第4章 风荷载

合集下载

[工学]高层建筑设计第4章 设计要求及荷载效应组合

[工学]高层建筑设计第4章 设计要求及荷载效应组合

马那瓜美洲银行大楼动力分析
表4-4 结构确定抗震等级时的烈度表
建筑类别
丙类
甲、乙类
设防烈度
6度 7度 8度 9度 6度 7度 8度 9度
确定抗震等级 Ⅰ类场地 6 6 7 8 6 7 8 9 时考虑的烈度 Ⅱ~Ⅳ类场地 6 7 8 9 7 8 9 9*
图4-4
(d)
图4-5
图4-5
图4-6
4.5.2 抗倾覆问题
(1)控制高宽比
(2)基底零应力区满足一定要求时不需要进行抗倾 覆验算(pp77) 。
4.6 抗震结构延性要求和抗震等级
4.6.1 延性结构的概念
(1)延性的概念
延性——结构(截面)能维持承载能力而又具有较大的 塑性变形的能力。如图4-2:
截面开始屈服 —— My、 y、fy、 y 截面破坏 —— Mu、 u、fu、 u
γL——考虑结构使用年限的荷载调整系数。50年时取1.0 ;100年时取1.1
2、有地震作用组合: SE= γGSGE+γEhSEhk+γEvSEvk+ψWγWSWk
注:抗震设计时,应同时考虑无地震作用组合和有地震作用 组合。
4.1.2 竖向活荷载的布置
1、恒载布置——全部作用在结构上。
2、活载布置 高层民用建筑一般满布计算内力(图4-4(d)),为了安 全起见,可以把框架梁的弯矩乘以1.1~1.2的放大系数. 在贮藏、书库或其他有很重使用荷载(q>4kN/m2)的 结构中,应考虑最不利荷载布置(图4-4(a)、(b)、 (c)) 。
(2)跨中截面——最大正弯矩。
2、柱
控制截面为上、下两个端截面,柱子多设计成 对称配筋。要考虑下述四种可能组合:
|M|max及相应的N; Nmax及相应的M; Nmin及相应的M。 |M|比较大(不是绝对最大),但N比较小或N比较大 (不是绝对最小或绝对最大)。 柱子还要组合最大剪力Vmax。

第4章风荷载

第4章风荷载

静风 软风 轻风 微风 和风 清劲风 强风 疾风 大风 烈风 狂风 暴风飓风
当风以一定的速度向前运动遇到建筑物、构筑物、桥梁等阻碍物时,将对这些阻碍 物产生压力。
风荷载是工程结构的主要侧向荷载之一,
它不仅对结构物产生水平风压作用,还会引 起多种类型的振动效应。
风灾实例 1926年9月,美国迈阿密17层高的 Meyer-Kiser大楼在一次飓风袭击下, 维护结构受到严重破坏,钢框架结 构发生塑性变形,大楼在风暴中严 重摇晃,顶部残留位移达0.61m。
第4章 风荷载
风致桥梁破坏 1940 年 11 月 7 日 , 美 国 华 盛 顿 州 塔 科 马 桥 ( Tacoma Bridge )因风振致毁,这一严重的桥梁事故,开始促使人 们对桥梁的风致振动问题进行系统深入的研究。该桥主跨 长853.4m,全长1810.56m,桥宽11.9m,而梁高仅1.3m。通 过两年时间的施工,于 1940 年 7 月 1 日建成通车。但由于当
使用功能 住宅、公寓 办公、旅馆 amax (m/s2) 0.15 0.25
第4章 风荷载
抗风减振措施
台北 101 大楼(高 508 米),在 92楼 层悬挂设置重达 800 吨的悬浮阻尼 球,通过吸收振动能量,避免大楼 在强风下大幅晃动
第4章 风荷载
抗风减振措施
上海环球金融中心(高492米),在395 米的第 90 层安装两台重达 150 吨、长宽 各 9 米的风阻器,中间桔红色的是用钢 索悬吊的重 100 多吨的配重物,其下安 装了驱动装置。
第4章 风荷载
第4章
第一节 第二节 第三节 第四节 第五节 风的有关知识 风压
风荷载
内容提要
结构抗风计算的几个重要概念 顺风向结构风效应 横风向结构风效应

建筑幕墙设计(第四章)荷载及其组合

建筑幕墙设计(第四章)荷载及其组合
横梁:竖向验算永久荷载单独作用下的挠度。
横向验算风荷载单独作用下挠度。
4 荷载及荷载组合
第二节 风荷载 风荷载是作用于幕墙的一种主要直接作用,它垂 直作用于幕墙面板表面。 设计要求:(1)既需考虑长期使用过程中,在一定时距平
均最大风速的风荷载作用下保证 正常使用功 能不受影响。 (2)在阵风袭击下不受损坏,避免事故发生。
风荷载计算公式:
w w(主体结构) w w(外围护 幕墙)
k Z s z o k gz s z o
4 荷载及荷载组合
第二节 风荷载 1 基本风压Wo
当风以一定速度向前运动遇到幕墙阻碍时,幕墙承受风 压,幕墙所在地区不同,它们的基本风压不同。
Vo / 2 wo
A:近海海面、海岛、海岸、湖岸、沙漠 B:田野、乡村、丛林、丘陵、房屋稀疏的乡镇 C:密集建筑群的城市市区(一般城市) D:密集建筑群且房屋较高城市(北京、上海等)
4 荷载及荷载组合

A z c z
1.379( z /10) 0.616( z /10)
0.24
0.44

B z D z



4 荷载及荷载组合
4 阵风系数 gz 第二节 风荷载
瞬时风压峰值与10min平均风压(基本风压)的比值, 取决于场地粗糙度类别和建筑物高度。 K (1 2 ) 玻璃幕墙 石材金属幕墙取2.25 gz f K-地区粗糙度调整系数 A取0.92 B取0.89


A f
C取0.85 D取0.8
4 荷载及荷载组合
第一节 概述 2 幕墙的荷载组合 承载Hale Waihona Puke 极限状态G G w w w

《工程结构荷载及可靠度设计》课程笔记

《工程结构荷载及可靠度设计》课程笔记

《工程结构荷载及可靠度设计》课程笔记第一章:荷载类型1.1 荷载与作用荷载是指作用在结构上的各种力,它们可以导致结构的变形、位移或破坏。

荷载通常分为两类:直接作用和间接作用。

1. 直接作用:指直接施加在结构上的力,如人的重量、家具、车辆等。

这些力可以直接作用在结构的某个部分,导致该部分产生应力、应变和变形。

2. 间接作用:指不是直接施加在结构上的力,但会通过结构的一部分传递到另一部分,如温度变化、地震等。

这些力不会直接导致结构产生应力,但会通过结构的变形和位移产生影响。

1.2 作用的分类荷载作用可以分为以下几类:1. 恒载:指在结构使用过程中始终存在的荷载,如结构自重、固定设备等。

恒载的大小和作用点一般不会发生变化。

2. 活载:指在结构使用过程中可能变化的荷载,如人的活动、车辆的行驶等。

活载的大小和作用点可能会随着时间发生变化。

3.偶然荷载:指在结构使用过程中可能发生,但发生概率较小的荷载,如意外事故、爆炸等。

偶然荷载的大小和作用点通常难以预测。

4.地震作用:指地震时地面的震动对结构产生的影响。

地震作用是一种特殊的偶然荷载,其大小和作用点取决于地震的强度和震中距离。

5.风荷载:指风对结构产生的影响。

风荷载的大小和作用点取决于风速、风向和地形等因素。

6.温度作用:指温度变化对结构产生的影响。

温度作用可能导致结构产生膨胀或收缩,从而产生应力、应变和变形。

7.变形作用:指由于地基沉降、结构老化等原因导致结构产生的变形。

变形作用可能会导致结构的应力、应变和位移发生变化。

8.爆炸作用:指由于爆炸事故对结构产生的影响。

爆炸作用通常会导致结构产生局部破坏或整体破坏。

9.浮力作用:指由于水的浮力对结构产生的影响。

浮力作用通常发生在水下结构或浮体结构中。

10.制动力、牵引力与冲击力:指由于车辆行驶、机械运动等原因对结构产生的影响。

这些力可能会导致结构产生振动、噪声和疲劳损伤。

11.预加力:指在施工过程中预先施加在结构上的力,如预应力混凝土结构中的预应力钢筋。

第4章思考题答案xm-syj-2012混凝土设计原理 邵永健

第4章思考题答案xm-syj-2012混凝土设计原理 邵永健

思考题答案4.1荷载作用下,受弯构件可能发生哪两种破坏形式?答:荷载作用下,受弯构件可能发生两种破坏形式:一种是沿弯矩最大截面的破坏,由于破坏截面与构件的轴线垂直,故称为受弯构件的正截面破坏。

另一种是沿剪力最大截面或剪力和弯矩都较大截面的破坏,由于破坏截面与构件的轴线斜交,故称为受弯构件的斜截面破坏。

4.2 为什么要规定梁中纵向钢筋的净间距?梁中纵向钢筋的净间距具体有哪些规定?答:规定梁中纵向钢筋的净间距是为了便于浇注混凝土,保证钢筋周围混凝土的密实性,以及保证钢筋与混凝土粘结在一起共同工作。

具体规定有:梁上部纵向钢筋水平方向的净间距不应小于30mm和1.5d(d为钢筋的最大直径);下部纵向钢筋水平方向的净间距不应小于25mm和d。

梁的下部纵向钢筋配置多于两层时,两层以上钢筋水平方向的中距应比下面两层的中距增大一倍。

各层钢筋之间的净间距不应小于25mm和d。

4.3 什么是混凝土保护层厚度?为什么要规定混凝土保护层厚度?混凝土保护层厚度的取值与哪些因素有关?答:结构构件中最外层钢筋的外边缘至混凝土表面的垂直距离,称为混凝土保护层厚度。

为保证结构的耐久性、耐火性和钢筋与混凝土的粘结性能,须对混凝土保护层厚度进行规定。

混凝土保护层厚度的取值与构件类型、混凝土强度等级、环境类别设计使用年限和钢筋直径有关。

4.4 板中分布钢筋的概念与作用。

答:分布钢筋是指垂直于板的受力钢筋方向上布置的构造钢筋。

分布钢筋的作用是:与受力钢筋绑扎或焊接在一起形成钢筋骨架,固定受力钢筋的位置;将板面的荷载更均匀地传递给受力钢筋;以及抵抗温度应力和混凝土收缩应力等。

4.5 适筋梁从开始受荷到破坏需经历哪几个受力阶段?各阶段的主要受力特征是什么?答:适筋梁从开始受荷到破坏需经历未开裂阶段、带裂缝工作阶段和破坏阶段。

未开裂阶段的主要受力特征是构件没有裂缝,钢筋应力小,混凝土基本处于弹性阶段,荷载-挠度关系基本为线性。

带裂缝工作阶段的主要受力特征是构件已有裂缝,但裂缝宽度和挠度尚不明显,钢筋应力小于屈服强度,裂缝截面处受拉区混凝土已大部分退出工作,受压区混凝土的应力已呈曲线分布,荷载-挠度已呈曲线关系。

第4章风荷载

第4章风荷载
表4.3 不同重现期与重现期为50年的基本风压换算系数
重现期/年 重现期换算系数 100 1.10 60 1.03 50 1.00 40 0.97 30 0.93 20 0.87 10 0.77 5 0.66
4.1.4 山区的基本风压
对于山区的建筑物,基本风压还应考虑地形的修正,修 正系数分别按下述规定采用: (1) 对于山峰和山坡,其顶部B处的修正系数可按下述 公式采用:
1 2 2 w v v 2 2g
式中,w——单位面积上的风压力(kN/m2); ρ——空气密度(kg/m3); γ——空气单位体积重力(kN/m3); g——重力加速度(m/s2); v——风速(m/s)。
在标准大气压情况下, γ=0.012018kN/m3,g =9.80m/s2,可得:
实测风速时距 时距换算系数 60min 0.940 10min 1.00 5min 1.07 2min 1.16 1min 1.20 0.5min 1.26 20s 1.28 10s 1.35 5s 1.39 瞬时 1.50
应该指出,表中所列出的是平均比值。实际上有许多因素影响该比 值,其中最重要的有: (1) 平均风速值。实测表明,10min 平均风速越小,该比值越大。 (2) 天气变化情况。一般天气变化越剧烈,该比值越大。如雷暴大风 最大,台风次之,而寒潮大风(冷空气)则最小。
4.1.3 风速或风压的换算 1. 不同高度换算 即使在同一地区,高度不同,风速也会不同。当实测 风速高度不足10m标准高度时,应由气象台站根据不同高 度风速的对比观测资料,并考虑风速大小的影响,给出非 标准高度风速与10m标准高度风速的换算系数。缺乏观测 资料时,实测风速高度换算系数也可按表4.1取值。
z B [1 tan (1 )]2 2.5H

第4章 风荷载

第4章 风荷载

第四章风荷载主要内容:¾4.1 风的有关知识¾4.2 风压¾4.3 结构抗风计算的几个重要概念¾4.4 顺风向结构风效应¾4.5 横向结构风效应4.1 风的有关知识1 . 风的形成由于存在压力差或气压梯度,空气从气压高的地方向气压底的地方流动而形成风。

2 . 两类性质的大风1.台风弱的热带气旋→引入暖湿空气→在涡旋内部产生上升和对流运动→加强涡旋→‥‥‥→台风2.季风冬季:大陆冷,海洋暖,风:大陆→海洋夏季:大陆热,海洋凉,风:海洋→大陆3. 我国的风气候总况我国的风气候总体情况如下:(1)台湾、海南和南海诸岛,由于地处海洋,年年受台风直接影响,是我国的最大风区。

(2)东南沿海地区由于受台风影响,是我国大陆上的大风区。

风速梯度由沿海指向内陆。

台风登陆后,由于受地面摩擦的影响,风速能弱很快,在离海岸100km处,风速约减小一半。

(3)东北、华北和西北地区是我国的次大风区,风速梯度由北向南,与寒潮入侵路线一致。

华北地区夏季受季风影响,风速有可能超过寒潮风。

黑龙江西北部处于我国纬度最北地区,它不在蒙古高压的正前方,因此那里的风速不大。

(4)青藏高原地势高,平均海拔4-5km,也属较大风区。

(5)长江中下游、黄河中下游是小风区,一般台风到此已大为减弱,寒潮风到此也是强弩之末。

(6)云贵高原处于东亚大气环流的死角,空气经常处于静止状态,加之地形闭塞,形成我国最小风区。

4. 风级为了区分风的大小,根据风对地面(或海面)物体影响程度,常将风划分为13个等级。

风速越大,风级越大,由于早期人们还没有仪器来测定风速,就按照风所引起的现象来划分风级。

风的13个等级如表4-1所示。

b w m w(5)基本风速的重现期设基本风速的重现期为T0年,则1/T为每年实际风速超过基本风速的概率,每年不超过基本风速的概率为:基本风压:当地比较空旷平坦地面上,离地10m高处统计所得50年一遇10分钟时距内的最大风速。

第四章 风荷载

第四章  风荷载

§4.3
风压高度变化系数
《建筑结构荷载规范》(GB50009-2012)为方便设计人员使用,用风 压高度变化系数 综合考虑不同高度和不同地貌情况的影响。对于平坦或稍 有起伏的地形,风压高度变化系数直接按下表取用;对于山区的建筑物, 风压高度变化系数除由下表确定外,还应考虑地形条件的修正。表中地貌 (地面粗糙程度)分为A、B、C、D四类。

§4.2
基本风速和基本风压
3. 平均风速的时距 风速随时间不断变化,常取某一规定时间内的平均风速作为计算标准。 平均风速与时距的大小有密切关系,如果时距取的很短,例如3s,则平均 风速只反映了风速记录中最大值附近的较大数值的影响,较低风速在平均 风速中的作用难以体现,致使平均风速较高;相反,如果时距取的很长, 例如1天,则必定将一天中大量的小风平均进去,致使平均风速值较低。一 般来说,时距越大,平均风速越小;反之,时距越小,则平均风速越大。
§4.1
风的基本知识
4.1.3 我国的风气候总况
§4.1
4.1.4 风级
风的基本知识
为了区分风的大小,根据风对地面(或海面)物体的影响程度将风划为若 干等级。风力等级(wind scale)简称风级,是风强度的一种表示方法。 国际通用的风力等级是由英国人蒲福(Beaufort)于1805年拟定的,故又 称蒲福风力等级(Beaufort scale )。 由于早期人们还没有仪器来测定风速,因此就按照风所引起的现象来划分 等级,最初是根据风对炊烟、沙尘、地物、渔船、渔浪等的影响大小,分为 13个等级(0~12级)。 后来又在原分级的基础上,增加了风速界限,将蒲福风力等级由 12级台风 扩充到17级,增加为18个等级(0~17级)。
§4.2
基本风速和基本风压
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压气幕 流向
小股气流wb
wm
压力线
建筑物
w1dA
dl
(w1+dw1)dA 风压的形成(wb- wm)
w=v2/2
4-26
4.2.1 风压与风速的关系
w1dA
dl
(w1+dw1)dA

γ/2g值各地不同: 东南沿海:约1/1750; 内陆:海拔500m以下约1/1600;3500m以上约1/2600
4-45
平均风——静力风效应 脉动风——动力风效应 地面粗糙度的影响:地面越粗糙,v越小,vf的幅值越大且频 率越高。

脉动风的特性: ① 幅值特性 为一随机过程 [ vf (t),t∈T ] 幅值服从正态分布 σv :脉动风速的均方差
vfi :vf 的一条时程记录曲线
4-46
②频率特性 可用功率谱密度描述 功率谱密度的定义:脉动风振动的频率分布
静、烟直上
烟能表示方向,但风向 标不能转动 人面感觉有风,树叶有 微响,风向标能转动 树叶及微枝摇动不息, 旌旗展开
<1
1~5

3 4
轻风
微风 和风
0.2
0.6 1.0
0.3
1.0 1.5
6~11
12~19
4~6
7~10 11~16
1.6~3.3
3.4~5.4 5.5~7.9
能吹起地面灰尘和纸张, 20~28 树的小枝摇动
风对构筑物的破坏
对房屋建筑结构的破坏
桥梁结构的破坏 对输电系统等生命线工程的破坏 对广告牌、标语牌等的破坏 对港口设施的破坏 对海洋工程结构的破坏
风对构筑物的破坏
被飓风卡特里娜严重损 坏的新奥尔良多层建筑
风对构筑物的破坏 (风灾前后)
窗户被飓风卡特里娜严重 损坏的新奥尔良凯悦酒店
8月30日美国新奥尔良飓风袭击 80%的土地被淹,死 亡上千人,2000亿美金的重建费用
飓风威尔玛 (古巴,2005.10)
古巴首都哈瓦那海滨大街
2005.10.24飓风“威尔玛” 掀起巨浪,越过堤岸,拍 打着楼房
台风圣帕引起巨浪
(福建、浙江2007.8)
飓风丽塔袭击美国
(2005.9)
风对构筑物的破坏
微枝折毁,人向前行, 感觉阻力甚大
烟囱顶部及平瓦移动, 小屋有损 陆上少见,见时可使树 木拔起或建筑物吹毁 陆上很少,有时必有重 大损毁 陆上绝少,其捣毁力极 大
17.2~ 20.7
20.8~ 24.4 24.5~ 28.4 28.5~ 32.6 32.7~ 36.9
4-7
11
12
暴风
飓风
11.5
14
4-27
4.2.2 基本风压
• 基本风压的定义:按 规定的地貌、高度、 时距等量测的风速称 为基本风压。
标准地貌
标准高度 平均风速的时距
基本风速 或基本风压
最大风速 的重现期
最大风速的样本
4-28
• 基本风压应符合五个规定:
1 标准高度的规定:一般取为10 m 2 地貌的规定:空旷平坦 3 公称风速的时距
风对构筑物的破坏
台风约克造 成的香港湾 仔数幢大厦 玻璃幕墙损 坏情况
风对构筑物的破坏
风对构筑物的破坏
遭受风灾的江苏某体育场
风对构筑物的破坏
风对构筑物的破坏
风对构筑物的破坏
风对构筑物的破坏
4.2 风压
• 风压的定义:当风 以一定的速度向前运动遇到 阻塞时,将对阻塞物产生压力,即风压。
0.30
0.40 0.25 0.30 0.25
0.50
0.55 0.40 0.45 0.40
0.60
0.60 0.45 0.50 0.45
无锡市
杭州市
6.7
41.7
0.30
0.30
0.45
0.45
0.50
0.50
宁波市
合肥市
4.2
27.9
0.30
0.25
0.50
0.35
0.60
0.40
4.2.3 非标准条件下的风速或风压的换算
16.0

汽船遇之极危险
海浪滔天
103~ 56~63 117 118~ 133 64~71
台风云娜 (浙江,2004.8)
台风云娜登陆时卫星云图
4-8
飓风伊万(美国,2004.9)
从国际空间站拍摄的 飓风伊万云图,最高 风速214 km/h (59.4m/s)
4-9
飓风卡特里娜 (美国新奥尔良,2005.8)
式中
v0:公称风速; v(t):瞬时风速; τ:时距。 10 min~1 h的平均风速基本稳定,我国取τ=10 min。
4-29
4 最大风速的样本时间
风有它的自然周期,每年季节性的重复一次。 一般取一年为统计最大风速的样本时间。
5 基本风速(最大风速)的重现期 1 设重现期为 T0 年,则 T 为超过设计最大风速的概率,因为不超过 该设计最大风速的概率或保证率 P 0 为: 1 P 1 0 T0
1.非标准高度换算 实测表明,平均风速沿高度呈幂指数函数变化,即:
任一点的高度 任一点的平均风速 与地貌或地面粗糙度有关的指数

基本风压标准高度(10m) 基本风速(标准高度处的平均风速)
因此
4-35
2.非标准地貌的换算
梯度风:不受地表影响,能够在气压梯度作用下自由流动的风。 梯度风高度HT与地面的粗糙程度有关,一般为300~550m,地面越粗糙,HT越大。
空旷平坦地面
350
350 300 250 200 150 100 50
梯度风速(%)
海面
300 250 200 150 100 50 0
0 0 20 40 60 80 100
0
0 20 40 60 80 100
0
0
20
40
60
80 100
0
20
ห้องสมุดไป่ตู้40
60
80 100
4-36
从图中可知,地面越粗糙,风速变化越慢(α越大),梯度风高度将越 高;反之,地面越平坦,风速变化将越快(α越小);梯度风高度将越 小。 不同地貌的α及HT值
1.20
0.5 min
1.26
20 s
1.28
10 s
1.35
5s
1.39
瞬时
1.50
4.不同重现期的换算
不同重现期风压与50年重现期风压的比值
重现期T0 (年) μr
100
1.114
50
1.00
30
0.916
20
0.849
10
0.734
5
0.619
3
0.535
1
0.353
0.5
0.239
4-43
4.3 结构抗风计算的几个重要概念
0.12 300
5
0.15 350
10
0.22 450
15
0.30 550
30
梯度风高度 HT (m)
截断高度 z0 (m)
A类——近海海面和海岛、海岸、湖岸及沙漠地区; B类——田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区 (标准地貌); C类——密集建筑群城市市区; D类——密集建筑群且房屋较高的城市市区。 考虑到近地面风速的不确定性较高,规范还分别规定了这四类地貌 的截断高度,截断高度以下的风速、风压取截断高度处的相应值。
按照上述条件,根据全国各地气象台统计数据,用下式计算
2 v0 w0 1600
全国基本风压分布图
风荷载(可变荷载):基本风压
城市 北京市 海拔高度(m) 54.0 基本风压(kN/m2) R=10 0.30 R=50 0.45 R=100 0.50
天津市
上海市 重庆市 济南市 南京市
3.3
2.8 259.1 51.6 8.9
强风
疾风 大风 烈风 狂风
3.0
4.0 5.5 7.0 9.0
4.0
5.5 7.5 10.0 12.5
39~49
50~61 62~74 75~88 89~102
22~27
28~33 30~40 41~47 48~55
10.8~ 13.8 13.9~ 17.1
近港渔船皆停留 不出
汽船航行困难 汽船返航颇危险
Davenport水平脉动风速功率谱密度
4-47
风荷载概述
当风以一定速度吹向建筑物时,建筑物将对其产生阻塞和扰 动作用,从而改变该建筑物周围风的流动特性。反过来,风 的这种流动特性改变引起的空气动力效应将对结构产生作用。
由于自然风的紊流特性,因此风对结构的这种作用包含了静 力作用和动力作用两个方面,使结构产生相应的静力和动力 响应。
第4章 风荷载
本章主要内容
4.1 风的有关知识 4.2 风压 4.3 结构抗风计算的几个重要概念 4.4 顺风向结构风效应 4.5 横风向结构风效应
2
4.1 风的有关知识
4.1.1 风的形成
风是空气从气压大的地方向气 压小的地方流动而形成的。
由于地球自传和地球表 面大陆与海洋吸热存在 差异,大气环流复杂些
地貌 海面 0.1~0.13 275~325 空旷平坦地面 0.13~0.18 325~375 城市 0.18~0.28 375~450 大城市中心 0.28~0.44 425~550
α
HT(m)
4-37
我国各类地貌的a及HT值 建筑结构荷载规范 (GB50009-2012)
地貌 地面粗糙度指数a A B C D
风不仅对结构产生静力作用,还会产生动力作用,引起高层建 筑、各类高塔和烟囱等高耸结构、大跨度缆索承重桥梁、大跨 度屋顶或屋盖、灯柱等许多柔性结构的振动,产生动力荷载, 甚至引起破坏。
相关文档
最新文档