;④球的体积V =43πR 3.1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2013·江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8 B.9 C.10 D.11答案 A解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.4. (2013·新课全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )答案 A解析根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.5. (2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知,该几何体为正方体和球组成的组合体,正方体的对角线为球的直径.所以2R=23,即R=3,球的表面积为S=4πR2=12π.题型一空间几何体的三视图例1(1)(2012·广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π(2)(2012·陕西)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左(侧)视图为( )审题破题根据三视图先确定原几何体的直观图和形状,然后再解题.答案(1)C (2)B解析 (1)由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.反思归纳 将三视图还原成直观图是解答该类问题的关键,其解题技巧是对常见简单几何体及其组合体的三视图,特别是正方体、长方体、圆柱、圆锥、棱柱、棱锥、球等几何体的三视图分别是什么图形,数量关系有什么特点等都应该熟练掌握,会画出其直观图,然后由三视图验证.变式训练1 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________ cm 3.答案 18解析 由几何体的三视图可知,该几何体由两个直四棱柱构成,其直观图如图所示.上底面直四棱柱的长是3 cm ,宽是3 cm ,高是1 cm ,故其体积为9 cm 3,下底面直四棱柱的高是3 cm ,长是1 cm ,宽是3 cm ,其体积为9 cm 3.故该几何体的体积为V =18 cm 3. 题型二 空间几何体的表面积和体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.审题破题 本题可从两个思路解题:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积,再利用棱锥的体积公式求出其体积; 思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,过O 1作。

立体几何文科专题复习总结

立体几何文科专题复习总结

1 / 5D1C1A1CB常规几何图形的立体几何问题1.如图,在长方体1111ABCD A B C D -中,点E 在棱1CC 的延11112CC C E BC AB ====.(Ⅰ)求证:1D E ∥平面1ACB ; (Ⅱ)求证:平面11D B E ⊥平面1DCB ;2.如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ∆为等腰三角形,90APD ∠=,平面PAD ⊥ 平面ABCD ,且1,2,AB AD E ==.F 分别为PC 和BD 的中点.(1)证明://EF 平面PAD ;(2)证明:平面PDC ⊥平面PAD ; (3)求四棱锥P ABCD -的体积.3.如图,已知四棱锥P ABCD -的底面ABCD 是菱形,PA ⊥平面ABCD , 点F 为PC 的中点. (Ⅰ)求证://PA 平面BDF ;(Ⅱ)求证:平面PAC ⊥平面BDF .4.如图,在棱长为2的正方体1111D C B A ABCD -中,O C B BC =⋂11,H 点为点O 在平面11DCC D 内的正投影. (1)求以A 为顶点,四边形CH 1D D 为底面的四棱锥的体积; (2)求证:⊥1BC 平面CD B A 11;5. 如图,一简单几何体的一个面ABC 内接于圆,O AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)证明:平面ACD ⊥平面ADE ;(2)若2AB =,1BC =,tan 2EAB ∠=,试求该几何体的体积V .6. 在长方体1111ABCD A B C D -中, 11,2AB BC AA ===, (1) 求证:AD ∥面BC D 1;AFP DCBC 1DCD 1B 1A 1ABH 4题5题2 / 5VB C ED甲DCBAF E乙DCBA(2) 证明:1BD AC ⊥;(3) 一只蜜蜂在长方体1111ABCD A B C D -中飞行,求它飞入三棱锥ABC D -1内的概率. 7.如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=105ADC ∠=,AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;(2)设CD a =,求三棱锥A -BFE 的体积.8. 在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点. (1)求证:EF//平面11D ABC ;(2)求证:EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.9.在棱长为1的正方体1111ABCD A B C D -中,,,,E F G H 分别是棱1111,,,AB CC D A BB 的中点.(1)证明://FH 平面1A EG ; (2)证明:AH EG ⊥; (3)求三棱锥1A EFG -的体积.10.如上图:AB 是圆O 的直径,2AB =,点C 在圆O 上,且60ABC ∠=︒,点V 到圆O 所在平面的距离为3,且VC 垂直于圆O 所在的平面;,D E 分别是,VA VC 的中点. (1)求证:DE ⊥平面VBC ;(2)求三棱锥V ABC -的体积.11.如图,已知四棱锥ABCD P -中,底面ABCD 是直角梯形,//AB DC , 45=∠ABC ,1DC =,2=AB ,⊥PA 平面ABCD ,1=PA .(1)求证://AB 平面PCD ;(2)求证:⊥BC 平面PAC ;(3)若M 是PC 的中点,求三棱锥M —ACD 的体积. 12.如图6,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,且3AE =,6AB =. (1)求证:AB ⊥平面ADE ;(2)求凸多面体ABCDE 的体积. 13.如图所示,AD ⊥平面ABC ,CE ⊥平面ABC ,1AC AD AB ===,BC =ABCED 的体积为12,F 为BC 的中点. (Ⅰ)求证://AF 平面BDE ;A CA 1E FABC D P MABCD E图6第14图ABCDEF10题3 / 5BECBAS(Ⅱ)求证:平面BDE ⊥平面BCE .14.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为正三角形,2AD DE AB ==,F 为CD 的中点. (1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;15.如图:直三棱柱ABC -A1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .(Ⅰ)求证:CD ⊥平面A 1ABB 1; (Ⅱ)求三棱锥A 1-C DE 的体积.16.如图,在底面是矩形的四棱锥ABCD P -中,⊥PA 面ABCD ,E 、F 为别为PD 、AB 的中点,且1==AB PA ,2=BC ,(Ⅰ)求四棱锥ABCD E -的体积;(Ⅱ)求证:直线AE ∥平面PFC . 17.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点.若3PA AD ==,CD =(Ⅰ)求证://AF 平面PCE ; (Ⅱ) 求点F 到平面PCE 的距离;18.已知PA ⊥平面ABCD ,2PA AB AD ===,AC 与BD 交于E 点,2BD =,BC CD =,(1)取PD 中点F ,求证://PB 平面AFC .19.如图,四面体ABCD 中,O 、E 分别是BD 、BC 2,CA CB CD BD AB AD ======(I )求证:AO ⊥平面BCD ; (II )求点E 到平面ACD 的距离.20.如图,四棱锥ABCD S -的底面是正方形,⊥SA 底面ABCD ,E 是SC 上一点.(1)求证:面⊥EBD 面SAC ;(2)设4=SA ,2=AB ,求点A 到面SBD 的距离;21.如图,在正四棱锥P ABCD -中,点E 是PC 中点,且2PA =,直线PA 与平面ABCD 所成的角(即是PA 与其在面ABCD 上的射影的夹角)为60︒.(1)求证:PA ‖平面BDE ;(2)求正四棱锥P ABCD -的体积.PBCDA EF1618题ED CBAS20题ABCD 1A 1B 1C A)(C B 1B 22. 在三棱锥 S ABC -中,90SAB SAC ACB ∠=∠=∠=,1,AC BC SB ===.(1) 求三棱锥S ABC -的体积;(2)证明:BC SC ⊥;23.如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底 24. 面ABCD , E 为PC 的中点, PA =AD =AB =1.(1)证明: //EB PAD 平面;(2)证明: BE PDC ⊥平面;(3)求三棱锥B -PDC 的体积V . 25.如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥且2PA PD AD ==,若E 、F 分别为PC 、BD 的中点.(1)求证:EF ∥平面PAD ;(2)求证:平面PDC ⊥平面PAD .26.如图,四棱锥P ABCD -的底面是边长为1的正方形,,1,PA CD PA PD ⊥==(Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)求四棱锥P ABCD -的体积.27.如图,四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,CD ⊥AD ,CD=2AB ,E 为PC 中点.(I) 求证:平面PDC ⊥平面PAD ;(II) 求证:BE//平面PAD .28.如图)1(5是一个水平放置的正三棱柱111C B A ABC -,D 是棱BC 的中点.正三棱柱的正(主)视图如图)2(5. ⑴求正三棱柱111C B A ABC -的体积;⑵证明:11//ADC B A 平面;⑶图)1(5中垂直于平面11B BCC 的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)直观图和三视图如图所示29.一个三棱柱111ABC A B C -(主视图、俯视图都是矩形,左视图是直角三角形),设E 、F 分别为1AA 和11B C 的中点.(Ⅰ)求几何体11E B C CB -的体积; (Ⅱ)证明:1//A F 平面1EBC ;主视图_ D_ C_ B_ A_ PA B C D EP5 / 5(Ⅲ)证明:平面EBC 平面11EB C .。

立体几何(文科)第1课时

立体几何(文科)第1课时

专题四立体几何专题(文科)【重要内容】1. 空间几何体认识柱、锥、球等几何体的有关概念与性质,特别长方体,正方体中有的有关点面线角的关系。

了解有关几何体的表面积与体积的计算公式.会用平行投影和中心投影与三视图确定空间几何体与体中的几何关系.2.点、直线、与面的位置关系3.平行与垂直的几何证明第一课几何体面积体积视图【考纲解读】【知识整合】【真题回放】1.(2012广东理6)某几何体的三视图如图1所示,它的体积为A.12πB.45πC.57πD.81π【答案】C2.(2012广东 文7)某几何体的三视图如图1所示,它的体积为 A . 72π B . 48π C . 30π D . 24π 【答案】C【解析】几何体是半球与圆锥叠加而成它的体积为321413330233V πππ=⨯⨯+⨯⨯=3.(2011广东理7)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A. C. 【答案】B【解析】如右图,该几何体的直观图是一个柱体,高是3122=- 底面是一个正方形 39333=⨯⨯=V启示:三视图与几何体的面积体积计算是立体几何小题的一个重要考点,考查了空间想象能力,几何体的计算能力,难度适中,考查中位置也较适中。

注意组合体的构成,不同视图中,线段与角的等量的变化。

【例题精析】题型一:三视图、直观图与几何体位置、几何量 例1.1)某三棱锥的三视图如图所示,该三棱锥的表面积是A.28+B.30+C.56+D. 60+ 答案:选B分析:由给出的三视图得出各种长度与数量关系,由视图的要求得相应的边长,高,与垂直关系,线段的相交关系,形成直观图。

讲解时,要培养学生能发挥想象力,如何看,对应的线在哪里,先从什么地方入手构图。

解析:如图为直观图可证AD CD ⊥104521=⨯⨯===∆∆∆ACD BCD ABD S S S 52,41===AB BC AC56=∆ABC S ,5630+=表面积S2)一个几何体的三视图如图所示,则这个几何体的表面积是 .答案:322+解析:如右图直观图,可得,22=SO 再求2321==SO SO , ()3222122123212143+=⨯+⨯⎥⎦⎤⎢⎣⎡⨯⨯++⨯⨯=表面积S3)已知四边形ABCD 的直观图是直角梯形1111D C B A ,1111112D A C B B A ==2=, 则四边形ABCD 的面积是 A .3 B .23 C .26 D .6 答案:选C分析:斜二侧画法中,各条边的变化,做题时要多画出与y x '',轴平行的直线.解析:26221111=⨯=D C B A S S4)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为( ) A .22 B .32 C .4 D .52答案:选C分析:该题条件与长方体的对角线在不同面,或方向的投影相联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科数学第二轮复习资料
——《立体几何》专题
一、空间基本元素:直线与平面之间位置关系的小结.如下图:
二、练习题:
1.
1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是
A .平行
B .相交
C .异面
D .平行、相交、异面都有可能
2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A .
V 21 B .V 31 C .V 41 D .V 3
2
3.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是
A .,,l m l αβα
β⊥=⊥ B .,,m αγαγβγ=⊥⊥
C .,,m αγβγα⊥⊥⊥
D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角
D
1 B 1
线A C 1上的点,若a
PQ =2
,则三棱锥P BDQ -的体积为
A .a 3336
B .a 3318
C .a 3
324
D .不确定
5.圆台的轴截面面积是Q ,母线与下底面成60°角,则圆台的内切球的表面积是 A 12
Q B 23Q C 2πQ D 23π
Q
6.在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱BC 、CC 1、C 1D 1、AA 1的中点,O 为AC 与BD 的交点(如图),求证: (1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H ; (3)A 1O ⊥平面BDF ; (4)平面BDF ⊥平面AA 1C .
7.如图,斜三棱柱ABC —A ’B ’C ’中,底面是边长为a 的正三角形, 侧棱长为 b ,侧棱AA ’与底面相邻两边AB 、AC 都成450
角,求 此三棱柱的侧面积和体积.
8.在三棱锥P —ABC 中,PC=16cm ,AB=18cm ,PA=PB=AC=BC=17cm ,求三棱锥的体积V P-ABC .
9.如图6为某一几何体的展开图,其中ABCD 是边长为6的正方形,SD=PD=6,CR=SC ,AQ=AP ,点S 、D 、A 、Q 及P 、D 、C 、R 共线.
沿图中虚线将它们折叠起来,使P 、Q 、R 、S 四点重合,请画出其直观图,试问需要几个这样的几何体才能拼成一个棱长为6的正方体ABCD A B C D -1111?
10. 如图10,在正四棱柱ABCD-A 1B 1C 1D 1中,AB=a , AA 1=2a ,M 、N 分别是BB 1、DD 1的中点. (1)求证:平面A 1MC 1⊥平面B 1NC 1;
(2)若在正四棱柱ABCD-A 1B 1C 1D 1的体积为V , 三棱锥M-A 1B 1C 1的体积为V 1,求V 1:V 的值.
11.直三棱柱ABC-A 1B 1C 1中,BC AB ⊥,E 是A 1C 的中点,
ED A C ⊥1且交AC 于D ,A A AB BC 12
2
==
(如图11) . (I )证明:B C 11//平面A BC 1; (II )证明:A C 1⊥平面EDB .
A Q
B P
D
S C
R
图6
图11
D
E A 1
C B
A
C 1
B 1 A N
B
C
D A 1 B 1
C 1
D 1
图 10 M
参考答案
1.D 2.B 3.D 4.A 5.D
6.解析:(1)欲证EG ∥平面BB 1D 1D ,须在平面BB 1D 1D 内找一条与EG 平行的直线,构造辅助平面BEGO ’及辅助直线BO ’,显然BO ’即是.
(2)按线线平行⇒线面平行⇒面面平行的思路, 在平面B 1D 1H 内寻找B 1D 1和O ’H 两条关键的相交直线, 转化为证明:B 1D 1∥平面BDF ,O ’H ∥平面BDF .
(3)为证A 1O ⊥平面BDF ,由三垂线定理,易得BD ⊥A 1O , 再寻A 1O 垂直于平面BDF 内的另一条直线.
猜想A 1O ⊥OF .借助于正方体棱长及有关线段的关系 计算得:A 1O 2
+OF 2
=A 1F 2
⇒A 1O ⊥OF . (4)∵ CC 1⊥平面AC ,∴ CC 1⊥BD
又BD ⊥AC ,∴ BD ⊥平面AA 1C
又BD ⊂平面BDF ,∴ 平面BDF ⊥平面AA 1C
7.解析:在侧面AB ’内作BD ⊥AA ’于D ,连结CD .
∵ AC=AB ,AD=AD ,∠DAB=∠DAC=450
∴ △DAB ≌△DAC
∴ ∠CDA=∠BDA=900
,BD=CD ∴ BD ⊥AA ’,CD ⊥AA ’
∴ △DBC 是斜三棱柱的直截面 在Rt △ADB 中,BD=AB ·sin450
=
a 2
2
∴ △DBC 的周长=BD+CD+BC=(2+1)a ,△DBC 的面积=4
a 2
∴ S 侧=b(BD+DC+BC)=(2+1)ab ∴ V=DBC S ∆·AA ’=4
b
a 2
8.解析:取PC 和AB 的中点M 和N
∴ AMB AMB C AMB P ABC P S PC 3
1
V V V ∆---⋅⋅=
+= 在△AMB 中,AM 2
=BM 2
=172
-82
=25×9 ∴ AM=BM=15cm ,MN 2
=152
-92
=24×6 ∴ S △AMB =
21×AB ×MN=2
1×18×12=108(cm 2
) ∴ V P-ABC =3
1×16×108=576(cm 3
)
9.解:它是有一条侧棱垂直于底面的四棱锥(如图).
需要3个这样的几何体可以拼成一个正方体.
10.解:(1)取CC 1的中点P ,联结MP 、NP 、D 1P(图18), 则A 1MPD 1为平行四边形 ∴ D 1P ∥A 1M ,∵A 1B 1C 1D 1是边长 为a 的正方形,又C 1P=a ,
∴C 1PND 1也是正方形,∴C 1N ⊥D 1P .∴C 1N ⊥A 1M . 又 C 1B 1⊥A 1M ,∴ A 1M ⊥平面B 1NC 1,又A 1M ⊂平面A 1MC 1, ∴平面A 1MC 1⊥平面B 1NC 1;
(2)V=3
2a ,V M-A 1B 1C 1=V C-MA 1B 1=23111326a a a ⋅=,∴ V 1:V =112
11.证明:(I )证: 三棱柱ABC A B C -111中B C BC 11//,
又BC ⊂平面A BC 1,且B C 11⊂/平面A BC 1,
∴B C 11//平面A BC 1
(II )证: 三棱柱ABC A B C -111中A A AB 1⊥,
∴Rt A AB ∆1中,AB A B =
2
2
1,∴=∴BC A B A BC 11,∆是等腰三角形. E 是等腰∆A BC 1底边A C 1的中点,
∴⊥A C BE
1①
又依条件知 A C ED
1⊥② 且ED BE E
=③
由①,②,③得A C 1⊥平面EDB .
A Q
B
P
D
S C
R
第九题
图11
D
E A 1
C B
A
C 1 B 1 A N
B
C
D A 1 B 1
C 1
D 1
图 10
M
A
B C
D E
H
G
A 1
B 1
C 1
D 1
第九题。

相关文档
最新文档