静电场的能量
第十章静电场中的能量

第十章静电场中的能量1电势能和电势一、静电力做功的特点1.静电力做功:在匀强电场中,静电力做功W=qEl cos θ.其中θ为静电力与位移方向之间的夹角.2.特点:在静电场中移动电荷时,静电力所做的功与电荷的起始位置和终止位置有关,与电荷经过的路径无关.(1)静电力做的功与电荷的起始位置和终止位置有关,但与具体路径无关,这与重力做功特点相似.(2)无论是匀强电场还是非匀强电场,无论是直线运动还是曲线运动,静电力做功均与路径无关.二、电势能1.电势能:电荷在电场中具有的势能,用E p表示.2.静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量.表达式:W AB=E p A-E p B.(1)静电力做正功,电势能减少;(2)静电力做负功,电势能增加.3.电势能的大小:电荷在某点(A点)的电势能,等于把它从这点移动到零势能位置时静电力做的功E p A=W A0.4.电势能具有相对性电势能零点的规定:通常把电荷在离场源电荷无限远处或把电荷在大地表面的电势能规定为零.(1)电势能E p是由电场和电荷共同决定的,是电荷和电场所共有的,我们习惯上说成电荷在电场中某点的电势能.(2)电势能是相对的,其大小与选定的参考点有关。
确定电荷的电势能,首先应确定参考点,也就是零势能点的位置。
(3)电势能是标量,有正负但没有方向。
在同一电场中,电势能为正值表示电势能大于零势能点的电势能,电势能为负值表示电势能小于零势能点的电势能。
5.静电力做功与电势能变化的关系(1)W AB=E p A-E p B.静电力做正功,电势能减少;静电力做负功,电势能增加.(2)在同一电场中,正电荷在电势高的地方电势能大,而负电荷在电势高的地方电势能小.三、电势1.定义:电荷在电场中某一点的电势能与它的电荷量之比.2.公式:φ=E p q。
(1)φ取决于电场本身;(2)公式中的E p 、q 均需代入正负号。
3.单位:国际单位制中,电势的单位是伏特,符号是V ,1 V =1 J/C.4.电势高低的判断:(1)电场线法:沿电场线方向,电势越来越低.(2)电势能判断法:由φ=E p q知,对于正电荷,电势能越大,所在位置的电势越高;对于负电荷,电势能越小,所在位置的电势越高.5.电势的相对性:只有规定了零电势点才能确定某点的电势,一般选大地或离场源电荷无限远处的电势为0.6.电势是标量,只有大小,没有方向,但有正、负之分,同一电场中电势为正表示比零电势高,电势为负表示比零电势低.7.电场中某点的电势是相对的,它的大小和零电势点的选取有关.在物理学中,常取离场源电荷无限远处的电势为零,在实际应用中常取大地的电势为零.8.电势虽然有正负,但电势是标量.在同一电场中,电势为正值表示该点电势高于零电势,电势为负值表示该点电势低于零电势,正负号不表示方向.2 电势差一、电势差1.定义:电场中两点之间电势的差值,也叫作电压.U AB =φA -φB ,U BA =φB -φA ,U AB =-U BA .2.电势差是标量,有正负,电势差的正负表示电势的高低.U AB >0,表示A 点电势比B 点电势高.3.单位:在国际单位制中,电势差与电势的单位相同,均为伏特,符号是V .4.静电力做功与电势差的关系(1)公式:W AB =qU AB 或U AB =W AB q. (2)U AB 在数值上等于单位正电荷由A 点移到B 点时静电力所做的功.二、电势差的理解1.电势差反映了电场的能的性质,决定于电场本身,与试探电荷无关.2.电势差可以是正值也可以是负值,电势差的正负表示两点电势的高低,且U AB =-U BA ,与零电势点的选取无关.3.电场中某点的电势在数值上等于该点与零电势点之间的电势差.三、静电力做功与电势差的关系1.公式U AB=W ABq或W AB=qU AB中符号的处理方法:把电荷q的电性和电势差U的正负代入进行运算,功为正,说明静电力做正功,电荷的电势能减小;功为负,说明静电力做负功,电荷的电势能增大.2.公式W AB=qU AB适用于任何电场,其中W AB仅是电场力做的功,不包括从A到B移动电荷时其他力所做的功.3.电势和电势差的比较1.定义:电场中电势相同的各点构成的面.2.等势面的特点(1)在同一等势面上移动电荷时静电力不做功.(2)等势面一定跟电场线垂直,即跟电场强度的方向垂直.(3)电场线总是由电势高的等势面指向电势低的等势面.3.等势面的特点及应用(1)在等势面上移动电荷时静电力不做功,电荷的电势能不变.(2)电场线跟等势面垂直,并且由电势高的等势面指向电势低的等势面,由此可以绘制电场线,从而可以确定电场的大致分布.(3)等差等势面密的地方,电场强度较强;等差等势面疏的地方,电场强度较弱,由等差等势面的疏密可以定性确定场强大小.(4)任意两个等势面都不相交.4.几种常见电场的等势面(如图1所示)图1(1)点电荷的等势面是以点电荷为球心的一簇球面.(2)等量异种点电荷的等势面:点电荷的连线上,从正电荷到负电荷电势越来越低,两点电荷连线的中垂线是一条等势线.(3)等量同种点电荷的等势面①等量正点电荷连线的中点电势最低,两点电荷连线的中垂线上该点的电势最高,从中点沿中垂线向两侧,电势越来越低.②等量负点电荷连线的中点电势最高,两点电荷连线的中垂线上该点的电势最低.从中点沿中垂线向两侧,电势越来越高.(4)匀强电场的等势面是垂直于电场线的一簇平行等间距的平面.3 电势差与电场强度的关系一、匀强电场中电势差与电场强度的关系1.在匀强电场中,两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积.2.公式:U AB =Ed .二、公式E =U AB d的意义 1.意义:在匀强电场中,电场强度的大小等于两点间的电势差与这两点沿电场强度方向距离之比.2.电场强度的另一种表述:电场强度在数值上等于沿电场方向单位距离上降低的电势.3.电场强度的另一个单位:由E =U AB d可导出电场强度的另一个单位,即伏每米,符号为V /m.1 V/m =1 N/C.三、匀强电场中电势差与电场强度的关系1.公式E =U AB d及U AB =Ed 的适用条件都是匀强电场. 2.由E =U d可知,电场强度在数值上等于沿电场方向单位距离上降低的电势. 式中d 不是两点间的距离,而是两点所在的等势面间的距离,只有当此两点在匀强电场中的同一条电场线上时,才是两点间的距离.3.电场中电场强度的方向就是电势降低最快的方向.4.电势差的三种求解方法(1)应用定义式UAB =φA -φB 来求解.(2)应用关系式UAB =WAB q来求解. (3)应用关系式UAB =Ed(匀强电场)来求解.5.在应用关系式UAB =Ed 时可简化为U =Ed ,即只把电势差大小、场强大小通过公式联系起来,电势差的正负、电场强度的方向可根据题意另作判断.四、利用E =U d定性分析非匀强电场 U AB =Ed 只适用于匀强电场的定量计算,在非匀强电场中,不能进行定量计算,但可以定性地分析有关问题.(1)在非匀强电场中,公式U =Ed 中的E 可理解为距离为d 的两点间的平均电场强度.(2)当电势差U 一定时,场强E 越大,则沿场强方向的距离d 越小,即场强越大,等差等势面越密.(3)距离相等的两点间的电势差:E 越大,U 越大;E 越小,U 越小.五、用等分法确定等势线和电场线1.在匀强电场中电势差与电场强度的关系式为U =Ed ,其中d 为两点沿电场方向的距离. 由公式U =Ed 可以得到下面两个结论:结论1:匀强电场中的任一线段AB 的中点C 的电势φC =φA +φB 2,如图1甲所示. 图1结论2:匀强电场中若两线段AB ∥CD ,且AB =CD ,则U AB =U CD (或φA -φB =φC -φD ),同理有U AC =U BD ,如图乙所示。
静电场的能量

【解】带电球形电容器的电场分布是对称的,由有介质中 的高斯定理可求其电场强度的大小为
E
Q
40 rr 2
则电场能量密度为
we
1 2
0
r
E
2
Q2
322 0 r r 4
现取半径为r、厚为dr的球壳为一体积元,则该体积元的体积为
dV 4r2dr
因此,球壳中储存的电场能量为
于是总能量为
dWe
wedV
Q2
8 0 r r 2
U Ed
将平行板电容器的电容公式(7-38)带入式(7-43),可得
We
=
1 2
CU
21 20r Sd(Ed )21 2
0r E2Sd
1 2
E 2V
上式说明了电场能量的携带者是电场本身。
由上式可得单位体积电场内所具有的电场能量为
we
We V
=
1 E2
2
上式表明,电场的强度越大,电场的能量密度也越大。上 式虽然是从平行板电容器中求得的,但可以证明,对于任意电 场,这个结论也成立。
对于非均匀电场,我们可以任取一体积元dV,可以认为dV 内是均匀电场,则在dV内电场所储存的能量为
dWe
wedV
1 E2dV
2
因此,整个电场的能量为
We
V dWe =
V wedV
1 E2dV
V2
【例7-11】一球形电容器,内、外半径分别为R1和R2,所 带电量分别为+Q和-Q,两球间充满相对电容率为εr的电介 质,如下图所示。求此电容器储存的电场能量是多少?
物理学
静电场的能量
1.1 电容器的静电能
电容器充电时,电源必须做功,才能克服电容器极板上
静电场能量

1 2
[q1 1
q2
2
q3 3)
1 2
3 i 1
qi i
•
N个导体(等势体)系统:
We
1 2
N
i1
qi i
对电荷连续分布,也可推出相应公式:
• 体电荷分布系统:
We
1 2
d
dq d sds ldl
• 面电荷分布系统:
W e
1 2
S s d S
• 线电荷分布系统:
W e
1 2
L l dl
N = 2 即两导体电容器 : q1 = q,q2 = -q
We
1 2
q(1
2)
1 2
qU
1 CU 2 1 q2
2
2C
3. 静电能的场矢量计算式:
R
讨论:
We
1 2
Φd
1 2
V
(•
D)Φd
•(ΦA) Φ• AΦ• A
V
1 2
V
[•
(D)
•
D]d
S 1 D • d S 1 E • Dd
R5
0 60
150
⑵
We
1 2
V
0E 2d
1 2
1 0 E12d
1 2
2 0E22d
1 2
0
R 0
( r0 3 0
) 2 4r
2dr
1 2
0
(
R
R3 3 0 r
0 2
)2
4r
2dr
40
2
R5
150
可见结果是一样的
We
1 2
E • Dd
V
2.10 静电场能量 静电力要点

c
第二章
对某体积元 dV , 电荷密度: d( )
则电源向 dV 送入电荷:
电源做功:dW 电源做功
dq d( ) dV
dq d( ) dV
对整个电荷系统所在空间:
dW d ( ) dV
故静电场中是储存有能量的。其能量来源 于带电系统的建立过程中外界所做的功。
2018/10/7 1
第二章
1、电荷系统的能量: 在静电场中,电场力做功与路径无关, E dl 0
即静电场中的能量为势能——只与电荷分布有关, 而与形成这种电荷分布的过程无关。
设在各向同性、线性且均匀的媒质中,其最终 电荷分布为 ,电位为 。由于静电能与电荷 系统的建立过程无关,故可选一简单的电荷建 立过程。设电荷系统各点的电荷密度按 的 增加(0 1 ),各点电位也 同一比例因子 按同一比例因子 变化。即在某时刻,当各点 的电荷分布为 时,其相应电位为 。
1 f g dg dW dWe 2 We fg k const g
(2-10-10)
由(2-10-9)与(2-10-10)计算的结果应是一致的。
2018/10/7
17
第二章
例:如图,面积为A的平行板电容器,一个极板上电荷为+Q, 另一个则为-Q,极板间充满空气,计算两极板之间的作用力.
1 We ( D)dV 2V
又 ∵
2018/10/7
(D) D D
5
第二章
1 1 We (D)dV D dV 2V 2V
1 dV 而 We 2V
1 1 (D) dS D EdV 2S 2V
静电场的能量5

W球面 <W球体 e e
课堂讨论
13.5 静电场的能量 (electrostatic energy)
定义: 定义: 把系统从当前状态无限分裂到彼此相距无 限远的状态中静电场力作的功, 限远的状态中静电场力作的功,叫作系统 在当前状态时的静电势能。简称静电能。 在当前状态时的静电势能。简称静电能。 或: 把这些带电体从无限远离的状态聚合到当 前状态过程中,外力克服静电力作的功。 前状态过程中,外力克服静电力作的功。
r
比较均匀带电球面和均匀带电球体所储存的能量。 比较均匀带电球面和均匀带电球体所储存的能量。
q
0 E = q 4 r2 πε0
R
R
r <R r >R
q
R
r q 4 ε R π0 3 E = q 4 ε0r2 π
∞
r <R r >R
1 1 2 2 2 2 W = ∫ ε0E ⋅ 4 r dr +∫ ε0E ⋅ 4 r dr π π e 2 2 0 R
3.电容器储存的能量 电容器储存的能量
K
a
b
开关倒向a,电容器充电。 开关倒向 ,电容器充电。 开关倒向b,电容器放电。 开关倒向 ,电容器放电。
灯泡发光
←电容器释放能量
←电源提供
计算电容器带有电量Q,相应电势差为U 计算电容器带有电量 ,相应电势差为 时所 具有的能量。 具有的能量。
电容器中的能量是在充电过 程中建立起来的。 程中建立起来的。 充电过程, 充电过程,使电容器的两极 板分别带上等量的正负电荷, 板分别带上等量的正负电荷,这 相当于将某一极板上的电荷拉到 另一极板上。 另一极板上。这是电荷在两极板 间的搬迁过程。 间的搬迁过程。 搬迁过程中, 搬迁过程中,随着极板上电 荷的累积,要做的功越来越大, 荷的累积,要做的功越来越大, 这就像粮仓中粮食的囤积过程, 这就像粮仓中粮食的囤积过程, 粮越来越高,再往上倒, 粮越来越高,再往上倒,就越来 越困难。 越困难。
第五讲 静电场中的能量

r
Q2
U1 为 Q1 , Q2 1球面处电势的代数和 Q1 Q 1 Q1 在1球面处电势: Q1在2球面处电势: 4 0 r 4 0 R1
U1
4 0 R1
Q1
4 0 r
Q2
U 2 为 Q1 , Q2 2球面处电势的代数和
U j 是由 Q j 和 Q j 以外的全部电荷在 Q j 处产生的
电势,该式是导体系的总静电能。
1 n W qiVi 2 i 1
u i 是由 q i 以外的电荷在 q i处产生的电势,该式是
点电荷系总静电能的一部分------相互作用能。
4、带电电容器的储能
电容器静电能:充电过程将元电荷dq从一板搬到另一 u(t ) 板,电场力做元功:
导体球总能量
W
Q2 8 0 R
解2: 利用带电体系静电场能量公式
r R, E 0 r r, E Q 4 0 r 2
R
r
dr
作厚度为 dr 的球壳,球壳内的电场能量:
1 dW dV 0 E 2 dV 2 dV 4r 2 dr
球的总电场能量
W
R
设 带电体电量为Q,元电荷dq从无穷远整个电荷过程中 外界反抗电场力做元功:
dA udq
A dA udq
0 Q
电场力的功转化成带电体系的静电自能
W udq
0
Q
自能本质:各部分电荷之间的相互作用能,这是带电体自身 有的能量。
3、电荷连续分布的带电体系的静电能:自能&元以外的全部电荷共同产生带电导体组的总静电能
第五讲 静电场中的能量
静电场的能量

ϕa =
Q 4πε 0 a
因此静电场总能量为
W=
Q2 8πε 0 a
方法之二:
1 v v W = ∫ E ⋅ Dd V 2 ∞
因为球内电场为零, 故只须对球外积分
2 Q 2 drdQ = W= ∫ r 2 2 2 (4πε 0 r ) 8πε 0
ε0
Q2r = . 2 8πε 0 a r
式中右边第二项散度体积分化为面积分
v v v r →∞ → 0 ∫ ∇ ⋅ (ϕD)dV = ∫ ϕD ⋅ dS
所以
1 W = ∫ ρϕdV 2
例3 求带电量Q、半径为a的导体球的静电场总能量。 解 整个导体为等势体, 导体球的电荷分布于球 面上,方法之一:
1 1 W = ∫ ρϕdV = Qϕ a 2 2
第一项是设想体系的电 荷集中于原点上时在外 场中的能量 第二项是体系的电 偶极矩在外电场中 的能量 第三项是四极 子在外电场中 的能量
W (0 ) = Qϕ e (0 )
W
(2 )
(1)
v v = p ⋅ Ee (0 )
只有在非均匀场 中四极子的能量 才不为零
W
v 1 t = − D : ∇Ee 6
六、静电场的能量 电荷体系与 外电场的相互作用
1、静电场能量
1 v v W = ∫ E ⋅ DdV 2 ∞
由E=-∇ϕ和∇⋅D=ρ得 v v v v v E ⋅ D = −∇ϕ ⋅ D = −∇ ⋅ (ϕD) + ϕ ∇ ⋅ D v = −∇ ⋅ (ϕD) + ρϕ 因此
v 1 1 W = ∫ ρϕdV − ∫ ∇ ⋅ (ϕD )dV 2 2
代入得
3 1 3 ∂ ∂2 W = ∫ ρ ϕ e (0 ) + ∑ xi ϕ e (0) + ∑ xi x j ϕ e (0) + L dV 2! i , j =1 ∂xi ∂xi ∂x j i =1 1 ∂ ∂2 ϕ e (0 ) + ∑ Dij ϕ e (0) + L = Qϕ e (0 ) + ∑ pi 6 i, j ∂xi ∂xi ∂x j i 1 t v = Qϕ e (0 ) + p ⋅ ∇ϕ e (0 ) + D : ∇∇ϕ e (0 ) + L 6
高考物理复习:静电场中的能量

(1)在电场中,两点之间电势的差值叫作电势差。
(2)公式:UAB=φA-φB,UAB=-UBA。
(3)静电力做功与电势差的关系: UAB=
。
知识点二
等势面
1.定义:电场中电势相等的各点组成的面。
2.四个特点。
(1)等势面一定与电场线垂直。
(2)在同一等势面上移动电荷时静电力不做功。
把一带正电荷的物体C置于A附近,贴在A、B下部的金属箔片都张开,则
( C )
A.此时A带正电,B带负电
B.此时A电势低,B电势高
C.移去C,贴在A、B下部的金属箔片都闭合
D.先把A和B分开,然后移去C,贴在A、B下部的金属箔片都闭合
解析:由静电感应可知,A带负电,B带正电,A、B的电势相等,选项A、B错误。
训练突破
1.(多选)空间存在如图所示的静电场,a、b、c、d为电场中的四个点,则
( AD )
A.a点的电场强度比b点的大
B.d点的电势比c点的低
C.质子在d点的电势能比在c点的小
D.将电子从a点移动到b点,静电力做正功
解析:a点的电场线比b点的电场线密,根据电场线的疏密程度表示电场强度
的大小,可知a点的电场强度比b点的电场强度大,故A正确。根据沿着电场
的位置如图所示,三点的电势分别为10 V、17 V、26 V。下列说法正确的
是(
)
ABD
A.电场强度的大小为2.5 V/cm
B.坐标原点处的电势为1 V
C.电子在a点的电势能比在b点的低7 eV
D.电子从b点运动到c点,静电力做功为9 eV
思维点拨根据a、b、c三点的电势关系可以找出等势面,进而求出等势面
知识点四
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q
连接后, 腔内电场消失, 腔外电场不变, 所以 静电场能量减少.
答案(B)
太原理工大学大学物理
例3 为电容器充电. 在电源保持连接的情况下, 把电介质插入, 则静电能 . (填增大、减小、不变)
解:电源保持连接时,两极板间的电 压一定,插入介质后,C增大 由 得静电能增加
思考: 若将“电源保持连接”改为“电源断开”, 结果如何?
We 1 2 e 0 r E V 2
对于电容器中充有各向同性的电介质
1 2 1 e 0 r E DE 2 2
说明: 1)公式对任意电场成立。 2)电场的能量密度与场强的平方成正比, 场强越大,能量密度越大。 太原理工大学大学物理
3.一般电场的能量 对于非均匀电场,电场能量密度应为空间 坐标的函数,任何带电系统的电场中所储存的 总能量为:
dr
q E2 2 4 πr
r
o
R
取半径为r-r+dr 的球壳, 体积 dV= 4πr2dr 体积元中电场能为 dW dV 1 E 2 dV e e 2 太原理工大学大学物理
整个电场中能量 1 We E 2 dV V 2
0dV
0 R R
R
0
0dV
2
R
1 2 E2 4 r 2 dr 2
1 q 2 4 r dr 2 2 4 r
q2 8 R
2 2 2
解二 看成电容器(孤立导体球)
1q q q We 2 C 2 4 R 8 R
太原理工大学大学物理
例2 如图,一带电量为q的球形导体置 于一任意形状的空腔导体中. 若用导 线将两者连接,则系统静电场能将 (A)增加. (B)减少. (C)不变. (D)无 法确定. 解:连接前, 腔内外均有电场.
R1
dr
R2
r
取半径为r,厚度为dr的壳层,该体积内的电场能量
Q dWe we dV dr 2 8 π r
2
太原理工大学大学物理
1 1 2 We DEdV 0 r E dV 2 2 V V
V 为电场占据的整个空间体积
太原理工大学大学物理
例1 已知导体球半径球R,带电量q,r>R区域电介质电 容率ε,求:电场能量。 解一 r<R, 由静电平衡可知: D1=0 , E1=0 . r>R , 在距球心O为r处一点的 场强大小为
S
F F外
S C1 d
S C2 2d
Q Q
太原理工大学大学物理
板极上带电± Q时所储的电能为
1Q 1Q d W1 2 C1 2 S
电场能量的增量为
2
2
1 Q 2d W2 2 S
2
1 Q 2d W=W2 -W1 2 S
(2)两极板间的相互吸引力F 解:拉开两极板时所加外力应等于F ,外力所作的 功A=Fd ,所以
A W Q F d d 2S
2
太原理工大学大学物理
例5 如图所示,球形电容器的内、外半径分别为 R1 和 R2 ,所带电荷为 Q .若在两球壳间充以电容率 为 的电介质,问此电容器贮存的电场能量为多少?
解:两球壳间的场强为
1 电场能量密度 w e E 2 2
1 Q E 4 π r2
以平行板电容器为例: Q 0 r S C U Ed d U 1 2 S 1 1 2 2 0 r 2 E Sd E d 0 r We CU 2 2 d 2 静电能就是电场能。 2.电场能量密度
单位体积内所储存电场能量称为电场的能 量密度。 太原理工大学大学物理
太原理工大学大学物理
例4 一平行板电容器的极板面积s,间距d,充 满电容率的介质,用电源充电后,两极板上带 电分别为+Q和-Q,如图所示。断开电源,把 左极板固定,向外拉动右极板,使极板间距增大 d d 到2( d。求: 1)外力克服两极板间的吸
引力所做的功。 解:两极板的间距为d和2d时,平 行板电容器的电容分别为
§10.4
一、电容器储存的能量
静电场的能量
当电容器带电后,同时也储存了能量。
0
q
+ + +
…
-q t=t
q + dq
Q
…
E
0 t=0
-(q 都要克服静电力作功。 太原理工大学大学物理
设在t时刻电容器带电q,此时若再移动dq,外力 q 作功为
dA udq
t t
C
dq
最后,使电容器带电Q ,则外力作功共为
q Q A 0dA 0 dq C 2C
2
外力作的功全部储存在电容器中。 电容器储能
1 1 Q 2 QU CU We 2 2C 2
2
太原理工大学大学物理
应用:(1)照相机闪光灯 (2)心脏起搏器
太原理工大学大学物理
二、静电场的能量和能量密度 1.均匀电场能量