数值分析期末复习资料
(完整word版)数值分析(计算方法)期末试卷3及参考答案

[][][]0010012001,,()()n n f x x x x x x -+--参考答案一. 填空(每空3分,共30分)1. 截断误差2. )2(--x x ,2)1(-x x , 10 3. 14.)(2)(21k k k k k k x f x x f x x x '---=+ 5. 6,5,26,9二. 计算1. 构造重节点的差商表:所以,要求的Newton 插值为:3()5(1)2(1)(2)(1)(2)(3)N x x x x x x x =--+--+---3243x x =-+插值余项是:2()()(1)(2)3!f R x x x ξ'''=--或:()[,1,2,3,4](1)(2)(3)(4)R x f x x x x x =----2.(1)解:()1f x =时,左10()1f x dx ==⎰,右01A A =+,左=右得:011A A +=()f x x =时,左101()2f x dx ==⎰,右01B A =+,左=右得:0112B A += 2()f x x =时,左101()3f x dx ==⎰,右1A =,左=右得:113A =联立上述三个方程,解得:001211,,363A B A ===3()f x x =时,左101()4f x dx ==⎰,右113A ==,左≠右 所以,该求积公式的代数精度是2(2)解:过点0,1构造()f x 的Hermite 插值2()H x ,因为该求积公式代数精度为2,所以有:'212021200010(0)(0)(0)(0)(1()))(0H A H B H f A f B f H x dx A A ++++==⎰其求积余项为:1'1000()[(0)(1)(0)]()f x dx f A f f B f R A -++=⎰112201()()!))((13f H x dx x x dx f x dx η'''--==⎰⎰⎰ 120()(1)3!f x x dx ζ'''=-⎰ ()72f ζ'''=-所以,172k =-3.解:改进的Euler 公式是:1111(,)[(,)(,)]2n n n n n n n n n n y y hf x y hy y f x y f x y ++++=+⎧⎪⎨=++⎪⎩具体到本题中,求解的公式是:11110.2(32) 1.40.60.1[3232](0)1n n n n n n n n n n n n y y x y y x y y x y x y y ++++=++=+⎧⎪=++++⎨⎪=⎩代入求解得:1 1.4y =,1 1.54y =222.276, 2.4832y y ==4.解:设3()25,f x x x =+-则2()32,f x x '=+ 牛顿迭代公式为:1()()k k k k f x x x f x +=-'322532k k k k x x x x +-=-+ 322532k k x x +=+将0 1.5x =代入上式,得1 1.34286x =,2 1.37012x =,3 1.32920x =,4 1.32827x =,5 1.32826x =4540.0000110x x --=<所以,方程的近似根5 1.32826x =5.解,Jacobi 迭代公式是:11231211131521333324k k k k k k k x x x x x x x ++++⎧=--⎪⎪⎪=-⎨⎪⎪=-⎪⎩Gauss-Seidel 迭代公式是:112311211131521333324k k k k k k k x x x x x x x +++++⎧=--⎪⎪⎪=-⎨⎪⎪=-⎪⎩(2) 设其系数矩阵是A ,将A 分解为:A D L U =--,其中300020001D ⎛⎫ ⎪= ⎪ ⎪⎝⎭,000021200,000100000L U --⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭Jacobi 迭代矩阵是:11030211()0020********J B D L U -⎛⎫--⎛⎫ ⎪ ⎪ ⎪=+=-⎪ ⎪ ⎪- ⎪⎝⎭ ⎪⎝⎭21033100100--⎛⎫⎪ ⎪=- ⎪- ⎪⎝⎭Gauss-Seidel 迭代矩阵是:11300021()220000101000J B D L U ----⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭20002112300006206000--⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭021********--⎛⎫⎪= ⎪ ⎪⎝⎭二. 证明证明:00x >且11()2k k kax x x +=+0k x ⇒> 所以有:111()222k k k k ka a x x x a x x +=+≥=即:数列k x 有下界;2111()()22k k k k k k kx a x x x x x x +=+≤+=所以,迭代序列k x 是单调递减的,由单调递减且有下界的数列极限存在可知序列k x 极限存在。
数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
数值分析复习要点

3 v3 / v3 (
2 10
,
1 10
,
1 10
,
2 10
)T
u3 v3 6 1 2 2 10 3 6 1 2 2
得到R( A)的标准正交基为{ 1 , 2 , 3 }. 1 1 1 1 T 1 1 1 1 T 1 ( , , , ) , 2 ( , , , ) , 2 2 2 2 2 2 2 2 1 3 ( 2,1, 1, 2)T 10
(1) A为对称阵, 用H阵可将A作相似变换为三对角阵
习题
1. 已知向量x (2,0,2,1) , 试构造Householde r阵H
T
使Hx ke3 , 其中e3 0,0,1,0 , k R .
T
2.已知向量x (1,2,1,2)T , 试构造Householde r阵H 使Hx (1, 2 ,0,0)T .
估计迭代次数
|| x ( k ) || B ||k x* || || x (1) x ( 0) || 103 k ? 1 || B ||
收敛速度 R ln( ( B))
SOR分量形式 : (以二阶方程组为例)
( k 1) (k ) ( ( x1 x1 (b1 a11 x1 k ) a12 x2k ) ) a11 x ( k 1) x ( k ) (b a x ( k 1) a x ( k ) ) 2 2 21 1 22 2 2 a22
i , j 1
n
1 2 2
|| A || p max
|| x|| 0
|| Ax || p || x || p
p 1,2, , || A || (行范数)
期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。
数值逼近的主要内容包括多项式逼近、插值和最小二乘等。
1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。
通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。
其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。
多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。
2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。
常用的插值方法有拉格朗日插值和牛顿插值。
拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。
牛顿插值则利用差商的概念来构造插值多项式。
插值方法在数值微分和数值积分中有广泛的应用。
3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。
通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。
最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。
第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。
数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。
1. 迭代法迭代法是求解非线性方程组的常用方法之一。
通过不断迭代逼近方程的根,可以得到方程组的数值解。
常用的迭代法有牛顿迭代法和弦截法。
迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。
2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。
常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。
常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。
3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。
数值分析复习要点

y((7u5)u3)u18(u1) x1
1 10 99
3、设 x 0.01458663 为真值 xT 0.01451845 的近
似,则 x 有 2 位有效数字。
设 近 似 数 x0.a1a2 an10p的 绝 对 误 差 限 是 第 n位 的 半 个 单 位 , 则 数 x有
n位 有 效 数 字 。 (a10,ai 0,1,...,9)
三. Householder变换
Householder变换阵 H I 2wwT ,其中|| w ||2 1
定理 : 设n维向量x, y, x y, 但 || x ||2 || y ||2 , u x y, 则存在Householder变换阵 H I 2wwT , w u ,
|| u ||2 使Hx y.
习题
已知向量x (2, 0, 2,1)T , 试构造Householder阵H
使Hx ke3,其中e3 0, 0,1, 0T , k R.
四.矩阵的正交分解
(1) Schmidt正交化法(P40,第二章第2节)
(2) 用Housholder方法正交化(P142,第四章第4节)
例:用Householder方法求矩阵A的正交分解,
2. 已 知 向 量 x(1,4,3,0)T,y(3,6,1,2)T,
求 x,y之 间 的 距 离 (x,y).
二. Gauss变换与矩阵的三角分解
Gauss变换阵
1
1
Lj
l j1, j 1
ln, j
1
对x
T
x1,..., x j ,..., xn 0,
xj 0
构造Gauss变换阵G,使Gx
F
(
f
( x),1( x))
数值分析-复习及习题选讲

5、线性方程组的数值解法
1.了解Gauss消元法的基本思想,知道适用范围 顺序Gauss消元法:矩阵A的各阶顺序主子式都不为零. 主元Gauss消元法:矩阵A的行列式不为零. 2.掌握矩阵的直接三角分解法。
会对矩阵进行Doolittle分解(LU)、Crout分解及Cholesky分解。
熟练掌握用三角分解法求方程组的解。 了解平方根法和追赶法的思想。 3.了解向量和矩阵的范数的定义,会判定范数(三要素非负性、齐 次性、三角不等式);会计算几个常用的向量和矩阵的范数; 了解范数的等价性和向量矩阵极限的概念。 4.了解方程组的性态,会计算简单矩阵的条件数。
k n
f
( n 1)
(2)记(t)=(t-x)k,则yj=(xj)=(xj-x)k, j=0,1,…,n.于是
n ( t ) k (t x) k f (t ) y j l j (t ) n 1 (t ) ( x j x) l j (t ) j 0 j 0 (n 1)! 取t=x,则有 n ( x j x) k l j ( x) 0
收敛于(x)在I上的唯一不动点x*.
都收敛于方程的唯一根x*.
推论 若(x)在x*附近具有一阶连续导数,且|(x*)|<1, 则对充分接近 x*的初值x0,迭代法xk+1=(xk)收敛. 3. 了解迭代法收敛阶的概念,会求迭代法收敛的阶.了解Aitken加速 技巧.
xk 1 C (1) xkp阶收敛于x*是指: lim k x p k
7.设(x)=x4+2x3+5, 在区间[-3,2]上, 对节点x0= -3, x1=-1,求出(x)的
三次Hermite插值多项式在区间[x0,x1]上的表达式及误差公式.
数值分析期末复习(整理版)

Chapter 1 误差误差限计算、有效数字分析•绝对课差址t洵准确俏”*为工的-个近似偵「称T —工対近似偵.T '的絶村谋差,简厳供邛*可简记为E.|g(T)|=| T —*|兰£(/)数值貞门称为T的11绐对误差限或误差限*l『*、F(x ) x —x E© ) = —=——为近似值/的担zt溟誉可简{己址•有效数字若才作加的近tilt其鲍对误差的绝对值不超过某一位数字的半个单恆,而该位数字到F的第—位非零数字共有斤位關称用F近恤时具有血有效做字'简称丫有畀位有效数字.Chapter 2插值法差值条件(唯一性)1、拉格朗日差值a) 插值基函数b) 差值余项2.2拉格朗曰抽值2.2.1基函数考虑最简单、晟舉本的骼值问起+ 求押次插值家项式『低)…肋,便加滿足播值条伸可知,除斗点外.其余都星”.巧的零点■械可诛< (A) ^.4(X 一%[…(-V址 d 為"* <A -A;)X)=A(X - J- (A- - \_, )(.Y -J)其中M为常數.由&工戶1町得』=-------------------- -----------------(閔円)心7冷K%-咖卜-a -斗)和対讼>:T^V为准确血"为玄的一个近似伉称relativeerror称之为拉厳朗LI垒曲绘都是M次帝项武.. 2.1.2拉榕朗n插佢雾项式利用拉辭朗H皋啦数/态人构造次数不趙过"的雾项式£(巧二必机朗+^( v) + •…I J;/,(.v) = £昭(曰可知其搆足7韩为拉格阴Id插说饕砂式.再由插菽牟嘶的唯亠杵“ 鲁 D I特别地*造时又叫钱件擂僮其几何童又为过两点的直级-当*匸2时又叫拋物<线)掩值•具几何鳶义为过三点的拋物线.滾丘阖淘若取人1).伸伏=札1*…飒由插痕参项式的唯一性有£址工)# =x\ k= 0」厂』特别当k-OfiL就得到£佃-1□则铉格朗U的丄抚抽值雾项式为V)= j^(j(X> + I'Jj (x> + j/2(.v) * MQO=(2)弓…仗扣讪—协-町H^)xll(A + l)(r-JX^ 4}+3x —(x H)(x-LXx-3) 8 15■裁1M T-3X V-4)+^X HX A-1M A4)+ l(.v+lX.v-lXr-3)+ 3)a 1已知$ =五,耳=4眄=S.用皴件插值f即一次插惟藝坝如历的近似值.解片=2・曲=3•菇函数付别为:t-9 1 x-4 I4(J)=——=—(x-9j, Zjx)=——= -{x -4)砂14-9 5尸门9-4 5播債孝项式为V)-片fj.i) +」'占(巧-2x^(.v 夕”:(* 4)---(.V 4 J -4)(- (X + fr))所以乔金厶⑺二空R点5使2求过啟-1,-毎川』人(乱-创*(4」)的抛物线播值(即三次插値务项式).蔦-U 斗=-t t A|二L x2=3»A3- 4以为苗点加墓函.数分别为:厶何」匸迪住1±J (.r +lXA -3}(x-4)1(1 ► 1)(1-3)(1- 4J 12心)」:十汽-1年¥二Uw心一ncz (34-1X3-1X3-4) K=⑴】心-叭7= *十叫讣7】(4 + IX4-1X4-3) 152.23極値肇项M tt'r滾^Ji n(x)=f(x)兀糾也称为"次1川甘"叱插伯赛境式的余坝。
数值分析第五版复习资料

第一章绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=Q , 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅Q 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===g g(*)(*)3(*)r p r r V C R R εεε∴≈=g又(*)1r V ε=Q %1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -=n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=Q10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析期末复习资料数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章误差与有效数字一、有效数字1、定义:若近似值X*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。
2、两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. ・§丄% 3、 定理1 (P6):若x*具有n 位有效数字,则其相对误差虧疗茲T 4、考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1 (P7例题3) 二、避免误差危害原则 1、原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:xl*x2= c / a ) 避免相近数相减(方法:有理化)eg. V777-77 =c ・2 X2sin7 或 减少运算次数(方法:秦九韶算法)eg.P20习题14 三. 数值运算的误差估计 1、公式:(1) 一元函数:I £*( f 3))1 Q |「(於)1・| £*(力|或其变形公式求相对误差(两边同时除以f (卅))eg. P19习题1、2、5(2) (3) ln(x + £)- In x = In 1;1 — cos X =(2)多元函数(P8) eg. P8例4, P19习题4第二章插值法一、插值条件1、定义:在区间[a, b]上,给定n+1个点,aWxoVx[V・・・VxWb的函数值yi=f(xi),求次数不超过n的多项式P(x),饋兀)=儿 i =0,1,2,…,力2、定理:满足插值条件、n+1个点、点互异、多项式次数Wn的P(x)存在且唯一二、拉格朗日插值及其余项1、n次插值基函数表达式(P26 (2.8))2、插值多项式表达式(P26 (2.9))3、插值余项(P26 (2.12)):用于误差估计4、插值基函数性质(P27 (2. 17及2. 18)) eg. P28例1三、差商(均差)及牛顿插值多项式1、差商性质(P30):(1)可表示为函数值的线性组合(2)差商的对称性:差商与节点的排列次序无关(3)均差与导数的关系(P31 (3.5))2、均差表计算及牛顿插值多项式例:已知X=1,4,9的平方根为1,2,3,利用牛顿基本差商公式求"的近似值。
P2 (x) = 1 + 0.33333( 丫—l)-0.01667(x-l)(.v- 4) 因此计算得祈的近似值为為(7) = 2.69992.四、埃尔米特插值(书P36)两种解法:(1)用定义做:设P$(x)二ax'+bY+cx+d,将已知条件代入求解(4个条件:节点函数值、导数值相等各2个)(2)牛顿法(借助差商):重节点eg. P49习题14五、三次样条插值定义(1)分段函数,每段都是三次多项式(2)在拼接点上连续(一阶、二阶导数均连续)S(x j) = y j/j = O/l/---/n(3)考点:利用节点函数值.导数值相等进行解题第三章函数逼近与曲线拟合曲线拟合的最小二乘法解题思路:确定輕,解法方程组,列方程组求系数(注意%应与系数一一对应)eg.F95习题17 形如尸ae “解题步骤:(1)线性化(2)重新制表(3)列法方程组求解(4)回代第四章数值积分与数值微分一、代数精度K概念:如果某个求积公式对于次数不超过m的多项式准确成立,但对于m+1次多项式不准确成立, 则称该求积公式具有m次代数精度2、计算方法:将f (x)=l, x, x2,…x”代入式子求解eg. P100例1二.插值型的求积公式.•・[f(x)dx 匕£(J lk(x)dxjf(xQ(*)二0其中k(x)二n匕生为Lagrange插值基函数“'胪f 求积系数A k=j a l k(x)dx定理:求积公式至少具有n次代数精度的充要条件是:它是插值型的。
三、牛顿-科特斯公式K 掌握科特斯系数n=l,2的情况即可(P104表4-1),性质:和为1,对称性2. 定理:当n 为奇数时,牛顿-柯斯特公式至少有n 次代数精度;当阶n 为偶数时,牛顿-科特斯公式至少具有n+1次代数精度b — ci3. 在插值型求积公式中求积节点取为等距节点,即x k =a + khji = —— ,k=0, 1, 2,…・n 。
则n可构造牛顿-柯斯特求积公式:时,求积公式为梯形公式:『匕冲〜 与0[几4)+/(町 n=2时,求积公式为辛普森公式:口]+ /0) a 6L I 2 丿n=4时,求积公式为柯特斯公式:”(护心气]^7/(观)+ 32/(召)+ 12/(勺)+ 32/(耳)+ 7/(亠)] CI4、低阶求积公式的余项:梯形公式:R 丁 = -匚-U )2/"(“),〃 e [a,b ]丄厶6.复合辛普森公式及余项(P107)h"一】w-iS” = 7 .心)+ 4》f (%%) + 2》/ (“ ) + f (b) ° L A=Ok=\ _h J ( h 、4心(/) = /-s” =£-曲& f 4(久),% e(x, + x k+l ) A=0 loU\ Z 7(吨c 叽心好加呂"辟y加以辛普森公式:R s =g )3-讥⑷⑺,忤问180 I 22( b — a)柯特斯公式:)5、复合梯形公式及余项(P106)h71-1n-I T lt =- /3 + 2》.f(xJ + .f(b) R“mA=Ik=0罟仃”(久),久E (无+垛+J6严g,b]四、高斯型求积公式(书PU7-120)1、定义:如果求积公式具有2n+l 次代数精度,则称其节点&为高斯点。
bnb2求积公式:”(少(兀)厶= £4/(耳),4 =Jo (x ) —“a R=() aI% —玉丿®+]S 丿 f2"+2() b余项:& [/卜帀琲归况砂心)厶2.第五章解线性方程组的直接方法一、 髙斯消去法:利用增广矩阵 二、 LU 分解 Ly=b ; Ux=yK 特点:L 对角线均为1,第一列等于A 的第一列除以皿;U 的第一行等于A 的第一行 2、LU 分解唯一性:A 的顺序主子式DiHO 三.平方根法:Ly = b^x = y 例题:用平方根法解对称 解:先分解系数矩阵A7 Siz6 7 ,55、8 °,7/2976后 5 13=L五. 范数(误差分析) 1. 向量范数定义及常用范数其次解Ly = b的=?■V6 7 [29 To V6" 5J17492厂9、10—“2 — I21 • T1“3 - Z2 ‘3 恋•iQ ___ 41 ______ — _10最后解l7x = y7_A /65 I 9 V6 ?6 13 -3A /174 7174g5 10V29 I V29•2 =^=2 E $ - G 、= -J "=——字 ------------------------------- =1】33‘22改进平方根法:A = LDL\Ly=b J DLix = y 四. 追赶法:A=LU, Ly=f, Ux=y。
2q$ C 2r 21卩\1% hlCl n%b n1297W 9oo-范数(最大范数):||x|| =max x11 l|x l<i<n 1i-范数诙i=lP —范数:||x||广『,(15氏+8)\ i=l )2、矩阵范数定义及常用范数00-范数(行范数):||机=曲£打|1-范数(列范数)2 -范数:||州2 =』入瘁(心)丄F-范数:|州』£岡]2\U=,丿其中人najA' A)表示半正定矩阵A'人的最大特征值,矩阵的前三种范数分别与向量的前三种范数相容3.条件数条件数是线性方程组Ax二b的解对b中的误差或不确定度的敏感性的度量。
数学定义为矩阵A的条件数等于A的范数与A的逆的范数的乘积,即""〃(A)= ||A||・||A ||的逆对应矩阵的3种范数,相应地可以定义3种条件数。
条件数事实上表示了矩阵计算对于误差的敏感性。
对于线性方程组Ax=b,如果A的条件数大,b 的微小改变就能引起解x较大的改变,数值稳定性差。
如果A的条件数小,b有微小的改变,x的改变也很微小,数值稳定性好。
它也可以表示b不变,而A有微小改变时,x的变化情况。
所以当cound (A)>〉1时,方程组Ax二b是病态的,否则称为良态4、条件数的性质:1、对任何非奇异矩阵A,都有cond(A\. X 1.由定义cond(A)v =冲』汕綁"州=||/|| = 1.2、设A为非奇异矩阵且cHO(常数),则cond(cA)v = cond(A)v3、如果4为止交矩阵,则sM(A )2=l;如果4为非奇异矩阵,/?为正交矩阵,则 cond(RA)2 =cond(AR)2 =cond(A)2.第六章解线性方程组的迭代法-、迭代法:xn+/迭代法收敛的两种判断方法:1、若4是,冈7矩阵,且满足I 如ng 闯(|«,|>XK|)(,= 1,2,・•・,),则称A 为对角占优矩阵(严格对角占优矩阵)。
z?(A) = max|Z|<l' 7凶如I 『I (谱半径越小,收敛速度越快)3、收敛性判别条件:1) SOR 迭代法收敛的必要条件:SOR 迭代收敛,则0 <W 〈2。
2) SOR 迭代法收敛的充要条件:A 为对称正定矩阵且0 (W <2,则SOR 收敛。
根据迭代法收敛性定理,SOR 法收敛的充分必要条件为但要计算Q (GJ 比较 复杂,通常都不用此结论,而直接根据方程组的系数矩阵A 判断SOR 迭代收敛性,下面先给出收 敛必要条件.定理1:设A = (心1,2,..』),则解方程Ax 二b 的SOR 迭代法收敛的必要条件是0 V3 V2.定理2:若Ae R nKn对称正定,且0V3V2,则解Ax=b 的SOR 迭代法x(k+1}= Gx {k)+ f 对Vx e R n 迭代收敛.对于SOR 迭代法,松弛因子的选择对收敛速度影响较大, 二、雅克比迭代法例:Hilbert 阵 H n =£ 2 J_ 31 n+1cound (H 2)X =27 cond (H 3)x »1 n+l 1 2n-l_748 cond(H 6)=2.9xlO 6cond(比汇 is2.(非常重要)谱半径小于1收敛即:(f=b)对该方程应用迭代法即得解方程组Ax=b 的雅可比迭代公式(分量形式)B = -D^(L + U\f=D'}b三、高斯-赛德尔迭代法a.x x. +a 门X 。