考试必备-高中数学必修3全套同步练习+单元测试25份合集-含答案

合集下载

(经典)高中数学必修三单元测试题附答案解析

(经典)高中数学必修三单元测试题附答案解析

(数学3必修)第一章:算法初步[基础训练A组]一、选择题1.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.用二分法求方程022=-x的近似根的算法中要用哪种算法结构()A.顺序结构B.条件结构C.循环结构D.以上都用3.将两个数8,17a b==交换,使17,8a b==,下面语句正确一组是 ( )4A D.6,05.当)A6123123452345+++++xxxxx,当x=2时的值的过程中,要经过次乘法运算4①IF-THEN语句;④DO语句;⑤END语句;⑥5.将。

1.把“五进制”数)5(1234转化为“十进制”数,再把它转化为“八进制”数。

2.用秦九韶算法求多项式xxxxxxxxf++++++=234567234567)(当3=x时的值。

3.编写一个程序,输入正方形的边长,输出它的对角线长和面积的值。

4.某市公用电话(市话)的收费标准为:3分钟之内(包括3分钟)收取0.30元;超过3分钟部分按0.10元/分钟加收费。

设计一个程序,根据通话时间计算话费。

新课程高中数学训练题组(数学3必修)第一章:算法初步i=1 s=0 WHILE i<=4 s=s*x+1 i=i+1 WENDPRINT sEND[综合训练B 组] 一、选择题1.用“辗转相除法”求得459和357的最大公约数是( )A .3B .9C .17D .51 2.当2=x 时,下面的程序段结果是 ( )A .3B .7C .15D .17 3.利用“直接插入排序法”给8,1,2,3,5,7按从大到小的顺序排序,当插入第四个数3时,实际是插入哪两个数之间 ( ) A .8与1 B .8与2 C .5与2 D .5与1 4.对赋值语句的描述正确的是 ( ) ①可以给变量提供初值 ②将表达式的值赋给变量 ③可以给一个变量重复赋值 ④不能给同一变量重复赋值 A .①②③ B .①②C .②③④D .①②④5.在repeat 语句的一般形式中有“until A ”,其中A 是 ( )A . 循环变量B .循环体C .终止条件D .终止条件为真 6.用冒泡排序法从小到大排列数据13,5,9,10,7,4需要经过( )趟排序才能完成。

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

数学必修三全册试卷及答案

数学必修三全册试卷及答案

第I 卷(选择题)一、单选题(60分)1.某班级有名学生,其中有名男生和名女生,随机询问了该班五名男生和五名503020女生在某次数学测验中的成绩,五名男生的成绩分别为, , , , 116124118122,五名女生的成绩分别为, , , , ,下列说法一定正确的120118123123118123是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .103B .185C .31D .41 3.如图,矩形中点位边的中点,若在矩形内部随机取一个点,ABCD E CD ABCD Q 则点取自内部的概率等于( D )Q ABEA .B .C .D . 413132214.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )A . 47,45B . 45,47C . 46,46D . 46,455. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B )A. B. C. D.112310151106.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A . 12 B .13 C .23 D .147.将2005x =输入如下图所示的程序框图得结果( A )A .2006B .2005C .0D .2005-8.98和63的最大公约数为( B )A.6 B.7 C.8 D.99.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则C种型号产品抽取的件数为( B )A.24B.36C.30D.4010.光明中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( C )9876A.B.C.D.11.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( B ) A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,3212.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( C )A.1B.C.D.22、填空题(20分)13.一个路口的红绿灯,红灯的时间是30秒,黄灯的时间是5秒,绿灯的时间是40秒,当你到达路口时遇见红灯的概率是 0.4 .14.如图是一容量为100的样本的频率分布直方图.则由图可知样本数据的中位数大约是__13_____.15.数据,,…,平均数为6,标准差为2,则数据,,…,的方差x 1x 2x 82x 1−62x 2−62x 8−6为____16____.16.某住宅小区有居民2万人,分別为本地人和外来人,从中随机抽取200人,调査居民是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单车的人数为____9500______.第II 卷(非选择题)3、解答题(70分)17.(10分)甲乙两台机床同时生产一种零件,10天中,两台机床每天生产的次品数分别是:甲 0 1 0 2 2 0 3 1 2 4乙 2 3 1 1 0 2 1 1 0 1(1)求这两组数据的平均数和标准差 1.5 1.2 1.26 0.93(2)判断一下那台机床的性能较好,并说明理由。

人教A版高中数学必修三测试题及答案全套

人教A版高中数学必修三测试题及答案全套

人教A版高中数学必修三测试题及答案全套阶段质量检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数输入自变量x的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是()A.顺序结构B.条件结构C.顺序结构、条件结构D.顺序结构、循环结构2.下列赋值语句正确的是()A.M=a+1 B.a+1=MC.M-1=a D.M-a=13.若十进制数26等于k进制数32,则k等于()A.4 B.5 C.6 D.84.用“辗转相除法”求得360和504的最大公约数是()A.72 B.36 C.24 D.2 5205.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是()A.m=0? B.x=0?C.x=1? D.m=1?6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A .S =S *(n +1)B .S =S*x n +1C .S =S * nD .S =S*x n7.已知一个k 进制的数132与十进制的数30相等,那么k 等于( ) A .7或4 B .-7 C .4 D .以上都不对8.用秦九韶算法求多项式:f (x )=12+35 x -8 x 2+79 x 3+6 x 4+5 x 5+3 x 6在x =-4的值时,v 4的值为( )A .-57B .220C .-845D .3 392 9.对于下列算法:如果在运行时,输入2,那么输出的结果是( ) A .2,5 B .2,4 C .2,3 D .2,9 10.下列程序的功能是( ) S =1i =1WHILE S <=10 000 i =i +2S =S*i WEND PRINT i ENDA .求1×2×3×4×…×10 000的值B .求2×4×6×8×…×10 000的值C .求3×5×7×9×…×10 001的值D .求满足1×3×5×…×n >10 000的最小正整数n11.(2015·新课标全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .1412.如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 二、填空题(本大题共4小题,每小题5分,共20分)13.用更相减损术求三个数168,54,264的最大公约数为________. 14.将258化成四进制数是________.15.阅读如图所示的程序框图,运用相应的程序,若输入m 的值为2,则输出的结果i =________.16.下面程序执行后输出的结果是________,若要求画出对应的程序框图,则选择的程序框有________________.T=1S=0WHILE S<=50S=S+1T=T+1WENDPRINT TEND三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)画出函数的程序框图.18.(12分)用“更相减损术”求(1)中两数的最大公约数;用“辗转相除法”求(2)中两数的最大公约数.(1)72,168;(2)98,280.19.(12分)利用秦九韶算法判断函数f(x)=x 5+x 3+x 2-1在[0,2]上是否存在零点.20.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.21.(12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,并用基本语句编写程序.22.(12分)如图甲所示在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,且y与x之间的函数关系式用如图乙所示的程序框图给出.图甲图乙(1)写出程序框图中①,②,③处应填充的式子;(2)若输出的面积y值为6,则路程x的值为多少?并指出此时点P在正方形的什么位置上.答案1. 答案:C2. 解析:选A根据赋值语句的功能知,A正确.3. 解析:选D由题意知,26=3×k1+2,解得k=8.4. 解析:选A504=360×1+144,360=144×2+72,144=72×2,故最大公约数是72.5. 解析:选D阅读程序易知,判断框内应填m=1?,应选D.6. 解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.7. 解析:选C132(k)=1×k2+3×k+2=k 2+3 k+2=30,即k=-7或k=4.∵k>0,∴k=4.8. 解析:选B f(x)=(((((3 x+5) x+6) x+79) x-8) x+35) x+12,当x=-4时,v0=3;∴v 1=3×(-4)+5=-7;v 2=-7×(-4)+6=34,v 3=34×(-4)+79=-57;v 4=-57×(-4)-8=220.9. 解析:选A输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.10. 解析:选D法一:S是累乘变量,i是计数变量,每循环一次,S乘以i一次且i增加2. 当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.法二:最后输出的是计数变量i,而不是累乘变量S.11. 解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.12. 解析:选C由于x=a k,且a>A时,将x值赋给A,因此最后输出的A值是a1,a2,…,a N 中最大的数;由于x=a k,且x<B时,将x值赋给B,因此最后输出的B值是a1,a2,…,a N中最小的数,故选C.13. 解析:为简化运算,先将3个数用2约简为84,27,132.由更相减损术,先求84与27的最大公约数.84-27=57,57-27=30,30-27=3,27-3=24,24-3=21,21-3=18,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.故84与27的最大公约数为3.再求3与132的最大公约数,易知132=3×44,所以3与132的最大公约数就是3.故84,27,132的最大公约数为3;168,54,264的最大公约数为6.答案:614. 解析:利用除4取余法.则258=10 002(4).答案:10 002(4)15. 解析:由程序框图,i=1后:A=1×2,B=1×1,A<B?否;i=2后:A=2×2,B=1×2,A <B?否;i=3后:A=4×2,B=2×3,A<B?否;i=4后:A=8×2,B=6×4,A<B?是,输出i=4.答案:416. 解析:本题为当型循环语句,可以先用特例循环几次,观察规律可得:S=1,T=2;S=2,T=3;S=3,T=4;…;依此循环下去,S=49,T=50;S=50,T=51;S=51,T=52.终止循环,输出的结果为52.本题使用了输出语句、赋值语句和循环语句,故用如下的程序框:起止框、处理框、判断框、输出框.答案:52起止框、处理框、判断框、输出框17. 解:程序框图如图所示.18. 解:(1)用“更相减损术”168-72=96,96-72=24,72-24=48,48-24=24.∴72与168的最大公约数是24.(2)用“辗转相除法”280=98×2+84,98=84×1+14,84=14×6.∴98与280的最大公约数是14.19. 解:f (0)=-1<0,下面用秦九韶算法求x=2时,多项式f(x)=x 5+x 3+x 2-1的值.多项式变形为f (x)=((((x+0) x+1) x+1) x+0) x-1,v0=1,v 1=1×2+0=2,v 2=2×2+1=5,v 3=5×2+1=11,v 4=11×2+0=22,v 5=22×2-1=43,所以f(2)=43>0,即f (0)·f (2)<0,又函数f (x)在[0,2]上连续,所以函数f(x)=x 5+x 3+x 2-1在[0,2]上存在零点.20. 解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 008.(3)程序框图的程序语句如下:21. 解:程序框图如图.程序如下. S =0k =1DOS =S +1/(k*(k +1)) k =k +1LOOP UNTIL k >99PRINT S END22. 解:(1)由题意,得y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12,故程序框图中①,②,③处应填充的式子分别为:y =2x ,y =8,y =24-2x .(2)若输出的y 值为6,则2x =6或24-2x =6,解得x =3或x =9.当x =3时,此时点P 在正方形的边BC 上,距C 点的距离为1;当x =9时,此时点P 在正方形的边DA 上,距D 点的距离为1.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各选项中的两个变量具有相关关系的是( ) A .长方体的体积与边长 B .大气压强与水的沸点 C .人们着装越鲜艳,经济越景气 D .球的半径与表面积 2.下列说法错误的是( )A .在统计里,最常用的简单随机抽样方法有抽签法和随机数法B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大3.(2016·开封高一检测)某学校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,已知女学生一共抽取了80人,则n 的值是( )A .193B .192C .191D .1904.某班学生父母年龄的茎叶图如图,左边是父亲年龄,右边是母亲年龄,则该班同学父亲的平均年龄比母亲的平均年龄大( )A .2.7岁B .3.1岁C .3.2岁D .4岁5.如果在一次实验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( )A.y ^=x +1.9B.y ^=1.04x +1.9 C.y ^=0.95x +1.04 D.y ^=1.05x -0.96.观察新生婴儿的体重,其频率分布直方图如图,则新生婴儿体重在(2 700,3 000)的频率为( )A .0.001B .0.1C .0.2D .0.37.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数大于该班女生成绩的平均数8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A .1%B .2%C .3%D .5%9.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是( )A .高一的中位数大,高二的平均数大B .高一的平均数大,高二的中位数大C .高一的平均数、中位数都大D .高二的平均数、中位数都大10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.2511.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别分段为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .1812.设矩形的长为a ,宽为b ,若其比满足ba =5-12≈0.618,则这种矩形称为黄金矩形.黄金矩形给人以美感,常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数与标准值0.618比较,正确结论是( ) A .甲批次的总体平均数与标准值更接近 B .乙批次的总体平均数与标准值更接近 C .两个批次总体平均数与标准值接近程度相同 D .两个批次总体平均数与标准值接近程度不能确定 二、填空题(本大题共4小题,每小题5分,共20分)13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是________.14.在某次测量中得到的A 若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的数字特征(众数、中位数、平均数、方差)对应相同的是________.15.某校开展“爱我母校,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数茎叶图如图,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.16.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知一组数据从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.18.(12分)2015年春节前,有超过20万名来自广西、四川的外来务工人员选择驾乘摩托车沿321国道返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个休息站,让过往的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的摩托车驾驶人员每隔50人询问一次省籍,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?19.(12分)某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.0240.0039.9840.0039.9940.0039.9840.0139.9839.9940.0039.9939.9540.0140.0239.9840.0039.9940.0039.96(1)完成下面的频率分布表,并画出频率分布直方图;(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.20.(12分)某零售店近5个月的销售额和利润额资料如下表:(1)(2)用最小二乘法计算利润额y 关于销售额x 的回归直线方程;(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).⎣⎢⎢⎡⎦⎥⎥⎤参考公式:b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x 21.(12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.22.(12分)已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图甲所示的茎叶图.(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量; (2)为了估计池塘中鱼的总重量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的重量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图乙是按上述分组方法得到的频率分布直方图的一部分.①估汁池塘中鱼的重量在3千克以上(含3千克)的条数;②若第三组鱼的条数比第二组多7条、第四组鱼的条数也比第三组多7条,请将频率分布直方图补充完整;③在②的条件下估计池塘中鱼的重量的众数及池塘中鱼的总重量.图甲 图乙答 案1. 解析:选C A 、B 、D 均为函数关系,C 是相关关系.2. 解析:选B 平均数不大于最大值,不小于最小值.3. 解析:选B1 000×n200+1 200+1 000=80,解得n =192.4. 解析:选C 分别求出父亲年龄和母亲年龄的平均值,可得父亲的平均年龄比母亲的平均年龄大3.2岁,故选C.5. 解析:选Bx =14(1+2+3+4)=2.5,y =14(3+3.8+5.2+6)=4.5.因为回归直线方程过样本点中心(x ,y ),代入验证知,应选B.6. 解析:选D 由直方图可知,所求频率为0.001×300=0.3.7. 解析:选C A 不是分层抽样,因为抽样比不同.B 不是系统抽样,因为是随机询问,抽样间隔未知.C 中五名男生成绩的平均数是x =86+94+88+92+905=90,五名女生成绩的平均数是y =88+93+93+88+935=91,五名男生成绩的方差为s 21=15(16+16+4+4+0)=8,五名女生成绩的方差为s 22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D 中由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.8. 解析:选C 由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.9. 解析:选A 由茎叶图可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为6477,所以高二的平均数大.故选A.10. 解析:选A 由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1,∴x =0.2,故中间一组的频数为160×0.2=32,选A.11. 解析:选C 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.12. 解析:选A 甲批次的样本平均数为15×(0.598+0.625+0.628+0.595+0.639)=0.617;乙批次的样本平均数为15×(0.618+0.613+0.592+0.622+0.620)=0.613.所以可估计:甲批次的总体平均数与标准值更接近.13. 解析:平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 答案:乙14. 解析:由s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],可知B 样本数据每个变量增加2,平均数也增加了,但s 2 不变,故方差不变.答案:方差15. 解析:由于需要去掉一个最高分和一个最低分,故需要讨论:①若x ≤4,∵平均分为91,∴总分应为637分.即89+89+92+93+92+91+90+x =637,∴x =1. ②若x >4,则89+89+92+93+92+91+94=640≠637,不符合题意,故填1. 答案:116. 解析:在频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x =0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:7117. 解:由于数据-1,0,4,x,7,14的中位数为5, 所以4+x 2=5,x =6.设这组数据的平均数为x ,方差为s 2,由题意得 x =16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18. 解:(1)根据题意,因为有相同的间隔,符合系统抽样的特点,所以交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员中 广西籍的有5+20+25+20+30=100(人), 四川籍的有15+10+5+5+5=40(人),设四川籍的驾驶人员应抽取x 名,依题意得5100=x40,解得x =2,即四川籍的应抽取2名. 19. 解:(1)(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,∴合格率为1820×100%=90%,∴10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000. 20. 解:(1)散点图如图所示,两个变量有线性相关关系.(2)设回归直线方程是y ^=b ^x +a ^. 由题中的数据可知y =3.4,x =6.所以b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=(-3)×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.69+1+1+9=1020=0.5. a ^=y -b ^x =3.4-0.5×6=0.4.所以利润额y 关于销售额x 的回归直线方程为 y ^=0.5x +0.4.(3)由(2)知,当x =4时,y =0.5×4+0.4=2.4,所以当销售额为4千万元时,可以估计该商场的利润额为2.4百万元.21. 解:(1)作出茎叶图:(2)x 甲=18(78+79+81+82+84+88+93+95)=85, x乙=18(75+80+80+83+85+90+92+95)=85. s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.22. 解:(1)根据茎叶图可知,鲤鱼与鲫鱼的平均数目分别为80,20. 由题意知,池塘中鱼的总数目为1 000÷80+202 000=20 000(条),则估计鲤鱼数目为20 000×80100=16 000(条),鲫鱼数目为20 000-16 000=4 000(条).(2)①根据题意,结合直方图可知,池塘中鱼的重量在3千克以上(含3千克)的条数约为20 000×(0.12+0.08+0.04)×0.5=2 400(条).②设第二组鱼的条数为x ,则第三、四组鱼的条数分别为x +7、x +14,则有x +x +7+x +14=100×(1-0.55),解得x =8,故第二、三、四组的频率分别为0.08、0.15、0.22,它们在频率分布直方图中的小矩形的高度分别为0.16,0.30,0.44,据此可将频率分布直方图补充完整(如图).③众数为2.25千克,平均数为0.25×0.04+0.75×0.08+1.25×0.15+…+4.25×0.02=2.02(千克), 所以鱼的总重量为2.02×20 000=40 400(千克).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( ) A .随机事件的概率总在[0,1]内 B .不可能事件的概率不一定为0 C .必然事件的概率一定为1 D .以上均不对2.下列事件中,随机事件的个数为( )①在某学校校庆的田径运动会上,学生张涛获得100米短跑冠军;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4 ℃时结冰. A .1 B .2 C .3 D .43.甲、乙、丙三人随意坐一排座位,乙正好坐中间的概率为( ) A.12 B.13 C.14 D.164.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A .A 与C 互斥B .B 与C 互斥C .任何两个均互斥D .任何两个均不互斥5.(2016·郑州高一检测)函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0,使得f (x 0)≤0的概率是( ) A.310 B.15 C.25 D.456.如图,在矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.237.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( ) A.16 B.13 C.12 D.238.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=( )A.4πB.1π C .2 D.2π9.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2 有零点的概率为( )A.π4 B .1-π4 C.4π D.4π-1 10.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.91011.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P (A ∪B )等于( )A.12B.23C.13D.2512.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·青岛高一检测)一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为________.14.如图所示,在正方形内有一扇形(见阴影部分),点P 随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为________.15.已知集合A ={(x ,y )|x 2+y 2=1},集合B ={(x ,y )|x +y +a =0},若A ∩B ≠∅的概率为1,则a 的取值范围是________.16.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)从甲、乙、丙、丁四个人中选两名代表.求:(1)甲被选中的概率;(2)丁没被选中的概率.18.(12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12. (1)求n 的值;(2)记从袋中随机取出的一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.19.(12分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.20.(12分)已知集合Z ={(x ,y )|x ∈[0,2],y ∈[-1,1]}.(1)若x ,y ∈Z ,求x +y ≥0的概率;(2)若x ,y ∈R ,求x +y ≥0的概率.21.(12分)(2015·福建高考)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)和[7,8]2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.22.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两种卡片颜色不同且标号之和小于4的概率.答案1. 解析:选C随机事件的概率总在(0,1)内,不可能事件的概率为0,必然事件的概率为1.2. 解析:选C①在某学校校庆的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4 ℃时结冰是不可能事件.故选C.3. 解析:选B甲、乙、丙三人随意坐有6个基本事件,乙正好坐中间,甲、丙坐左右两侧有2个基本事件,故乙正好坐中间的概率为26=1 3.4. 解析:选B因为事件B是表示“三件产品全是次品”,事件C是表示“三件产品不全是次品”,显然这两个事件不可能同时发生,故它们是互斥的,所以选B.5. 解析:选A由f(x0)≤0,即x20-x0-2≤0,得-1≤x0≤2,其区间长度为3,由x∈[-5,5],区间长度为10,所以所求概率为P=310.6. 解析:选C不妨设矩形的长、宽分别为a、b,于是S矩形=ab,S△ABE=12ab,由几何概型的概率公式可知P =S △ABE S 矩形=12. 7. 解析:选B 给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13.故选B. 8. 解析:选D 豆子落在正方形EFGH 内是随机的,故可以认为豆子落在正方形EFGH 内任一点是等可能的,属于几何概型.因为圆的半径为1,所以正方形EFGH 的边长是2,则正方形EFGH 的面积是2,又圆的面积是π,所以P (A )=2π. 9. 解析:选B 要使函数有零点,则Δ=(2a )2-4(-b 2+π2)≥0,a 2+b 2≥π2,又-π≤a ≤π,-π≤b ≤π,所以基本事件的范围是2π·2π=4π2,函数有零点所包含的基本事件的范围是4π2-π3.所以所求概率为4π2-π34π2=1-π4.故选B. 10. 解析:选C 设被污损的数字是x ,则x ∈{0,1,2,3,4,5,6,7,8,9}.甲的平均成绩为x 甲=15(88+89+90+91+92)=90,x 乙=15[83+83+87+(90+x )+99]=442+x 5,设甲的平均成绩超过乙的平均成绩为事件A ,则此时有90>442+x 5,解得x <8,则事件A 包含x =0,1,2,3,4,5,6,7,共8个基本事件,则P (A )=810=45. 11. 解析:选B 由古典概型的概率公式得P (A )=16,P (B )=36=12. 又事件A 与B 为互斥事件,由互斥事件的概率和公式得P (A ∪B )=P (A )+P (B )=16+12=23. 12. 解析:选C 由于两串彩灯第一次闪亮相互独立且4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件,即如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是1216=34,故选C. 13. 解析:记“任取一球为白球”为事件A ,“任取一球为黑球”为事件B ,则P (A +B )=P (A)+P (B)。

高中数学必修3测试题及答案

高中数学必修3测试题及答案

高中数学必修三模块检测试题考试时间:100分钟 满分150分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为A .2,4,6,8B .2,6,10,14C .5,10,15,20D .5,8,11,142.观察新生婴儿的体重,其频率分布直方图 如图所示,则新生婴儿体重在(]2700,3000的频率为A .0.001B .0.1C .0.2D .0.33.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为 A .65 B .52 C .61 D .31 4.将十进制下的数72转化为八进制下的数,结果是A. 011 B . 101 C . 110 D .1115.已知地铁的每趟列车停站的时间为1分钟,而每趟列车先后到站之间的时间差为7分钟,那么我们到地铁站坐地铁时,不用等待就可以坐到车的概率为 A .12 B .17 C .14 D .186.执行如下左图所示的程序框图,输出S 的值是 A .32-B .32C .12-D .127.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关 8.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1, 点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则 A . p 1<p 2<p 3 B . p 2<p 1<p 3 C . p 1<p 3<p 2 D . p 3<p 1<p 29.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为 A .51B .52C .53 D .5410.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相 同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是 A .310 B .15 C . 110 D .1122400 2700 3000 3300 3600 3900 体重0.001 频率/组距11.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为 A .81 B .41 C .43 D .87 12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为A .3B .4C .5D .6 选择题答题表 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是_____. 14.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492, 496, 494, 495, 498, 497, 501, 502, 504, 496, 497, 503, 506, 508, 507,492, 496, 500, 501, 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间 的概率约为____________.15.用“辗转相除法”求得459和357的最大公约数是__________.16.在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本题满分10分) 某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1) 分别估计该市的市民对甲、乙两部门评分的中位数;(2) 分别估计该市的市民对甲、乙两部门的评分高于90的概率.18. (:(1) (2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.19. (本题满分12分) 袋中有大小相同的红、黄两种颜色的球各1个,从中任取1个,有放回地抽取3次,求:(1) 3次全是红球的概率; (2) 3次颜色全相同的概率; (3) 3次颜色不全相同的概率.20. (本题满分12分) 某同学向如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.4,飞镖落在靶内的各个点是椭机的且等可能性,.已知圆形靶中四个圆为同心圆,半径分别为40cm 、30cm 、20cm 、10cm ,飞镖落在不同区域的环数如图中标示., (1) 求出这位同学投掷一次中10环数概率; (2) 求出这位同学投掷一次不到9环的概率。

北师大版高中数学必修三单元测试题及答案全套

北师大版高中数学必修三单元测试题及答案全套

北师大版高中数学必修三单元测试题及答案全套阶段质量检测(一)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30 C.20 D.122.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为() A.10组B.9组C.8组D.7组4.(陕西高考)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.145.某大学数学系共有本科生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为() A.80 B.40 C.60 D.206.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[60,70)的汽车辆数为()A.8 B.80 C.65 D.707.已知回归直线斜率的估计值为1.23,样本点的中心为(4,5),则回归方程为()A.y=1.23x+4B.y=1.23x+5C.y=1.23x+0.08D.y=0.08x+1.238.某班的数学考试成绩的平均分为70分,方差为s2.后来发现成绩记录有误,同学甲得80分却误记为50分,同学乙得70分却误记为100分,更正后计算得方差为s21,则s2与s21的大小关系是() A.s2>s21B.s2=s21C.s2<s21D.无法判断9.甲、乙两名同学在5次体育测试中的成绩统计如图的茎叶图所示,若甲、乙两人的平均成绩分别是X甲,X乙,则下列结论正确的是()A.X甲<X乙;乙比甲成绩稳定B.X甲>X乙;甲比乙成绩稳定C.X甲>X乙;乙比甲成绩稳定D.X甲<X乙;甲比乙成绩稳定10.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体平均值为3,中位数为4B.乙地:总体平均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体平均值为2,总体方差为3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上)11.某社区对居民进行2013辽宁全运会知晓情况的分层抽样调查.已知该社区的青年人、中年人和老年人分别有800人、1 600人、1 400人.若在老年人中的抽样人数是70,则在中年人中的抽样人数应该是________.12.13.从某小区抽取10050至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.14.甲、乙两位同学某学科连续五次考试成绩用茎叶图表示,如图所示,则平均数较高的是______,成绩较为稳定的是________.三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)某车间有189名职工,现要按1∶21的比例选质量检查员,采用系统抽样的方式进行,写出抽样过程.16.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况. 17.(12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人; [161,165)4人; [165,169)12人; [169,173)13人;[173,177)12人;[177,181]6人. (1)列出频率分布表; (2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.18.(14分)某学校高一(3)单位:分)统计如下:(1)(2)分别用平均数和中位数分析甲、乙两位同学中,哪位同学成绩较好; (3)又知同班同学丙的最近5分别从平均数、中位数和方差等方面分析甲与丙的成绩谁好谁坏,并说明理由.答 案1. 解析:选B 系统抽样也叫间隔抽样,抽多少个就分成多少组,总数÷组数=间隔数,即k =1 20040=30.2. 解析:选D 由抽样方法的概念知选D.3. 解析:选B 根据列频率分布表的步骤,极差组距=140-5110=8.9,所以分9组.4. 解析:选B 依据系统抽样为等距抽样的特点,分42组,每组20人,区间[481,720]包含25组到36组,每组抽1人,则抽到的人数为12.5. 解析:选B 应抽取三年级的学生人数为200×210=40.6. 解析:选B 时速在[60,70)的汽车频率为0.04×10=0.4,时速在[60,70)的汽车大约有200×0.4=80(辆).7. 解析:选C 回归直线的斜率就是b ,则回归方程为y =1.23x +a ,将(4,5)代入方程得a =0.08.8. 解析:选A 根据方差的计算公式,s 2的算式中含有(50-70)2+(100-70)2,s 21的算式中含有(80-70)2+(70-70)2,而两算式的其他部分完全相同,故易知s 2>s 21.9. 解析:选A ∵甲同学的成绩为78,77,72,86,92,乙同学的成绩为78,82,88,91,95, ∴X 甲=78+77+72+86+925=81,X 乙=78+82+88+91+955=86.8,∴X 甲<X 乙.从茎叶图中数据的分布情况看,乙同学的成绩更集中于平均数附近,这说明乙比甲成绩稳定. 10. 解析:选D 根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A 中,中位数为4,可能存在大于7的数;同理,在选项C 中也有可能;选项B 中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D 中,根据方差公式,如果有大于7的数存在,那么方差不会为3.11. 解析:抽取的比例为k =701 400=120,故在中年人中应该抽取的人数为1 600×120=80. 答案:8012. 解析:设回归方程为y =6.5x +a . 由已知,x -=15×(2+4+5+6+8)=5.y -=15×(30+40+60+50+70)=50.∴a =y --6.5x -=50-6.5×5=17.5. ∴y =6.5x +17.5. 答案:y =6.5x +17.513. 解析:(1)根据频率和为1,得(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1,解得x =0.004 4;(2)(0.003 6+0.006 0+0.004 4)×50×100=70. 答案:0.004 4 7014. 解析:甲的平均分为x -=68+69+70+71+725=70,乙的平均分为y -=63+68+69+69+715=68;甲的方差为:s 21=(68-70)2+(69-70)2+(70-70)2+(71-70)2+(72-70)25=2,同理乙的方差为s 22=7.2,故甲的平均分高于乙,甲的成绩比乙稳定.答案:甲 甲15. 解:以随机方式对189名职工编号(比如可直接采用工资表上号码编号),设其分别为1,2,3…,189, 由已知样本容量是总体个数的121,故样本容量为189×121=9(个),将1,2,3,…,189编9段,每段21个号.如1~21为第一段,22~42为第二段,…,169~189为第九段,在第一段1~21个号码中随机抽样产生一个号码,如设为l ,则l ,l +21,l +42,…,l +168就是所产生的9个样本号码,对应的就是质量检查员.16. 解:(1)茎叶图如图所示:(2)x -甲=9+10+11+12+10+206=12,x -乙=8+14+13+10+12+216=13,s 2甲≈13.67,s 2乙≈16.67.因为x -甲<x -乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.17. 解:(1)列出频率分布表:(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74, 所以总体在[165,177)间的比例为74%.18. 解:(1)平均分:x -甲=15×(65+98+94+98+95)=90,x -乙=15×(62+98+99+100+71)=86.甲的中位数是95,乙的中位数是98.(2)从平均分看,甲的平均分高,甲的成绩较好;从中位数看,乙的中位数大,乙的成绩较好. (3)x -丙=15×(80+90+86+99+95)=90,丙的中位数为90.s 2丙=15×[(80-90)2+(90-90)2+(86-90)2+(99-90)2+(95-90)2]=44.4; s 2甲=15×[(65-90)2+(98-90)2+(94-90)2+(98-90)2+(95-90)2]=158.8. 由于两人的平均分相同,所以从平均分看,甲、丙成绩同样好;从中位数看,甲的中位数高,甲的成绩好;从方差看,丙的方差小,丙的成绩较稳定,所以丙的成绩好.阶段质量检测(二)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是( ) A .从北京到海南岛旅游,先坐火车,再坐飞机抵达B .按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C .方程x 2-4=0有两个实根D .求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 2.在用二分法求方程零点的算法中,下列说法正确的是( ) A .这个算法可以求所有的零点B.这个算法可以求任何方程的零点C.这个算法能求所有零点的近似解D.这个算法可以求变号零点近似解3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出SA.1 B.5 C.10 D.554.运行以下程序时,执行循环体的次数是()i=1Doi=i+1i=i*iLoop While i<10输出i.A.2 B.10 C.11 D.85.当a=1,b=3时,执行完下面的语句后x的值是()If a<b Thenx=a+bElsex=a-bEnd If输出x.A.1 B.3 C.4 D.-26.(福建高考)阅读如图所示的程序框图,运行相应的程序,输出的s值等于()A.-3 B.-10 C.0 D.-27.如图给出的是计算1+2+4+…+219的值的一个算法框图,则其中判断框内应填入的是()A .i =19B .i ≥20C .i ≤19D .i ≤208.如图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2,x 2, x >2的值的算法框图,则在①、②和③处应分别填入的是( )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2 9.当a =16时,下面的算法输出的结果是( ) If a <10 Then y =2*a Else y =a *a End If 输出 y .A.9B.32C.10D.25610.(重庆高考)执行如下图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)11.下列程序运行后输出的结果为________.x=5y=-20If x<0Thenx=y-3Elsey=y+3End If输出x-y,y-x12.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.13.已知函数f(x)=|x-3|,下面算法框图表示的是输入x的值,求其相应函数值的算法,请将该算法框图补充完整.其中①处应填________,②处应填________.14.(湖南高考)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=________.三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)如果直线l与直线l1:x+y-1=0关于y轴对称,设计求直线l的方程的算法.16.(12分)求两底半径分别为6和9,高为14的圆台的表面积,写出该问题的算法.17.(12分)根据下列算法语句画出相应的框图.S=1n=1DoS=S*nn=n+1Loop While S<1 000输出n.18.(14分)如图所示,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式.并写出算法,画出算法框图,写出程序.答案1. 解析:选C 算法是解决某类问题的一系列步骤或程序,C只描述了事实,没有解决问题的步骤.2.解析:选D 二分法的理论依据是函数的零点存在定理.它解决的是求变号零点的问题,并不能求所有零点的近似值.3.解析:选D S=0+1+2+3+…+10=55.4.解析:选A 第一次执行循环体:i=1,i=i+1=2,i=i*i=4,i=4<10,成立第二次执行循环体:i=4,i=i+1=5i=i*i=25i=25<10,不成立,退出循环体,共执行了2次.5. 解析:选C ∵1<3,满足a <b ,∴x =1+3=4.6. 解析:选A 由程序框图可知,当k =1时,1<4,s =1,k =2;当k =2时,2<4,s =0,k =3;当k =3时,3<4,s =-3,k =4;当k =4时不满足条件,则输出s =-3.7. 解析:选B 计算S =1+2+4+…+219的值使用的是循环结构,当i ≥20时退出循环体,输出S . 8. 解析:选B 当x >-1不成立时,y =-x ,故①处应填“y =-x ”;当x >-1成立时,若x >2,则y =x 2,即②处应填“y =x 2”,否则y =0,即③处应填“y =0”.9. 解析:选D 该程序是求分段函数y =⎩⎨⎧2a a <10,a 2a ≥10.的函数值.10. 解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行 得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5.11. 解析:当x =5时,y =-20+3=-17所以最后输出的x -y =5-(-17)=22,y -x =-17-5=-22. 答案:22,-2212. 解析:每循环一次时,x 与i 均增加1,直到i >5时为止,所以输出结果为6. 答案:613. 解析:f (x )=|x -3|=⎩⎪⎨⎪⎧x -3,x ≥3,3-x ,x <3.观察算法框图可知,当条件成立时,有y =3-x ,所以①处应填x <3.当条件不成立即x ≥3时,有y =x -3,所以②处应填y =x -3.答案:x <3 y =x -314. 解析:执行程序,i ,x 的取值依次为i =1,x =3.5;i =2,x =2.5;i =3,x =1.5;i =4,x =0.5;结束循环,输出i 的值为4.答案:415. 解:第一步,在l 上任取一点P (x ,y ). 第二步,写出P (x ,y )关于y 轴的对称点P 1(-x ,y ).第三步,由P 1(-x ,y )在直线l 1:x +y -1=0上,知P 1的坐标适合l 1的方程,即-x +y -1=0. 第四步,化简,得l 的方程为x -y +1=0.16. 解:算法如下:1.令r 1=6,r 2=9,h =14(如图).2.计算l =(r 2-r 1)2+h 2.3.计算S 表=πr 21+πr 22+π(r 1+r 2)l .4.输出运算结果S 表. 17. 解:框图如下所示:18. 解:函数关系式如下y =⎩⎪⎨⎪⎧2x , (0≤x ≤4),8, (4<x ≤8),2(12-x ), (8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4. 4.如果8<x ≤12,则使y =2(12-x );否则结束. 5.输出y .算法框图如图所示:算法语句如下:输入x;If x>=0and x<=4Theny=2*xElseIf x<=8 Theny=8ElseIf x<=12 Theny=2*(12-x)End IfEnd IfEnd If输出y.阶段质量检测(三)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有()A.1个B.2个C.3个D.4个2.下列叙述随机事件的频率与概率的关系中,说法正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增多,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是( ) A.310 B.112 C.4564 D.384.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是( )A .0.62B .0.38C .0.02D .0.685.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( ) A.13 B.14 C.16 D.1126.(北京高考)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22C.π6 D.4-π47.从集合A ={-1,1,2}中随机选取一个数记为k ,从集合B ={-2,1,2}中随机选取一个数记为b ,则直线y =kx +b 不经过第三象限的概率为( )A.29B.13C.49D.598.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8 D .1-π8 9.下列概率模型:①从区间[-10,10]内任取一个数,求取到1的概率;②从区间[-10,10]内任取一个数,求取到绝对值不大于1的数的概率; ③从区间[-10,10]内任取一个整数,求取到大于1且小于5的数的概率;④向一个边长为4 cm 的正方形ABCD 内投一点P ,求点P 离正方形的中心不超过1 cm 的概率. 其中是几何概型的个数为( ) A .1 B .2 C .3 D .410.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19B.29C.718D.49二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)11.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=________.12.在区间[0,4]上任取一实数a,使方程x2+2x+a=0有实根的概率是________.13.(福建高考)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为________.14.某射击选手射击一次,击中10环、9环、8环的概率分别为0.3,0.4,0.1,则该射击选手射击一次,击中大于或等于9环的概率是________,击中小于8环的概率是________.三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)对某班一次测验成绩进行统计,如下表所示:(1)(2)求该班成绩在[61,100]内的概率.16.(12分)设有一个等边三角形网格,其中每个最小等边三角形的边长都是4 3 cm,现用直径等于2 cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.17.(12分)为迎接2017全运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩((1)求a,b,c,d(2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.18.(14分)有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.答 案1. 解析:选B 由题意可知①③是必然事件,②④是随机事件.2. 解析:选C 由频率与概率关系知C 正确.3. 解析:选D 所有子集共8个;其中含有2个元素的为{a ,b },{a ,c },{b ,c }.4. 解析:选C 其中质量小于4.85 g 包括质量小于4.8 g 和质量在[4.8,4.85)范围内两种情况,所以所求概率为0.32-0.3=0.02.5. 解析:选D 由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112.6. 解析:选D 画草图易知区域D 是边长为2的正方形,到原点的距离大于2的点在以原点为圆心,以2为半径的圆的外部,所以所求事件的概率为P =2×2-14·π·222×2=4-π4.7. 解析:选A 直线y =kx +b 不经过第三象限,即k <0,b >0,总的基本事件个数是3×3=9;k <0,b >0包含的基本事件有(-1,1),(-1,2),共2个,所以直线不经过第三象限的概率是P =29.8. 解析:选B 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.9. 解析:选C ①是,因为区间[-10,10]内有无限多个数,对应数轴上无限多个点,且取到“1”这个数对应的点的概率为0;②是,因为区间[-10,10]和[-1,1]内都有无限多个数可取(无限性),且在这两个区间内每个数被取到的可能性相同(等可能性);③不是,因为区间[-10,10]内的整数只有21个,不满足无限性;④是,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点(无限性),且这两个区域内的任何一个点都有可能被投到(等可能性).10. 解析:选D 首先要弄清楚“心有灵犀”的实质是|a -b |≤1,由于a ,b ∈{1,2,3,4,5,6},则满足要求的事件可能的结果有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种,而依题意得基本事件的总数有36种.因此他们“心有灵犀”的概率为P =1636=49.11. 解析:圆的半径是1,则正方形的边长是2,故正方形EFGH 的面积为(2)2=2.又圆的面积为π,则由几何概型的概率公式,得P (A )=2π.答案:2π12. 解析:当4-4a ≥0即a ≤1时方程有实根,故所求的概率为P =14.答案:1413. 解析:因为0≤a ≤1,由3a -1>0得13<a ≤1,由几何概率公式得,事件“3a -1>0”发生的概率为1-131=23.答案:2314. 解析:设“击中10环”“击中9环”“击中8环”分别为事件A ,B ,C ,则P (A )=0.3,P (B )=0.4,P (C )=0.1,∴P (A +B )=P (A )+P (B )=0.7,P (A +B +C )=P (A )+P (B )+P (C )=0.8, ∴P =1-0.8=0.2. 答案:0.7 0.215. 解:记该班的测试成绩在[100~91),[90~81),[80~71),[70~61)内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[81,100]内的概率是P (A +B )=P (A )+P (B )=0.15+0.25=0.4.(2)该班成绩在[61,100]内的概率是P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=0.15+0.25+0.36+0.17=0.93.16. 解:记A ={硬币落下后与格线没有公共点},在每个最小等边三角形内再作小等边三角形使其三边与原等边三角形三边距离都为1,则新作小等边三角形的边长为2 3.∴P (A )=34×(23)234×(43)2=14.17. 解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1.(2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.18. 解:(1)由所给数据可知,一等品零件共有6个,设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )=610=35.(2)①设一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共有15种.②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B )的所有可能结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种.所以P (B )=615=25.。

最新人教版高中数学必修三测试题及答案全套

最新人教版高中数学必修三测试题及答案全套

最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD ­A 1B 1C 1D 1中随机取点,则点落在四棱锥O ­ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ­ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。

高中数学必修三_练习题包含答案资料全

高中数学必修三_练习题包含答案资料全

必修三测试题参考公式:1. 回归直线方程方程: ,其中 , .2.样本方差: 一、填空1. 在下列各图中,每个图的两个变量具有相关关系的图是( )(1) (2) (3) (4)A .(1)(2)B .(1)(3)C .(2)(4)D .zs (2)(3)2 下列给变量赋值的语句正确的是(A )3=a (B )a +1=a (C )a =b =c =3 (D )a =2b +1 3.某程序框图如下所示,若输出的S=41,则判断框应填( )A .i >3?B .i >4?C .i >5?D .i >6?4.图4中程序运行后输出的结果为( ).A .7B .8C .9D .10(第3题) (第4题)5阅读题5程序,如果输入x =-2,则输出结果y 为( ).(A )3+π (B )3-π (C )π-5 (D )-π-56.有一人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶7.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A.21B.31 C.41 D.52 Input x if x <0 theny =32x π+elseif x >0 then y =52x π-+elsey =0end if end if print y(第5题)8.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( ) A.92% B.24% C.56% D.76%9.袋分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( ) A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.恰有一个白球;一个白球一个黑球 D.至少有一个白球;红、黑球各一个 10.某算法的程序框图如右所示,该程序框图的功能是( ).A .求输出a,b,c 三数的最大数B .求输出a,b,c 三数的最小数C .将a,b,c 按从小到大排列D .将a,b,c 按从大到小排列二、填空11.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则这三种型号的轿车应依次抽取 、 、 辆.12.将十进制的数253转为四进制的数应为 (4)13.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为 .14. 某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元哈销售量y 件之间的一组数据如下所示:价格x 9 9.5 10 10.5 11 销售量y1110865由散点图可知,y 与x 之间有较好的线性相关关系,其线性回归方程是:=-3.2x+,则= . 三 简单题15、(1)用辗转相除法求840与1764的最大公约数.(2)用九韶算法计算函数34532)(34=-++=x x x x x f 当时的函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[同步试题] 1①1①1算法的概念1下面对算法描述正确的一项是:()A算法只能用自然语言来描述B算法只能用图形方式来表示C同一问题可以有不同的算法D同一问题的算法不同结果必然不同2算法的有穷性是指()A、算法的最后包含输出B、算法中的每个步骤都是可执行的C、算法的步骤必须有限D、以上说法都不正确3、写出求过P(3,2),Q(-1,6)两点的直线斜率的一个算法①4、深圳到香港的海底电缆有一处发生故障,请你设计一个检修方案①5、任意给定一个大于1的正整数n,设计一个算法求出n的所有因数①6、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断①7、用二分法设计一个求方程(x^2)-2=0的近似根的算法①8、牛虎过河。

一个人带三只老虎和三头牛过河。

只有一条船,可以容一个人和两只动物。

没有人在的时候,如果老虎的数量不少于牛的数量就会吃掉牛。

设计安全渡河的算法。

答案:1、 C2、 C3、 解:第一步:计算1-1--36-2K ==)(, 第二步:输出-1。

4、 解:第一步:找到深圳到香港的地缆的中点位置P ,第二步:分别检验P 到深圳,P 到上海间的地缆,找出不通的,故障即在此段。

记为段1。

第三步:找到段1的中点P1,为别检验段1被分成的两段,找出不通的,故障即在此段。

记为段2。

第四步:依次重复上述操作,第五步:找到发生故障处。

5、 解:第一步:给定一个大于一的正整数n , 第二步:依次以(2――n-1)的整数d 为除数去除n ,检查余数是否为0,若是,则d 是n 的因数;若不是,则d 不是n 的因数。

第三步:在n 的因数中加入1和n ,第四步:输出n 的所有因数。

6、 7、 见新人教A 版,必修3第一章P4〔同步试题〕1① 1①2程序框图与算法的基本逻辑结构 ——————顺序结构、 条件结构1①算法是指可以用计算机来解决的某一类问题的程序或步骤,它不具有( )A ① 有限性B ① 明确性C ① 有效性D ①无限性 2①程序框图是算法思想的重要表现形式,程序框图中不含( ) A ① 流程线B ① 判断框C ① 循环框D ①执行框 3①程序框图中有三种基本逻辑结构,它不是( ) A ① 条件结构B ① 判断结构C ① 循环结构D ①顺序结构 4①在程序框图中一般不含有条件判断框的结构是( ) A ① 顺序结构B ① 循环结构C ① 当型结构D ①直到型结构 5、 用二分法求方程022=-x 的近似根的算法中要用哪种算法结构( )A 顺序结构B 条件结构C 循环结构D 以上都用6、 给出以下四个问题,①x , 输出它的相反数②求面积为6的正方形的周长③求三个数,,a b c 中输入一个数的最大数 ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值 其中不需要用条件语句来描述其算法的有 ( )A 1个B 2个C 3个D 4个7、 图中所示的是一个算法的流程图,已知31=a ,输出的7b =,则2a 的值是____________8、 已知一个三角形的三边边长分别为2,3,4, 设计一个算法,求出它的面积, 并画出程序框图。

9、 某市公用电话(市话)的收费标准为:3分钟之内(包括3分钟)收取0.30元;超过3分钟部分按0.10元/分钟加收费 设计一个程序,根据通话时间计算话费答案:1、 D2、 C3、 B4、 A5、 D6、 B7、 118、 解:第一步:取2,3,4a b c === 第二步:计算2a b c p ++=第三步:计算S =第四步:输出S 的值9[同步试题]1①2①1输入、输出、赋值语句1、计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:,,,,。

2、在程序语言中,下列符号分别表示什么运算①;\;∧;SQR();AB S()①,,,,。

3、下列程序运行后,a,b,c的值各等于什么①(1)a=3 (2)a=3b=-5 b=-5c=8 c=8a=b a=bb=c b=cPRINT a,b,c c=aEND PRINT a,b,cEND(1)________________________(2)________________________4、①指出下列语句的错误,并改正:(1)A=B=50(2)x=1,y=2,z=3(3)INPUT “How old are you”x(4)INPUT ,x(5)PRINT A+B=;C(6)PRINT Good-bye!5①将两个数8,17a b==交换,使17,8a b==,下面语句正确一组是( )A BC D6①计算机执行下面的程序段后,输出的结果是()1a=3b=a a b=+b a b=-PRINT a,bA1,3B4,1C0,0D6,07下列给出的赋值语句中正确的是()A4M=B M M=-C3B A==D0x y+=8对赋值语句的描述正确的是()①可以给变量提供初值②将表达式的值赋给变量③可以给一个变量重复赋值④不能给同一变量重复赋值A①②③B①②C②③④D①②④9、 已知f (x )=x 3-3x 2+2x+1,写出任意一个x 的值对应的函数值f (x )的求法程序①10①已知华氏温度和摄氏温度的转化公式为: 5(32)9=-⨯摄氏温度华氏温度编写一个程序,输入一个华氏温度,输出其相应的摄氏温度。

11①编写一个程序,输入两个非零实数,输出他们加、 减、 乘、 除的结果。

12①已知一个三角形的三边长分别是,,a b c ,它的面积可用海伦—秦九韶公式计算。

S =2a b cp ++=设计一个算法程序,输入三角形的三条边长,,a b c ,输出三角形的面积S 。

13① 春节到了,糖果店的售货员忙极了。

已知水果糖每千克10①4元,奶糖每千克15① 6元,果仁巧克力每千克25①2元,那么依次购买这三种果糖,,a b c 千克,应收取多少钱①请你设计一个程序,帮售货员算账。

14①编写一个程序,输入梯形的上底、 下底和高的值,计算并输出其面积。

15①编写一个程序,交换两个变量a 、 b 的值,并输出交换前后的值。

参考答案1①输入语句、输出语句、赋值语句、条件语句、循环语句。

2、乘、除、乘方、求平方根、绝对值3、(1)a=-5,b=8,c=8;(2)a=-5,b=8,c=-5①4①(1)变量不能够连续赋值①可以改为A=50B=A(2)一个赋值语句只能给一个变量赋值①可以改为x=1y=2z=3(3)INPUT语句“提示内容”后面有个分号(;)①改为INPUT “How old are you①”;x(4)INPUT语句可以省略“提示内容”部分,此时分号(;)也省略,也不能有其他符号①改为INPUT x(5)PRINT语句“提示内容”部分要加引号(“”)①改为PRINT “A+B=”;C(6)PRINT语句可以没有表达式部分,但提示内容必须加引号(“”)①改为PRINT “Good-bye!”5、B6、B7、B8、A9、解:(方法一)INPUT “请输入自变量x的值:”;xA=x∧3B=3①x∧2C=2①xD=A-B+C+1PRINT “x=”;xPRINT “f(x)=”;DEND(方法二)INPUT “请输入自变量x的值:”;xm=x①(x-3)n=x①(m+2)y=n+1PRINT “x=”;xPRINT “f(x)=”;yEND10、程序:INPUT FC=(F-32)①5/9PRINT C11、INPUT a,bA=a+bB=a-bC=a①bD=a/bPRINT A,B,C,D12、INPUT “a,b,c=”;a,b,cp=(a+b+c)/2S=SQR(p①(p-a)①(p-b)①(p-c)) PRINT “三角形面积S=”;S END13、INPUT a,b,cy=10①4①a+15①6①b+25①2①cPRINT y14、INPUTa,b,hS=(a+b)①h/2PRINT S15、INPUT a,bPRINT a,bt=aa=bb=t PRINT a,b〔同步习题〕1①2①2条件语句1、当3=a时,下面的程序段输出的结果是()IF 10a<THEN2y a=*ELSEy a a=*PRINT yA9B3C10D62给出以下四个问题,①输入x, 输出它的相反数②求面积为6的正方形的周长③求三个数,,a b c中输入一个数的最大数④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值其中不需要用条件语句来描述其算法的有 ( ) A1个 B2个C3个 D4个3右面程序运行后输出的结果为_______________4 下面程序运行后实现的功能为_______________5、 写出已知函数⎪⎩⎪⎨⎧<-=>=).0(1),0(0),0(1x x x y 输入x 的值,求y 的值程序①6、 函数⎪⎩⎪⎨⎧≤<-≤<≤≤=128),12(284,840,2x x x x x y ,写出求函数的函数值的程序INPUT “a ,b ,c =”;a ,b ,cIF b>a THENt=a a=b b=t END IFIF c>a THENt=a a=c c=t END IFIF c>b THENt=b b=c c=t END IFPRINT a ,b ,c END(第4题)7、 下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0①05(x-800);否则 y=25+0①1(x-1300)第三步 输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应)8、 用二分法求方程0135=+-x x 在(0,1)上的近似解,精确到0.001c =,写出算法画出流程图,并写出算法语句9①儿童乘坐火车时,若身高不超过1①1 m ,则不需买票;若身高超过1①1 m 但不超过1①4 m ,则需买半票;若身高超过1①4 m ,则需买全票①试设计一个买票的算法,并画出相应的程序框图及程序。

参考答案1、D2、B3、22,-224、把a,b,c三个数按从大到小的顺序输出。

5、解:INPUT “x=”;xIF x>0 THENy=1ELSEIF x=0 THENy=0ELSEy=-1END IFEND IFPRINT yEND6、解:INPUT “x=”;xIF x>=0 and x<=4 THENy=2 xEND IFIF 4=<x ANDx<=8 THE N y=8 END IFIF 8=<x ANDx<=12 THE N y=2①(12-x) END IF PRINT y END 7、8、 解:算法如下:1、 取[,]a b 中点)(210b a x +=,将区间一分为二2、 若0)(0=x f ,则0x 就是方程的根;否则所求根*x 在0x 的左侧或右侧若0)()(0>x f a f ,则),(0*b x x ∈,以0x 代替a ; 若0)()(0<x f a f ,则),(0*x a x ∈,以0x 代替b ; 3、 若a b c -<,计算终止 此时0*x x ≈,否则转到第1步 算法语句: Input ,,a b c02a bx +=5()31f a a a =-+5000()31f x x x =-+repeat if 0)(0=x f then print 0x elseif 0)()(0<x f a f then 0b x = else 0a x = until a b c -< print 0x end流程图:9①解:是否买票,买何种票,都是以身高作为条件进行判断的,此处形成条件结构嵌套①程序框图是:开始结束IF h<=1①1 THENPRINT “免票” ELSEIF h<=1①4 THENPRINT “买半票” ELSEPRINT “买全票” END IF END IF END[同步试题] 1、 2、 3循环语句1、 在循环 语句的一般形式中有“until A ”,其中A 是 ( ) A 循环变量 B 循环体 C 终止条件 D 终止条件为真2、 当2=x 时,下面的程序段结果是 ( ) 3 下面程序执行后输出的结果是( ) A 1- B 0 C 1 D 24、 把求!n 的程序补充完整5、 把程序框图补充完整:(1)________________________(2)________________________6、 下面程序运行后输出 的结果为( )A 50B 5C 25D 0 7、 右图给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是____________8、 计算 236312222+++++,写出算法的程序①9、 计算1+4+7+①①①+301,写出算法的程序①10、 计算50以内的偶数之积,写出算法的程序①11、 计算2/1+3/2+4/3+…+(n+1)/n ,写出算法的程序①12、 2000年我国人口为13亿,如果人口每年的自然增长率为7‰,那么多少年 后我国人口将达到15亿①设计一个算法的程序13、 给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推①要求计算这50个数的和①先将下面给出的程序框图,再根据程序框图写出程序①14、 我国古代数学家张邱建编《张邱建算经》中记有有趣的数学问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一凡百钱,买鸡百只,问鸡翁、 母、 雏各几何①”你能用程序解决这个问题吗15写出用二分法求方程x 3-x -1=0在区间[1,1①5]上的一个解的算法(误差不超过0①001),并画出相应的程序框图及程序①参考答案1、 C2、 263、 B4、 INPUT,WHILE,WEND5、 ①程序:(1)_____i < = 50___ (2)_____p= p + i_ 6、 D7、 10i8、 i=1 S=1WHILE i <= 63 S=s+2^i i=i+1 WEND PRINT s END 或 i=1 S=1 DO S=s+2^i i=i+1LOOP UNTIL i >63 PRINT s END 9、 i=1 S=0WHILE i <= 101 S=s+i i=i+3 WEND P RINT s END 或 i=1 S=0 DO S=s+3 i=i+1LOOP UNTIL i >101 PRINT s END 10、S=1WHILE i <= 25S=s①ii=i+1WENDPRINT sEND或i=1S=1DOS=s①ii=i+1LOOP UNTIL i >25PRINT sEND11、PRINT ni=1S=0WHILE i <= nS=s+(i+1)/ii=i+1WENDPRINT sEND或PRINT ni=1S=0DOS=s+(i+1)/ii=i+1LOOP UNTIL i >nPRINT sEND12、①解:A=13R=0①007i=1DOA=A①(1+R)i=i+1LOOP UNTIL A>=15i=i-1PRINT “达到或超过15亿人口需要的年数为:”;i END13、i=1p=1s=1WHILE i <=50s=s+ip=p+si=i+1 WEND PRINT p14、 设鸡翁、 母、 雏各x 、 y 、 z 只,则⎪⎩⎪⎨⎧=++=++②,①,100100335z y x z y x由②,得z=100-x -y , ③ ③代入①,得5x+3y+3100yx --=100, 7x+4y=100①④ 求方程④的解,可由程序解之①程序:x=1 y=1WHILE x <=14 WHILE y <=25IF 7①x+4①y=100 THENz=100-x -yPRINT “鸡翁、 母、 雏的个数别为:”;x ,y ,z END IF y=y+1 WEND x=x+1 y=1 WEND END(法二)实际上,该题可以不对方程组进行化简,通过设置多重循环的方式得以实现①由①、 ②可得x 最大值为20,y 最大值为33,z 最大值为100,且z 为3的倍数①程序如下:x=1 y=1 z=3WHILE x <=20 WHILE y <=33 WHILE z <=100IF 5①x+3①y+z/3=100 ANDx+y+z=100 THENPRINT “鸡翁、 母、 雏的个数分别为:”;x 、 y 、 zE ND IF z=z+3WENDy=y+1 z=3 WENDx=x+1y=1WENDEND15、用二分法求方程的近似值一般取区间[a,b]具有以下特征:f(a)<0,f(b)>0①由于f(1)=13-1-1=-1<0,f(1①5)=1①53-1①5-1=0①875>0,所以取[1,1①5]中点25.11=1①25研究,以下同求x2-2=0的根的方法①相应的程序框图是:程序:a=1b=1①5c=0①001DOx=(a+b)/2f(a)=a∧3-a-1f(x)=x∧3-x-1IF f(x)=0 THENPRINT “x=”;xELSEIF f(a)①f(x)<0 THENb=xELSEa=xEND IFEND IFLOOP UNTIL ABS(a-b)<=c PRINT “方程的一个近似解x=”;x END必修3 1① 3 算法案例1①(1)将101111011(2)转化为十进制的数;(2)将53(8)转化为二进制的数①2①用冒泡排序法将下列各数排成一列:8,6,3,18,21,67,54①并写出各趟的最后结果及各趟完成交换的次数①3①用秦九韶算法写出求f(x)=1+x+0①5x2+0①16667x3+0①04167x4+0①00833x5 在x=-0①2时的值的过程①4①我国《算经十书》之一《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二①问物几何①答曰:二十三①”你能用程序解决这个问题吗①5①我国古代数学家张邱建编《张邱建算经》中记有有趣的数学问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一凡百钱,买鸡百只,问鸡翁、母、雏各几何①”你能用程序解决这个问题吗①6①写出用二分法求方程x3-x-1=0在区间[1,1①5]上的一个解的算法(误差不超过0①001),并画出相应的程序框图及程序①参考答案1① 解:(1)101111011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379①(2)53(8)=5×81+3=43①余数4321105212222220110101∴53(8)=101011(2)①2①每一趟都从头开始,两个两个地比较,若前者小,则两数位置不变;否则,调整这两个数的位置①解:第一趟的结果是:6 3 8 18 21 54 67 完成3次交换① 第二趟的结果是:3 6 8 18 21 54 67 完成1次交换①第三趟交换次数为0,说明已排好次序, 即3 6 8 18 21 54 67①3①先把函数整理成f (x )=((((0①00833x +0①04167)x +0①16667)x +0①5)x +1)x +1,按照从内向外的顺序依次进行①x =-0① 2a 5=0①00833 V 0=a 5=0①008333a 4=0①04167 V 1=V 0x +a 4=0①04 a 3=0①016667 V 2=V 1x +a 3=0①15867 a 2=0①5 V 3=V 2x +a 2=0①46827 a 1=1 V 4=V 3x +a 1=0① 90635 a 0=1 V 5=V 4x +a 0=0①81873∴f (-0①2)=0①81873①4①设物共m 个,被3,5,7除所得的商分别为x 、 y 、 z ,则这个问题相当于求不定方程⎪⎩⎪⎨⎧+=+=+=27,35,23z m y m x m 的正整数解①m 应同时满足下列三个条件:(1)m MOD 3=2;(2)m MOD 5=3;(3)m MOD 7=2①因此,可以让m 从2开始检验,若3个条件中有任何一个不成立,则m 递增1,一直到m 同时满足三个条件为止①程序:m =2f =0 WHILE f =0I F m MOD 3=2 AND m MOD 5=3 AND m MOD 7=2 THEN PRINT “物体的个数为:”;m f =1ELSE m =m +1 END IF WENDEND5①设鸡翁、 母、 雏各x 、 y 、 z 只,则⎪⎩⎪⎨⎧=++=++②,①,100100335z y x z y x由②,得z =100-x -y , ③ ③代入①,得5x +3y +3100yx --=100, 7x +4y =100①④ 求方程④的解,可由程序解之①程序:x =1y=1WHILE x<=14WHILE y<=25IF 7①x+4①y=100 THENz=100-x-yPRINT “鸡翁、母、雏的个数别为:”;x,y,zEND IFy=y+1WENDx=x+1y=1WENDEND(法二)实际上,该题可以不对方程组进行化简,通过设置多重循环的方式得以实现①由①、②可得x最大值为20,y最大值为33,z最大值为100,且z为3的倍数①程序如下:x=1y=1z=3WHILE x<=20WHILE y<=33WHILE z<=100IF 5①x+3①y+z/3=100 ANDx+y+z=100 THENPRINT “鸡翁、母、雏的个数分别为:”;x、y、zEND IFz=z+3WENDy=y+1z=3WENDx=x+1y=1WE NDEND6①用二分法求方程的近似值一般取区间[a,b]具有以下特征:f(a)<0,f(b)>0①由于f(1)=13-1-1=-1<0,f(1①5)=1①53-1①5-1=0①875>0,所以取[1,1①5]中点25.11=1①25研究,以下同求x2-2=0的根的方法①相应的程序框图是:程序:a=1b=1①5c=0①001DOx=(a+b)/f(a)=a∧3f(x)=x∧3IF f(x)PRINT “xELSEIF f(a)b=xELSEa=x输出xEND IFEND IFLOOP UNTIL ABS(a-b)<=c PRINT “方程的一个近似解x=”;x END1①3算法案例---秦九韶算法1、 利用秦九韶算法求多项式1153723+-+x x x 在23=x 的值时,在运算中下列哪个值用不到( )A 、 164B 、 3767C 、 86652D 、 85169 2、 利用秦九韶算法计算多项式1876543x f(x)23456++++++x x x x x = 当x=4的值的时候,需要做乘法和加法的次数分别为( )A 、 6,6B 、 5,6C 、 5,5D 、 6,53、 利用秦九韶算法求多项式1352.75.38123)(23456-++-++=x x x x x x x f 在6=x 的值,写出详细步骤。

相关文档
最新文档