高中数学必修5第一章单元测试题

合集下载

数学必修五第一章测试卷

数学必修五第一章测试卷

数学必修五第一章测试卷人教B版·数学单元综合测试第一章综合测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列命题中正确命题的个数为()①平面是矩形或平行四边形;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50m,宽是20m;④平面是绝对平的、无厚度、可以无限延展的、抽象的数学概念.A.1B.2C.3D.4[答案]A[解析]由平面的概念知,它是平滑、无厚度、可延展的,可判断④正确;其余都不是平面的概念,①②③都不对,故应选A.2.(2022·湖北文,4)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④[答案]C[解析]①平行关系的传递性.②举反例:a⊥b,b⊥c,则a∥c.③举反例:a∥γ,b∥γ,则a与b相交.④垂直于同一平面的两直线互相平行.故①,④正确.3.如果一个三角形的平行投影仍是一个三角形,则下列说法正确的是()A.内心的平行投影还是内心B.重心的平行投影还是重心C.垂心的平行投影还是垂心D.外心的平行投影还是外心[答案]B[解析]由平行投影的性质5可知,三角形各边的中点的投影还是投影后三角形各边的中点,故三中线的交点的平行投影不变,还是重心.4.长方体ABCD-A1B1C1D1的各顶点都在半径为1的球面上,其中AB:AD:AA1=2:1:3,则A,B两点的球面距离为()ππA.B.43π2πC.D.23[答案]C[解析]本小题主要考查球的内接长方体和球面距离,重点是空间想象能力,球的内接长方体中,长方体的体对角线等于球的直径,球心O为对角线的中点.设AB=2某,AD=某,AA1=3某2222则有2=2某+某+3某,解得某=.22∴AB=某2=22π222在△OAB中,AB=OA+OB,∴∠AOB=2ππ∴A,B两点球面距离为某1=.225.将边长为a的正方形沿对角线AC折起,使得BD=a,则三棱锥D-ABC 的体积为()33aaA.B.6123323C.aD.a1212[答案]D[解析]取AC的中点O,连OB,OD,则AC⊥平面BOD,11122∴V=某S△BOD某AC=某某(a)2某2a=a3.3322126.(2022·广东理,6)如图,△ABC为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC3且3AA′=BB′=CC′=AB,则多面体ABC-A′B′C′的正视图(也称主视图)是()2[答案]D[解析]由三视图的概念与视图规则知,D正确.7.(2022·山东模拟)在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,则棱锥C-A′DD′的体积与剩余部分的体积之比是()A.1:4B.1:5C.1:6D.1:7[答案]B[解析]设长方体底面ADD′A′的面积为S,高为h,则它的体积V=Sh,而棱锥C111-A′DD′的底面面积为S,高为h,因此,棱锥C-A′DD′的体积VC-A′DD′=某Sh232115=Sh,余下的体积是:Sh-Sh=Sh,所以体积比为1:5.6668.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是()A.BC∥面PDFB.DF⊥面PAEC.面PDE⊥面ABCD.面PAE⊥面ABC[答案]C[解析]如图,∵BC∥DF,∴BC∥平面PDF.∴A正确.由图象知BC⊥PE,BC⊥AE,∴BC⊥平面PAE.∴DF⊥平面PAE.∴B正确.∴平面ABC⊥平面PAE(BC⊥平面PAE).∴D正确.9.若m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中的真命题是()A.若mβ,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ[答案]C[解析]如图符合A中的条件,但不满足m⊥α,故A错误,观察正棱柱的三个面,可排除B,观察教室的相对两墙壁与地面,可排除D.10.一个画家有14个边长为1m的正方体,他在地面上把它摆成如图所示的形式,然后,他把露出的表面都染上颜色,那么被染上颜色的面积为()A.21mB.24m22C.33mD.37m[答案]C[解析]上表面面积为3某3=9(m2)侧面面积为3某4+2某4+1某4=24(m2)故被染上颜色的面积为33m22211.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1B.2C.3D.2[答案]C[解析]本小题主要考查球的知识及空间想像能力.如图所示,O为球心,O1为截面圆的圆心,O2为与截面圆O1垂直的截面圆的圆心,M是AB的中点,圆O1和圆O2交于AB.易知OO1MO2是矩形,∴O1O2=OM,而△OAB是等边三角形,∴O1O2=3.12.(2022·北京,文,8)如图,动点P在正方体ABCD-A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M、N.设BP=某,MN=y,则函数y=f(某)的图象大致是() [答案]B[解析]考查函数的图像与性质及空间想象能力.取AA1、CC1的中点E、F,EF交BD1于O,则EF∥AC,∵AC⊥BD,AC⊥BB1,∴AC⊥平面BDD1B1,∴EF⊥平面BDD1B1,∴平面BED1F⊥平面BDD1B1,过点P作MN∥EF,则MN⊥平面BDD1B1,BPMNEFMN交BE、BF于M、N,则=,∴MN=·BP,BOEFBO不难看出当P在BO上时,y是某的一次增函数,当P在OD1上时,y 是某的一次减函数,故选B.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上)2S13.在平面内,三角形的面积为S,周长为c,则它的内切圆的半径r=,在空间中,c三棱锥的体积为V,表面积为S,利用类比方法,可得三棱锥的内切球的半径R=______________.3V[答案]S3V1[解析]由已知V=SR,∴R=.S3314.圆台的体积是2343πcm,侧面展开图是半圆环,它的两底面半径之比是1:3,则这个圆台的两底面半径分别是__________.[答案]3cm,9cm[解析]设上底半径为r,下底半径为3r,由侧面展开图是半圆环知母线长为4r,所以圆台高为23r,∴V=(πr2+9πr2+πr2·9πr2)·23r=2343π,3∴r=3.∴上、下底半径分别为3cm,9cm.15.如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=3,则球O的体积等于____________.9π[答案]2[解析]关键是找出球心,从而确定球的半径.由题意,三角形DAC,三角形DBC都是直角三角形,且有公共斜边.所以DC边的中点就是球心(到D、A、C、B四点距离相等),所以球的半径就是线段DC长度的一半.①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.[答案]①④⑤[解析]本题考查空间几何体的线线关系,以及空间想象能力.如图所示,四面体ABCD中,AB与CD是异面直线,故①正确;当四面体ABCD中,对棱AB与CD不垂直时,由顶点A作四面体的高,其垂足不是△BCD三条高线的交点,故②不正确;若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足不一定重合,故③不正确;如图,过顶点A作AO⊥面BCD,O为垂足,连结OB、OC、OD,则S△ABC>S△BOC,S△ACD>S△COD,S△ABD>S△BOD,∴S△ABC+S△ACD+S△ABD>S△BOC+S△COD+S△BOD=S△BCD,故④正确.如图四面体ABCD中取AB、CD、AD、BC的中点分别为E、F、M、N,连线EF、MN,则EF、MN分别为EMFN的对角线,∴EF、MN相交于点O,且O为EF、MN的中点,取AC、BD的中点分别为R、H,则ERFH为平行四边形,即点O也是RH的中点,故⑤正确;由两边之和大于第三边可知④正确.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分)如图所示,在正方体ABCD-A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点.求证:平面MNP∥平面A1BD.[答案]连接B1D1,∵P、N分别是D1C1、B1C1的中点,∴PN∥B1D1.又∵B1D1∥BD,∴PN∥BD,又∵PN面A1BD,∴PN∥平面A1BD,同理MN∥平面A1BD,又PN∩MN=N,∴平面PMN∥平面A1BD.18.(本小题满分12分)一圆台的母线为20cm,母线与轴的夹角为30°,上底面的半径为15cm,求圆台的高和下底面的面积.[答案]如图所示,过A作AH⊥A1O1,垂足为H,在△AA1H中,AH=AA1co30°=103(cm),A1H=AA1in30°=10(cm).设下底面半径为r,则r=A1O1=10+15=25(cm),所以S底=πr2=625π(cm2).故圆台的高为103cm,下底面的面积为625πcm2.19.(本小题满分12分)如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,PA⊥ED于E,BC⊥ED于D,ED=h,求三棱锥P-ABC的体积.[答案]∵BC⊥PA,BC⊥DE,PA∩DE=E,∴BC⊥平面PAD,∵BC平面ABC,∴平面PAD⊥平面ABC连接AD、PD,过P点PO⊥AD于O,则PO⊥平面ABC,PO为三棱锥P -ABC的高.∵Rt△PAO∽Rt△DAE,PAPO∴=即PO·DA=PA·DEDADE111∴VP-ABC=S△ABC·PO=某(BC某AD)某PO33211=PA某DE某BC=l2h6620.(本小题满分12分)(潍坊高一检测)如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1.求证:AB⊥BC.[答案]本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.证明:如下图,过点A在平面A1ABB1内作AD⊥A1B于D,则由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,得AD⊥平面A1BC.又BC平面A1BC,所以AD⊥BC.因为三棱柱ABC-A1B1C1是直三棱柱,则AA1⊥底面ABC,所以AA1⊥BC,又AA1∩AD=A,从而BC⊥侧面A1ABB1.又AB侧面A1ABB1,故AB⊥BC.21.(本小题满分12分)(2022·山东文,20)在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.(1)求证:平面EFG⊥平面PDC;(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.[答案]本小题主要考查空间中的线面关系和面面关系.考查线面垂直、面面垂直的判定及几何体体积的计算,考查识图能力、空间想象能力和逻辑思维能力,体现了转化与化归的数学思想.(1)证明:∵MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD,又BC平面ABCD,∴PD⊥BC,因为ABCD为正方形,所以BC⊥DC.又PD∩DC=D,因此BC⊥平面PDC.在△PBC中,因为G、F为中点,所以GF∥BC,因此GF⊥平面PDC.又GF平面EFG,所以平面EFG⊥平面PDC.(2)因为PD⊥面ABCD,ABCD为正方形,不妨设MA=1,则PD=AD=2,18所以VP-ABCD=S正方形ABCD·PD=.33由于DA⊥面MAB,且PD∥MA,所以DA即为点P到平面MAB的距离,112三棱锥VP-MAB=某某1某2某2=.323所以VP-MAB:VP-ABCD=1:4.22.(本小题满分12分)(2022·株洲高一检测)如图,在正方体ABCD-A1B1C1D1中,E、F、M分别是棱B1C1、B1B、C1D1的中点.(1)求证:CF⊥平面EAB;(2)是否存在过E、M点且与平面A1FC平行的平面?若存在,请指出并证明之;若不存在,请说明理由.[答案](1)在正方形B1BCC1中,∵E、F分别为B1C1、B1B的中点.∴△B1BE≌△BCF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE.又AB⊥平面B1BCC1,CF平面B1BCC1,∴AB⊥CF.又AB∩BE=B,∴CF⊥平面EAB.(2)设N是棱C1C上的一点,且C1N=C1C,则平面EMN为符合要求的平面.4证明如下:设H为棱C1C的中点,∵C1N=C1C,4∴C1N=C1H.又E为B1C1的中点,2∴EN∥B1H,又CF∥B1H,∴EN∥CF,∴EN∥平面A1FC.同理,MN∥D1H,D1H∥A1F,∴MN∥A1F,∴MN∥平面A1FC,又∵EN∩MN=N,∴平面EMN∥平面A1FC.。

高中数学必修5同步练习与单元测试课后作业附答案(36份)

高中数学必修5同步练习与单元测试课后作业附答案(36份)
(1)A处与D处的距离;
(2)灯塔C与D处的距离.
解(1)在△ABD中,∠ADB=60°,∠B=45°,由正弦定理得AD= = =24(nmile).
(2)在△ADC中,由余弦定理得
CD2=AD2+AC2-2AD·AC·cos30°,
解得CD=8 ≈14(nmile).
即A处与D处的距离为24nmile,
则a+b=9,a2+b2-2abcosα=17,
a2+b2-2abcos(180°-α)=65.
解得:a=5,b=4,cosα= 或a=4,b=5,cosα= ,
∴S▱ABCD=absinα=16.
二、填空题
7.甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里,乙船正向北行驶,若甲船是乙船速度的 倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.
10.某舰艇在A处测得遇险渔船在北偏东45°,距离为10nmile的C处,此时得知,该渔船沿北偏东105°方向,以每小时9nmile的速度向一小岛靠近,舰艇时速21nmile,则舰艇到达渔船的最短时间是______小时.
答案
解析设舰艇和渔船在B处相遇,则在△ABC中,由已知可得:∠ACB=120°,设舰艇到达渔船的最短时间为t,则AB=21t,BC=9t,AC=10,则(21t)2=(9t)2+100-2×10×9tcos120°,
B1B =A1B +A1B -2A1B1·A1B2·cos 45°
=202+(10 )2-2×20×10 ×
=200.
∴B1B2=10 .
因此,乙船速度的大小为
×60=30 (海里/小时).
答乙船每小时航行30 海里.
1.解三角形应用问题的基本思路是:

高中数学必修5复习题及答案(A组)免费范文

高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。

人教版数学高三第一章解三角形单元测试精选(含答案)1

人教版数学高三第一章解三角形单元测试精选(含答案)1
5
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6

【新教材】人教A版(2019)高中数学必修第一章测试卷

【新教材】人教A版(2019)高中数学必修第一章测试卷

第一章 集合与常用逻辑用语考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={0,1,2},B ={2,3},则集合A ∪B =( B ) A .{1,2,3} B .{0,1,2,3} C .{2}D .{0,1,3}[解析] 依题意得A ∪B ={0,1,2,3},故选B . 2.命题“∀x >0,x 2-2x +1>0”的否定是( A ) A .∃x >0,x 2-2x +1≤0 B .∀x >0,x 2-2x +1≤0 C .∃x ≤0,x 2-2x +1≤0 D .∀x ≤0,x 2-2x +1≤0[解析] 含有量词的命题的否定,一改量词将“∀”改为“∃”,二否结论将“>”改为“≤”,条件不变,故选A .3.设a ∈R ,则a >3是|a |>3的( D ) A .既不充分也不必要条件 B .必要不充分条件 C .充要条件D .充分不必要条件[解析] 由“a >3”能推出“|a |>3”,充分性成立;反之由|a |>3无法推出a >3,必要性不成立.故选D .4.已知M ={x |y =x 2+1},N ={y |y =x 2+1},则M ∩N =( A ) A .{x |x ≥1} B .∅ C .{x |x <1}D .R[解析] 因为M ={x |y =x 2+1}=R ,N ={y |y =x 2+1}=|y |y ≥1|,所以M ∩N ={x |x ≥1},故选A .5.已知m ,n ∈R ,则“mn -1=0”是“m -n =0”成立的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 由m n -1=0得mn =1,得m =n ,m -n =0,即充分性成立;当m =n =0时,满足m -n =0,但m n -1=0无意义,即必要性不成立,即“mn -1=0”是“m -n =0”成立的充分不必要条件,故选A .6.集合{y ∈N |y =-x 2+6,x ∈N }的真子集的个数是( C ) A .9 B .8 C .7D .6[解析] x =0时,y =6;x =1时,y =5;x =2时,y =2;x =3时,y =-3.所以{y ∈N |y =-x 2+6,x ∈N }={2,5,6}共3个元素,其真子集的个数为23-1=7个,故选C .7.命题“∀n ∈N ,f (n )∈N 且f (n )>n ”的否定形式是( C ) A .∀n ∈N ,f (n )∉N 且f (n )≤n B .∀n ∈N ,f (n )∉N 且f (n )>n C .∃n ∈N ,f (n )∉N 或f (n )≤n D .∃n ∈N ,f (n )∉N 或f (n )>n[解析] 命题“∀n ∈N ,f (n )∈N 且f (n )>n ”的否定形式是∃n ∈N ,f (n )∉N 或f (n )≤n ,故选C .8.已知全集U =R ,M ={x |x <-1},N ={x |x (x +2)<0},则图中阴影部分表示的集合是( A )A .{x |-1≤x <0}B .{x |-1<x <0}C .{x |-2<x <-1}D .{x |x <-1}[解析] 题图中阴影部分为N ∩(∁U M ), 因为M ={x |x <-1}, 所以∁U M ={x |x ≥-1},又N ={x |x (x +2)<0}={x |-2<x <0}, 所以N ∩(∁U M )={x |-1≤x <0}.故选A .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列命题中,是全称量词命题的有( BC ) A .至少有一个x 使x 2+2x +1=0成立 B .对任意的x 都有x 2+2x +1=0成立 C .对任意的x 都有x 2+2x +1=0不成立 D .存在x 使x 2+2x +1=0成立[解析] A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题,B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题.故选BC .10.下列命题中真命题的是( AB ) A .“a >b >0”是“a 2>b 2”的充分条件 B .“a >b ”是“3a >3b ”的充要条件 C .“a >b ”是“|a |>|b |”的充分条件 D .“a >b ”是“ac 2≤bc 2”的必要条件[解析] 当a >b >0时a 2>b 2,A 正确;B 正确;对于C ,当a =1,b =-2时,满足a >b ,但|a |<|b |,故C 不正确;对于D ,“a >b ”与“ac 2≤bc 2”没有关系,不能相互推出,因此不正确.故选AB .11.定义集合运算:A ⊗B ={z |z =(x +y )×(x -y ),x ∈A ,y ∈B },设A ={2,3},B ={1,2},则( BD )A .当x =2,y =2,z =1B .x 可取两个值,y 可取两个值,z =(x +y )×(x -y )有4个式子C .A ⊗B 中有4个元素D .A ⊗B 的真子集有7个[解析] 当x =2,y =2时,z =(2+2)×(2-2)=0,A 错误;由于A ={2,3},B ={1,2},则z 有(2+1)×(2-1)=1,(2+2)×(2-2)=0,(3+1)×(3-1)=2,(3+2)×(3-2)=1四个式子,B 正确;由集合中元素的互异性,得集合A ⊗B 有3个元素,C 错误;集合A ⊗B 的真子集个数为23-1=7,D 正确.故选BD .12.在下列命题中,真命题有( BC ) A .∃x ∈R ,x 2+x +3=0 B .∀x ∈Q ,13x 2+12x +1是有理数C .∃x ,y ∈Z ,使3x -2y =10D .∀x ∈R ,x 2>|x |[解析] A 中,x 2+x +3=(x +12)2+114>0,故A 是假命题;B 中,x ∈Q ,13x 2+12x +1一定是有理数,故B 是真命题;C 中,x =4,y =1时,3x -2y =10成立,故C 是真命题;对于D ,当x =0时,左边=右边=0,故D 为假命题;故真命题有BC .三、填空题(本大题共4小题,每小题5分,共20分.)13.已知集合A ={1,a 2},B ={a ,-1},若A ∪B ={-1,a,1},则a =__0__.[解析] 由题意可知⎩⎪⎨⎪⎧a 2=a ≠1,a ≠-1,解得a =0.14.已知集合A ={1,2,3},B ={x |-3x +a =0},若A ∩B ≠∅,则a 的值为__3或6或9__. [解析] 由题意可知B ={x |x =a 3}.若A ∩B ≠∅,则a 3=1或a 3=2或a3=3,得a =3或6或9.15.某校开展小组合作学习模式,高二某班某组王小一同学给组内王小二同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m 范围.王小二略加思索,反手给了王小一一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m 范围.你认为,两位同学题中m 的范围是否一致?__是__(填“是”或“否”).[解析] 因为命题“∃x ∈R ,x 2+2x +m ≤0”的否定是“∀x ∈R ,x 2+2x +m >0”,而命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R ,x 2+2x +m >0”为真命题,所以两位同学题中m 的范围是一致的.16.在下列所示电路图中,下列说法正确的是__(1)(2)(3)__(填序号).(1)如图①所示,开关A 闭合是灯泡B 亮的充分不必要条件; (2)如图②所示,开关A 闭合是灯泡B 亮的必要不充分条件; (3)如图③所示,开关A 闭合是灯泡B 亮的充要条件;(4)如图④所示,开关A 闭合是灯泡B 亮的必要不充分条件.[解析] (1)A 闭合,B 亮;而B 亮时,A 不一定闭合,故A 是B 的充分不必要条件,因此正确;(2)A 闭合,B 不一定亮;而B 亮,A 必须闭合,故A 是B 的必要不充分条件,因此正确;(3)A 闭合,B 亮;而B 亮,A 必闭合,所以A 是B 的充要条件,因此正确;(4)A 闭合,B 不一定亮;而B 亮,A 不一定闭合,所以A 是B 的既不充分也不必要条件,因此错误.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.[解析] 由x 2+x -6=0得x =2或x =-3,因此M ={2,-3}. ①当a =2时,N ={2},此时N ⊆M ; ②当a =-3时,N ={2,-3},此时N =M ;③当a ≠2且a ≠-3时,得N ={2,a },此时,N M .故所求实数a 的值为2或-3. 18.(本小题满分12分)判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除; (2)末位是0的实数能被2整除; (3)∃x >1,x 2-2>0;(4)存在实数没有算术平方根; (5)奇数的平方还是奇数.[解析] (1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题. (2)命题中省略了全称量词“所有”,是全称量词命题,真命题. (3)命题中含有存在量词“∃”,是存在量词命题,真命题. (4)命题“存在实数没有算术平方根”,是存在量词命题,真命题. (5)命题中省略了全称量词“所有”,是全称量词命题,真命题.19.(本小题满分12分)设集合A ={x |-1<x <4},B ={x |-5<x <32},C ={x |1-2a <x <2a }.(1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且C ⊆(A ∩B ),求实数a 的取值范围. [解析] (1)因为C ={x |1-2a <x <2a }=∅,所以1-2a ≥2a ,所以a ≤14,即实数a 的取值范围是{a |a ≤14}.(2)因为C ={x |1-2a <x <2a }≠∅, 所以1-2a <2a ,即a >14.因为A ={x |-1<x <4},B ={x |-5<x <32},所以A ∩B ={x |-1<x <32},因为C ⊆(A ∩B ),所以⎩⎨⎧1-2a ≥-1,2a ≤32,a >14,解得14<a ≤34,即实数a 的取值范围是{a |14<a ≤34}.20.(本小题满分12分)已知全集U =R ,集合A ={x |4x -1>x +2},B ={x |-1<x <2m -3}.(1)当m =4时,求(∁U A )∩B ;(2)若A ∩B 恰好包含了两个整数,写出这两个整数构成的集合的所有子集. [解析] (1)因为全集U =R ,集合A ={x |4x -1>x +2}={x |x >1}, 当m =4时,∁U A ={x |x ≤1},集合B ={x |-1<x <5}, 所以(∁U A )∩B ={x |-1<x ≤1}. (2)因为A ={x |4x -1>x +2}={x |x >1}, B ={x |-1<x <2m -3}.A ∩B 恰好包含了两个整数,则这两个整数是2,3, 则集合{2,3}的所有子集为:∅,{2},{3},{2,3}.21.(本小题满分12分)若集合A ={x |x >-2},B ={x |bx >1},其中b 为实数且b ≠0,试写出:(1)A ∪B =R 的一个充要条件; (2)A ∪B =R 的一个必要不充分条件; (3)A ∪B =R 的一个充分不必要条件.[解析] 若b >0,则集合B ={x |x >1b },若b <0,则集合B ={x |x <1b}.(1)若A ∪B =R ,则必有⎩⎪⎨⎪⎧b <0,1b >-2,即⎩⎪⎨⎪⎧b <0,b <-12,所以b <-12. 故A ∪B =R 的一个充要条件是b <-12.(2)由(1)知A ∪B =R 充要条件是b <-12.所以A ∪B =R 的一个必要不充分条件可以是b <0. (3)由(1)知A ∪B =R 充要条件是b <-12.所以A ∪B =R 的一个充分不必要条件可以是b <-1.22.(本小题满分12分)(1)已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围;(2)已知p :A ={x |-1≤x ≤5},q :B ={x |-m <x <2m -1},若p 是q 的充分条件,求实数m 的取值范围.[解析] (1)p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件, 即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. (2)因为p 是q 的充分条件,所以A ⊆B , 如图:则⎩⎪⎨⎪⎧-m <-1,2m -1>5,解得m >3.。

(典型题)高中数学必修五第一章《数列》检测题(包含答案解析)

(典型题)高中数学必修五第一章《数列》检测题(包含答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .354.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .25.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,6.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13297.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .28.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ).A .2B .1C .32D .129.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202210.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-11.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______. 14.设数列{}n a 是等比数列,公比2q,n S 为{}n a 的前n 项和,记219n nn n S S T a +-=(*n N ∈),则数列{}n T 最大项的值为__________. 15.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 16.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.17.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 18.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.已知数列{}n a 的通项公式为()12n n a n =+⋅,若不等式()2235n n n a λ--<-对任意*n N ∈恒成立,则整数λ的最大值为_____.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,②12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 23.已知数列{}n a 满足112a =,1223241n n n a a n ++-=-,n *∈N . (1)设121n n b a n =+-,求证:数列{}n b 是等比数列; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:3n S <,n *∈N .24.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T . 25.已知数列{}n a ,11a =,121n n a a +=+.(1)求证数列{}1n a +是等比数列; (2)令()2log 1n n b a =+,求数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272nn n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立,所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.4.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 5.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=,12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C .【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.6.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 7.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.8.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.9.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.10.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<-解得1544m <<则m 的取值范围是15,44⎛⎫⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.14.【解析】数列是等比数列公比为的前项和当且仅当时取等号又或时取最大值数列最大项的值为故答案为 解析:3【解析】数列{}n a 是等比数列,公比q 2=,n S 为{}n a 的前n 项和,219()n n n n S S T n N a *+-=∈ ,2111(12)(12)9812129222n nn nn na a T a --⋅---∴==--⋅822n n +≥=, 当且仅当822nn =时取等号, 又,1n N n *∈=或2 时,n T 取最大值19243T =--= .∴ 数列{}n T 最大项的值为3 .故答案为3 .15.【分析】由题意可得为常数可得数列为等差数列求得的图象关于点对称运用等差数列中下标公式和等差中项的性质计算可得所求和【详解】解:对都有成立可令即有为常数可得数列为等差数列函数由可得的图象关于点对称可得 解析:26【分析】由题意可得11n n a a a +-=,为常数,可得数列{}n a 为等差数列,求得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和. 【详解】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为26. 【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.16.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576.【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.17.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.18.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和. 【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++, 依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-, 故答案为:817n n a -=【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.4【分析】根据题意等价变形得对任意恒成立再求数列的最大值即可得答案【详解】解:∵∴不等式等价于记∴时即时数列单调递减又∵∴∴即∴整数的最大值为4故答案为:4【点睛】本题考查根据数列不等式恒成立求参数解析:4 【分析】根据题意等价变形得2352nn λ-->对任意*n N ∈恒成立,再求数列232nn n b -=的最大值即可得答案. 【详解】解:∵()102nn a n =+⋅>,∴不等式()2235n n n a λ--<-等价于2352nn λ-->, 记232n nn b -=,112121223462n n n n n b n n b n ++--==--, ∴3n ≥时,11n nb b +<,即3n ≥时数列单调递减, 又∵ 1211,24b b =-=, ∴ ()3max 38n b b ==, ∴358λ->,即337588λ<-=,∴整数λ的最大值为4. 故答案为:4. 【点睛】本题考查根据数列不等式恒成立求参数,考查化归转化思想,是中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-.【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩, 所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭,所以2332n nn S +=-. 【点睛】易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++.【分析】选①,(1)列出关于首项与公差、首项与公比的方程组,求出首项与公差、首项与公比,从而求出数列{}n a 和{}n b 的通项公式;(2)由(1)知2nn n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可.选②,(1)列出关于首项与公差的方程组可求出数列{}n a 的通项公式,利用1n n n b S S -=-可求{}n b 的通项公式;(2)由(1)知2n n n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可. 【详解】 选①解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.由题意知132452,24b b b b ⎛⎫=⋅=+⎪⎝⎭,得324522b b b =+, 设等比数列{}n b 的公比为2222,522q b q b b q ⋅=+,即22520q q -+=,解得2q,或12q =,由数列{}n b 为递增等比数列可知12q =不合题意, 所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.选②解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.令1n =,则111112,42,2S b S λλλ+=+∴==+=∴=-,122n n S +∴=-当2n ≥时,()()1122222n n n n n n b S S +-=-=---=当1n =时,12b =也满足上式.2n n b =(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++, ()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.【点睛】方法点睛:利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)直接利用定义证明12n n b b +=即得证;(2)分析得到211321n n a -≤⋅-,再利用等比数列求和得证. 【详解】 解:(1)121n n b a n =+-,1223241n n n a a n ++-=-, 则1122123142222222141214121n n n n n n n n b a a a a b n n n n n ++++=+=++=+=+=+-+--, 又11312b a =+=, 所以数列{}n b 是等比数列; (2)由(1)得,1232322n n n b --=⋅=⋅,N n *∈, 213221n n a n -∴=⋅--,N n *∈, 211n -≥,23210n n a -∴≥⋅->,211321n n a -∴≤⋅-, 当2n ≥时,21231111111111222+23312222211112251132112n n n n n S ----⎛⎫- ⎪⎝⎭<++++=+<+=-<-++++⋅-,又11123S a ==<, 综上,3n S <,n *∈N . 【点睛】方法点睛:证明数列不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)数学归纳法;(5)放缩法;(6)反证法.要根据已知条件灵活选择方法求解. 24.(1)13n n a =,12n n b +=;(2)151144323n n n n T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b += ∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n nn T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)证明见解析;(2)()()235412n n nT n n +=++【分析】(1)利用等比数列的定义变形为()1121n n a a ++=+,证明数列{}1n a +是等比数列;(2)首先求数列{}n b 的通项公式,再利用裂项相消法求和. 【详解】 (1)121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是公比为2的等比数列;(2)由(1)可知11222n nn a -+=⋅=, 所以2log 2nn b n ==,()211111222n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 则11111111111...232435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()235412n n n n +=++ 【点睛】关键点点睛:本题第二问考查裂项相消法求和,这样的形式不是连续相消,如果前面剩下两个正数项,那么最后一定剩下两个负数项.26.(1)2nn a n =⋅;(2)()1122n n T n +=-⋅+;(3)12.【分析】(1)利用累乘法可求得数列{}n a 的通项公式; (2)利用错位相减法可求得数列{}n a 的前n 项和n T ;(3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值. 【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭, 则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >,由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a na a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n=++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。

高一数学高中数学必修5:第一章++解三角形+单元同步测试(含解析)

高一数学高中数学必修5:第一章++解三角形+单元同步测试(含解析)

答案 A
二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题
中横线上 )
13.在△ ABC 中, A=60°,C=45°,b=4,则此三角形的最小边是
____________.
解析 由 A+B+C=180°,得 B= 75°,∴c 为最小边,由正弦
定理,知 c=bssininBC=4ssinin7455°°=4( 3-1).
A.30° B.45° C.60°
D.90°
2
新课标 A 版·数学·必修 5
高中同步学习方略
解析 根据正弦定理,原式可化为
a2 c2
b
2R 4R2-4R2 =( 2a-b) ·2R,
∴ a2- c2=( 2a- b)b,∴ a2+ b2- c2= 2ab,
a2+b2-c2 2 ∴ cosC= 2ab = 2 ,∴ C=45°.
新课标 A 版·数学·必修 5
高中同步学习方略
第一章测试
一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给
出的四个选项中,只有一项是符合题目要求的 )
1.在△ ABC 中, AB=5,BC=6,AC=8,则△ ABC 的形状是 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.非钝角三角形
3

assininAB=
8×sin60 °8× 2 sin45 °= 2
=4
Hale Waihona Puke 6.2答案 C
→→ 4.在△ ABC 中, AB=5,BC=7,AC= 8,则 BA·BC的值为 ( )
1
新课标 A 版·数学·必修 5
高中同步学习方略
A.5 B.- 5 C.15

2020年新教材高中数学必修第一章《集合与常用逻辑用语》单元检测卷解析版

2020年新教材高中数学必修第一章《集合与常用逻辑用语》单元检测卷解析版

第一章《集合与常用逻辑用语》单元检测卷解析版(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列四个关系式:①7∈R;②Z∈Q;③0∈;④{0},其中正确的个数是()A.1B.2C.3D.4解析①④正确;对于②,Z与Q的关系是集合间的包含关系,不是元素与集合的关系;对于③,是不含任何元素的集合,故0,选B.答案 B2.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=UD.(∁U M)∩N=N解析由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6}知,M∪N=U,故选B.答案 B3.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个解析易知P=M∩N={1,3},故P的子集共有22=4个.答案 B4.已知集合A={1,a},B={1,2,3},则“a=3”是“A B”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析∵a=3A B,而A B a=3,∴“a=3”是“A B的充分不必要条件”.答案 B5.设全集U=R,集合A={x|x≥2},B={x|0≤x<5},则集合(∁U A)∩B=()A.{x|0<x<2}B.{x|0<x≤2}C.{x|0≤x<2}D.{x|0≤x≤2}解析先求出∁U A={x|x<2},再利用交集的定义求得(∁U A)∩B={x|0≤x<2}.答案 C6.已知M={y∈R|y=|x|},N={x∈R|x=m2},则下列关系中正确的是()A.M NB.M=NC.M≠ND.N M解析∵M={y∈R|y=|x|}={y∈R|y≥0},N={x∈R|x=m2}={x∈R|x≥0},∴M=N.答案 B7.命题p:ax2+2x+1=0有实数根,若綈p是假命题,则实数a的取值范围为()A.{a|a<1}B.{a|a≤1}C.{a|a>1}D.{a|a≥1}解析因为綈p是假命题,所以p为真命题,即方程ax2+2x+1=0有实数根.,满足条件.当a≠0时,若使方程ax2+2x 当a=0时,方程为2x+1=0,x=-12+1=0有实数根,则Δ=4-4a≥0,即a≤1.8.已知命题p :x ∈R ,1-x 2≤1,则( ) A.綈p :x ∈R ,1-x 2≥1 B.綈p :x ∈R ,1-x 2≥1 C.綈p :x ∈R ,1-x 2>1 D.綈p :x ∈R ,1-x 2>1解析 根据全称量词命题的否定方法,当命题p :x ∈R ,1-x 2≤1时,綈p :x ∈R ,1-x 2>1.故选C.答案 C 9.已知p :-4<x -a <4,q :2<x <3,若綈p 是綈q 的充分条件,则实数a 的取值范围是( )A.{a |-1≤a ≤6}B.{a |a ≤-1}C.{a |a ≥6}D.{a |a ≤-1或a ≥6}解析 p :-4<x -a <4,即a -4<x <a +4;q :2<x <3.所以綈p :x ≤a -4或x ≥a +4,綈q :x ≤2或x ≥3;而綈p 是綈q 的充分条件,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案 A10.满足“a ∈A ,且8-a ∈A ,a ∈N ”的有且只有2个元素的集合A 的个数是( )A.1B.2C.3D.4解析 由题意可知,满足题设条件的集合A 有{0,8},{1,7},{2,6},{3,5},共4个.11.已知集合A ={(x ,y )|x ,y 为实数,且y =x 2},B ={(x ,y )|x ,y 为实数,且y =1-x },则A ∩B 的元素个数为( )A.无数个B.3C.2D.1解析 联立⎩⎪⎨⎪⎧y =x 2,x +y =1,消去y 得x 2+x -1=0, ∵Δ=12-4×(-1)×1=5>0,∴方程x 2+x -1=0有2个不同的实数解,∴方程组⎩⎪⎨⎪⎧y =x 2,x +y =1有2组解,∴A ∩B 的元素有2个,故选C. 答案 C12.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A.4B.5C.19D.20解析 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a =2,3时集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P *Q 中元素的个数为19个,故选C.答案 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.若集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=________.解析 ∵B ={x |x <1},∴∁R B ={x |x ≥1}.∴A ∩(∁R B )={x |1≤x ≤2}.答案 {x |1≤x ≤2}14.命题:存在一个实数对(x ,y ),使2x +3y +3<0成立的否定是_______________. 解析 存在量词命题的否定是全称量词命题.答案 对任意实数对(x ,y ),2x +3y +3≥0恒成立15.当A ,B 是非空集合,定义运算A -B ={x |x ∈A ,且xB },若M ={x |x ≤1},N ={y |0≤y ≤1},则M -N =________.解析 画出数轴如图:∴M -N ={x |x ∈M 且xN }={x |x <0}. 答案 {x |x <0}16.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是________.解析 借助数轴可知⎩⎪⎨⎪⎧a <-1,a +8>5.∴-3<a <-1. 答案 {a |-3<a <-1}三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-4≤x ≤-2},集合B ={x |x +3≥0}. 求:(1)A ∩B ;(2)A ∪B ;(3)∁R (A ∩B ).解 由已知得B ={x |x ≥-3},(1)A ∩B ={x |-3≤x ≤-2}.(2)A ∪B ={x |x ≥-4}.(3)∁R (A ∩B )={x |x <-3或x >-2}.18.(本小题满分12分)写出下列命题的否定,并判断其真假性. (1)x ∈Z ,|x |∈N ; (2)每一个平行四边形都是中心对称图形;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修5第一章单元测试题
选择题
1已知ABC ∆中, 60,75,10===C A b ,则=C ( )。

A.25 B.65 C.35 D.210
2ABC ∆中已知 45,60,1===C A c ,则ABC ∆的面积为( )。

A.435 B.833- C.83
3+ D.83
3
3若ABC ∆中B b A a cos cos =,则ABC ∆的形状为( )。

A.等边三角形
B.等腰三角形
C.直角三角形
D.等腰或直角三角形
4在m 200高的山顶上,测得山下一塔顶与塔底俯角分别为 60,30,则塔高(
)。

A.m 3400 B.m 33400 C.m 33
200 D.m 3200
5ABC ∆中,4,2,5===∆ABC S c a ,则=b ( )。

A.17 B.41 C.17或41 D.14
6在ABC ∆中,3:2:1::=C B A ,那么三边之比c b a ::等于( )。

A.3:2:1
B.1:2:3
C.2:3:1
D.1:3:2 7在ABC ∆中, 44,24,18===A b a ,则此三角形有( )。

A.一解
B.两解
C.无解
D.不确定
8.若A 为△ABC 的内角,则下列函数中一定取正值的是( )
A .A sin
B .A cos
C .A tan
D .A tan 1
9.在△ABC 中,若B a b sin 2=,则A 等于( )
A .006030或
B .006045或
C .0060120或
D .0015030或
10.边长为5,7,8的三角形的最大角与最小角的和是( )
A .090
B .0120
C .0135
D .0150
11.在△ABC 中,A ∶B ∶C=1∶2∶3,则a ∶b ∶c 等于( )
A .1∶2∶3
B .3∶2∶1
C .1∶3∶2
D .2∶3∶1
13.在△ABC 中,若B A 2=,则a 等于( )
A .A b sin 2
B .A b cos 2
C .B b sin 2
D .B b cos 2
14.平行四边形ABCD 中, 45,34,64=∠==BAC AC AB ,则=AD ________。

15 在ABC ∆中,34,3
1cos ,23===∆ABC S C a ,则=b ________。

16.在△ABC 中,若====a C B b 则,135,30,200_________。

17.在△ABC 中,若=++=A c bc b a 则,222_________。

18.在△ABC 中,若=++=A c bc b a 则,222_________。

一、 解答题
19.为测河的宽度,在一岸边选定B A ,两点,
望对岸的标记物C ,测得 30=∠CAB ,
75=∠CBA ,m AB 120=。

求河的宽度。

20.在ABC ∆中,72cos 22sin 82
=-+A C B 。

⑴求A ∠的大小; ⑵若3,3=+=c b a ,求c b ,
. A D B C。

相关文档
最新文档