第3课时勾股定理

合集下载

17.1.3勾股定理

17.1.3勾股定理

【备选例题】请在由边长为1的正三角形组成的网格中,画出3 个所有顶点均在格点上,且至少有一条边的长为无理数的等腰 三角形.
【解析】先确定出一条长为无理数的线段,然后再找出另两边, 对长为无理数的线段,根据网格中蕴含的特殊角、直角,借助勾 股定理即可确定,答案 (1)考查知识:图形的对称性、勾股定理、面积计算等. (2)解题思想:分类讨论、数形结合. (3)题目特征:任何格点之间的线段都是某正方形或长方形的 边或对角线,所以任何格点间的线段长度都能求得.
【想一想】 如何在数轴上作出表示 30的点?当被开方数不能直接拆成两个 完全平方数的和时,如何处理? 提示:可以先作出表示 2的9 点,再以此为基础构造直角三角形. 当被开方数不能直接拆成两个完全平方数的和时,可以考虑拆 成3个完全平方数的和,通过两次构造直角三角形来作.
【微点拨】 解题的关键在于把被开方数拆成两个完全平方数的和.
【思路点拨】把分散的角集中在一起.
【自主解答】连接A3E2,如图, 易知Rt△A3A2E2≌△A1A2E2(边角边), 故∠A3E2A2=∠A1E2A2. 由勾股定理,得C4E5= 22 1=2 =5C3E2, A4E5=42 12= =17A3E2. 因A4C4=A3C3=2,故△A4C4E5≌△A3C3E2(边边边), ∠A3E2C3=∠A4E5C4.
17.1 勾 股 定 理 第3课时
1.在数轴上表示 13 .
要在数轴上画出表示的 13 点,只要画出长为 13 的线段即可. 利用勾股定理,长为 13 的线段是直角边为正整数_2_,_3_的直角 三角形的斜边.
如图,在数轴上找出表示3的点A,则OA=_3_,过点A作直线l垂直于 OA,在l上取点B,使AB=_2_,连接OB,以原点O为圆心,以OB为半径 作弧,弧与数轴的交点_C_即为表示的 13点.

《勾股定理》PPT(第3课时利用勾股定理作图和计算)

《勾股定理》PPT(第3课时利用勾股定理作图和计算)
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
- .
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
2
2
D
∵ = 12 + 22 = 5,
CD
3
5

3 5
.
5
课程讲授
2
勾股定理与网格
归纳:1.勾股定理与网格的综合求线段长时,通常是把线段放
在与网格构成的直角三角形中,利用勾股定理求其长度.
2.网格中求格点三角形的高的题,常用的方法是利用网格
求面积,再用面积法求高.
课程讲授
3
勾股定理与几何图形
两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,
115.2
PH=6,则长方形ABCD的面积为________.
课堂小

在数轴上表示出无理数
的点
利用勾股定理
作图或计算
在网格中利用勾股定理
解决问题
勾股定理在几何图形中
的应用
如图所示.作法:
解:
(1)在数轴上找出表示4的点A,则OA=4;
(2)过A作直线l垂直于OA;
O
(3)在直线l上取点B,使AB=1;
(4)以原点O为圆心,以OB为半径作弧,弧与
数轴的交点C即为表示
B
17 的点.
0
1 2

3 4

勾股定理第三课时

勾股定理第三课时
证明:在Rt△ABC 和 Rt△A B C 中,∠C=∠C′ ′ ′ ′ =90°,根据勾股定理,得
BC = AB 2 -AC 2 ,
2 2 B′ C′ = A′ B′ -A′ C′ .
A
A ′
C
B C′
B′
实数
一一对应
数轴上的点
说出下列数轴上各字母所表示的实数:
A
-2 -1
B
0
C
1 2
D
点A表示 2 点C表示
A
2.假期中,王强和同学到某海岛上去玩探 宝游戏,按照探宝图,他们登陆后先往东 走8千米,又往北走2千米,遇到障碍后又 往西走3千米,在折向北走到6千米处往东 一拐,仅走1千米就找到宝藏,问登陆点A 到宝藏埋藏点B的距离是多少千米?
1 6 3 2 A 8 B
当堂达标
1.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高 为 . , 的直角三角形的斜边. 2 .长为 26 的线段是直角边长为正整数 角形ABC中,边长为无理数的边数为( A.0 B.1 C.2 D.3 )
3 .如图所示,在正方形网格中,每个小正方形的边长为1,则在网格上的三
当堂达标
5.已知如图所示,等边三角形ABC的边长为8:
(1)求高AD的长 (2)求这个三角形的面积 (答案可保留根号)
18
勾股定理

课本 27页

1 2
……
知识回忆 : ☞
直角三角形两直角边a、b 的平方和等于斜边c的平方。
B
∵∠C=90°
a
c
b
2 2 2 ∴a +b =c
A
C
证明“HL”
问题1 在八年级上册中,我们曾经通过画图得到结 论:斜边和一条直角边分别相等的两个直角三角形全等. 学习了勾股定理后,你能证明这一结论吗?

八年级数学下册教学课件《勾股定理》(第3课时)

八年级数学下册教学课件《勾股定理》(第3课时)

3.以原点O为圆心,以OB为半径作弧,弧与数轴交于C
点,则点C即为表示 13 的点.
l B 13 2
3
O 0
1
A•
2 3 C4
也可以使OA=2, AB=3,同样可
以求出C点.
探究新知
17.1 勾股定理
方法点拨
利用勾股定理表示无理数的方法: (1)利用勾股定理把一个无理数表示成直角边是两个正 数的直角三角形的斜边. (2)以原点为圆心,以无理数斜边长为半径画弧与数轴 存在交点,在原点左边的点表示是负无理数,在原点右边 的点表示是正无理数.
解:如图所示,有8条.
一个点一个点地 找,不要漏解.
巩固练习
17.1 勾股定理
如图,在5×5正方形网格中,每个小正方形的边 长均为1,画出一个三角形的长分别为 2 、2、10 .
解:如图所示. A C
B
探究新知
17.1 勾股定理
知识点 4 利用勾股定理在折叠问题中求线段的长度
如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折 叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3, 求AM的长.
能力提升题
在△ABC中,AB、BC、AC三边的长分别为 5、10、13,求这个三
角形的面积.小辉同学在解答这道题时,先建立一个正方形网格
(每个小正方形的边长为1),再在网格中画出格点△ABC(即 △ABC三个顶点都在小正方形的顶点处),如图所示.这样不需 求△ABC的高,而借用网格就能计算出它的面积.
探究新知
17.1 勾股定理
问题2 长为 13 的线段是直角边的长都为正整数的直角三角 形的斜边吗?
13 ?
13 ?
13 ?
1

陕西省安康市紫阳县紫阳中学八年级数学下册17.2勾股定理逆定理(第3课时)教案(新人教版)

陕西省安康市紫阳县紫阳中学八年级数学下册17.2勾股定理逆定理(第3课时)教案(新人教版)
活动4
问题:A、B、C三地两两距离如下图所示,A地在B地的正东方向,C地在B地的什么方向?
谈谈这节课的收获有哪些?掌握勾股定理及逆定理,来解决简单的应用题,会判断一个三角形是直角三角形.
先由学生自主独立思考,然后分组讨论, 交流各自的想法.
教师应深入到学生的讨论中去,对于学生出现的问题,教师急时给予引导.
学情分析
本节进一步学习勾股定理的逆定理在实际生活中的广泛应用,经历将实际问题转化为数学模型的过程,给学生充分交流的时间和空间,学会自主学习
课前准备
多媒体
教学
过程
教师活动
学生活动
设计意图
一、创设问题情境,引入新课
二、讲授新课
活动1问题1:小红和小军周日去郊外放风筝,风筝飞得又高又远,他俩很想知道风筝离地面到底有多高,你能帮助他们吗?
由学生独立完成后,由一个学生板演,教师讲解.
解:BC2+AB2=52+122=169,
AC2=132=169,
所以BC2+AB2=AC2,即BC的方向与BA方向成直角,∠ABC=90°,C地应在B地的正北方向.
通过对两个实际问题的探究,让学生进一步体会到勾股定理和勾股定理的逆定理在实际生活中的广泛应 用,提高学生的应用意识,发展学生的创新精神和应用能力.
在此活动中,教师应重点关注学生,
①能否独立思考,寻找解决问题的途径.
②能否积极主动地参加小组活动,与小组成员充分交流,且能静心听取别人的想法.
③能否由此活动,激发学生学习数学的兴趣.
先由学生独立完成,然后小组交流.
教师应巡视学生解决问题的过程,对成绩较差的同学给予指导.
在此活动中,教师应重点关注学生:
①能否用勾股定理的逆定理判断三角形的形状。

勾股定理第3课时教案

勾股定理第3课时教案

作长为 13 的线段时, 构造的直角三角形的两条直角边长可以均为正整数吗?如果可以, 写出这两个正整数;如果不可以请说明理由 写出五个可以用两直角边长均为正整数的直角三角形的斜边来作的长为无理数的线段
长:_________________ 完成课后 P27 练习 第 1 题 第 2 题 当堂作业 必做题:P28 习题 17.1 第 6 题,第 8 题 选做题:
1、如下图,已知 OA=OB,那么数轴上点 A 所表示的数是____________.
B A 1 -4 -3 -2 -1 0 1 2 3
2、如图,在平面直角坐标系中,点 P 坐标为(-2,3),以点 O 为圆心,以 OP 的长为半径画弧, 交 x 轴的负半轴于点 A,则点 A 的横坐标介于( )
A.-4 和-3 之间; B.3 和 4 之间; C.-5 和-4 之间; D.4 和 5 之间; 思考题: 图(1)是第七届国际数学教育大会的会徽.它的主体图案是由一连串如图(2)所示的直角三角形 演化而来的. 其中第一个三角形 △A1A2O 是等腰直角三角形, 且有 OA1=A1A2 = A2A3 = A3A4 = … =A8A9=1.
(1)求出 OA4 、 OA9 的长; (2) 计 算 (OA2
2 (OA2)
)
2

(
OA3
)2

, …… ……






2 (OA1)
2 (OA3)
2 (OA4)
2 (OA5)
2 (OAn)
…… ……
1
2




学生活动
教师活动
活动时间Biblioteka 备注1060516501

17.1_第3课时_勾股定理与数轴

17.1_第3课时_勾股定理与数轴

17
1
?
0
A 1
2
3
4 C
课堂检测
1.小明学了利用勾股定理在数轴上作一个无理数后, 于是在数轴上的2个单位长度的位置找一个点D,然 后点D做一条垂直于数轴的线段CD,CD为3个单位 长度,以原点为圆心,以到点C的距离为半径作弧, 交数轴于一点,则该点位置大致在数轴上( B ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
2.导学方案第42页自主测评第2题 3.导学方案第42页自主测评第3题 4.导学方案第44页基础巩固第3题
13
3
l B
2
也可以使 OA=2,AB=3, 同样可以求 出C点.
O 0
1
A 2

3
C4
归纳总结
利用勾股定理表示无理数的方法:
(1)利用勾股定理把一个无理数表示成直角边
是两个正整数的直角三角形的斜边.
(2)以原点为圆心,以无理数斜边长为半径画
弧与数轴存在交点,在原点左边的点表示是负无
理数,在原点右边的点表示是正无理数.
问题2 长为 13的线段能是直角边的长都为正整数 的直角三角形的斜边吗?
13
?
13
2
?
13
3
?
1


思考 根据上面问题你能在数轴上画出表示 13的 点吗?
步骤: 1.在数轴上找到点A,使OA=3; 2.作直线l⊥OA,在l上取一点B,使AB=2; 3.以原点O为圆心,以OB为半径作弧,弧与数轴交 于C点,则点C即为表示 13 的点.
练一练 1.如图,点A表示的实数是
( D )
A. 3
B. 5
C. 3
D. 5

第3课时 勾股定理的证明

第3课时 勾股定理的证明
第一章 勾股定理
美丽的勾股树
勾股定理
拼图游戏
勾股定理
印度婆什迦罗的证明
勾股定理
c b a
直接观察验证
勾股定理
a2
a2 c2 b2
勾股定理
青朱出入图
青出
青 入
青方
青 出
朱入 朱入
朱 朱 出 朱方 出
华罗庚
青入
青出勾股定理Fra bibliotek④⑤
b
c
a



无字证明
赵爽弦图
勾股定理
c
a
b
勾股定理 1876年4月1日,伽菲尔德在 《新英格兰教育日志》上发 表了他对勾股定理的这一证 法。 1881年,伽菲尔德就任美国 第20任总统。后来,人们为 了纪念他对勾股定理直观、 简捷、易懂、明了的证明, 就把这一证法称为“总统证 法”。

毕达哥拉斯证明方法
勾股定理
勾股定理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时 18.2 勾股定理的逆定理(1)
学习目标1、掌握勾股定理的逆定理,能应用勾股定理逆定理判定某个三角形是直角三角形。

2、灵活应用勾股定理及逆定理解决实际问题。

重点难点重点:掌握勾股定理的逆定理,能应用勾股定理逆定理判定某个三角形是直角三角形。

难点:灵活应用勾股定理及逆定理解决实际问题。

新知导学(一)复习巩固:
1、如图,在Rt△ABC中,∠C=90o,三边长为a,b,c
(1)两锐角关系∠____+∠____=90o
(2)三边之间的关系(勾股定理):_ ___2+__ __2=__ _2
2、求出下列直角三角形的未知边。

AC=______ BC=______ BC=_______
(二)探究新知:
1、已知:在Rt△ABC中,AB=c,BC=a,CA=b,且a2+b2=c2。

求证:∠C=90o。

分析:①思考:证明一个角是90o有何方法?
____________________________
②按要求画出图形作△A/B/C/,使B/C/=a,A/C/=b,∠C/=90o 。

③在Rt△A/B/C/中,A/B/=_____________。

④A/B/____AB,(填“=”或“≠”)作图:
⑤△_____≌△_____ ()
⑥∠C____∠C/(填“=”或“≠”)
证明:
2、小结:如果三角形的三边长a,b,c满足,
那么这个三角形是三角形。

3、定理的应用:
例:判断下列线段a、b、c组成的三角形是否为直角三角形?若是,指出哪一条边所对的角是直角。

(1)a=15,b=20,c=25
解:∵2
2b
a = = 2c= =
∴a2+b2 ____ c2(填“=”或“≠”)
∴线段a=15,b=20,c=25 构成直角三角形(“能”或“不能”)
A
B C。

相关文档
最新文档