无理数课件2.
合集下载
北师大版八年级数学上册《认识无理数》第2课时示范公开课教学课件

a ,b都不是整数,也不是分数,是无限不循环小数.
把下列各数表示成小数,你发现了什么?
有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.
定义
无限不循环小数称为无理数.
判断一个数是不是无理数,关键就是看它能不能写成无限不循环的小数.
你能找到其他的无理数吗?
分析
面积为2的正方形的边长a究竟是多少呢?
面积为2的正方形的边长a究竟是多少呢?
(1) 如下图,三个正方形的边长之间有怎样的大小关系?
1
a
面积为2
1
a
2
2
通过观察,可以直观得出:3个正方) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
还可以继续算下去吗?a可能是有限小数吗?
(2) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
边长a会不会算到某一位时,它的平方恰好等于2呢?为什么?a可能是有限小数吗?
假如a算到某一位时,它的平方恰好等于2,即a是一个有限小数,那么它的平方一定是一个有限小数,而不可能是2,所以边长a不会算到某一位时,它的平方恰好等于2,所以a不可能是有限小数.
重点
难点
数a确实存在,但又不是有理数,那它到底是什么数呢?
若a2=2,则a 分数, 整数, 有理数.( 填“是” 或“不是”)
不是
不是
不是
能不能确定一下a的大致范围?
∵ a2=2, 而12=1, 22=4,···∴ 12<a2<22 , 1< a< 2,而1.52=2.25, 2.25>2∴a的值一定小于1.5∴a的大致范围在1~1.5之间.
把下列各数表示成小数,你发现了什么?
有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.
定义
无限不循环小数称为无理数.
判断一个数是不是无理数,关键就是看它能不能写成无限不循环的小数.
你能找到其他的无理数吗?
分析
面积为2的正方形的边长a究竟是多少呢?
面积为2的正方形的边长a究竟是多少呢?
(1) 如下图,三个正方形的边长之间有怎样的大小关系?
1
a
面积为2
1
a
2
2
通过观察,可以直观得出:3个正方) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
还可以继续算下去吗?a可能是有限小数吗?
(2) a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.
边长a会不会算到某一位时,它的平方恰好等于2呢?为什么?a可能是有限小数吗?
假如a算到某一位时,它的平方恰好等于2,即a是一个有限小数,那么它的平方一定是一个有限小数,而不可能是2,所以边长a不会算到某一位时,它的平方恰好等于2,所以a不可能是有限小数.
重点
难点
数a确实存在,但又不是有理数,那它到底是什么数呢?
若a2=2,则a 分数, 整数, 有理数.( 填“是” 或“不是”)
不是
不是
不是
能不能确定一下a的大致范围?
∵ a2=2, 而12=1, 22=4,···∴ 12<a2<22 , 1< a< 2,而1.52=2.25, 2.25>2∴a的值一定小于1.5∴a的大致范围在1~1.5之间.
北师大版八年级数学上册第二章2.1认识无理数课件共23张PPT

讲授新课
一 无理数的认识
活动探究
活动:把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1
1
1
还有好多方法哦!课余时间再动手试一试, 比比谁找的多!
11 11
1
1
1
1
11 22 11 22
11 11
11 11
11 11
问题1:设大正方形的边长为a,则a满足什么条件? 因为S大正方形=2,所以a2=2.
追问1:a是一个什么样的数?a可能是整数吗?
从“数”的角度:
a
因为 a2=2, 而12=1, 22=4
所以 12<a2<22 ,
所以 1< a< 2,a不是整数
a
a
从“形”的角度:
A
取出一个三角形 C
B
在三角形ABC中,AC=1,BC=1,AB=a 根据三角形的三边关系:
AC-BC< a<AC+BC 所以0<a<2,且 a≠1,所以a不是整数
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.988 1<S<2.016 4
1.414<a<1.415
1.999 396<S<2.002 225
1.414 2<a<1.414 3 1.999 961 64<S<2.000 244 49
想一想 (1)边长a会不会算到某一位时,它的平方恰好等于2 呢?为什么? (2) a可能是有限小数吗?它会是一个怎样的数呢?
D.面积为1.44的正方形.
无理数的概念及认识
七上数学课件第2章:有理数与无理数-课件

10 10
9
15
1
3 1
456 1151
ሶ
ሶ
ሶ
ሶ
× 3. 5= ×(3+0. 5)= + × =
10
10 10
999
3330
想一想
4、小学里学过的有限小数和循环小数是有理数吗?
如:0.3,-3.11,0.333 …,0.2666.…
0.3=
-3.11=−
311
100
有限小数和循环小数都可以
负分数集合∶{
…};
-4.8、
整数集合∶{ 20、0、-13、-2020、…};
分数集合∶ {
…};
-4.8、
有理数集合∶ {
20、-4.8、0、-13、+ 、
86%、-2020. …};
解析:20是正整数,也是整数、有理数;-4.8是负分数,也是分数、有理数;0是
整数,也是有理数;-13,-2020
= . … … =1.2ሶ
=0.81818181…
−
27
11
9
, , 。
4
9
11
=0. 8ሶ 1ሶ
如果一个无限小数的各数位上的数字,从小数部
分的某一位起,按一定顺序不断重复出现,那么
这样的小数叫做无限循环小数,简称循环小数,
其中重复出现的一个或几个数字叫做它的一个循
环节,例如,0.666…的循环节是“6” ,它可以
典例展示厅
题型二、识别有理数、无理数
无理数
【典例2】⑴若一个边长为a的正方形的面积为8,则数a为___________(填“有理数”
或“无理数” );若一个边长为b的正方形的面积为 9,则数b为____________填“有理数”
2,2有理数与无理数

m
n 0
的形式.
无限不循环小数叫做无理数.
练一练
把下列各数分别填在相应的集合里:
12 , 6 , 3 . 14 , 0 . 222 , 521 120 , 0 , ,1 . 696696669
正数集合: 有理2011江苏无锡中考
请写出一个大于1且小于2的 无理数 .
2.2有理数与无理数
教学目标
1.理解有理数和无理数的意义 2.会判断一个数是有理数还是无理数
思考
1.什么叫做有理数?
我们把能够写出分数形式 的数叫做有理数.
m n
m , n 是整数,
n 0
思考
2.(1)你能把0.81、1.56化为分数形式吗?
(2)你能把0.666…、0.818181…化为分数形式吗?
聚焦导学案
既不是正数也不是整数的有理数是( ) A.0和负分数 B.负分数 C.负整数和负分数 D.正整数和正分数 不小于-2.5而小于2.8的非负整数有( )
A.2个
B.3个
C.4个
D.5个
聚焦导学案
写出所有适合下列条件的数: (1)不大于3的正整数: (2)大于-3且不大于4的整数:
; .
反思感悟
1.我最大的收获是? 2.我对自己的表现感想是?
3.我与昨天相比有哪些进步? 4.你对本节课的学习还有哪些 困惑和建议?
(3)你能把0.1333…、0.3456456456…化为分数形式吗?
注意:1.实际上,有理数包括整数和分数两大类, 即整数和分数都是有理数 2.有限小数和循环小数都可以化为分数,所以它们都是有理数
将下列八个数填人它所在的数集里:
-18,3.1416,0,2004,π, 22 -0.1235,-96%,
n 0
的形式.
无限不循环小数叫做无理数.
练一练
把下列各数分别填在相应的集合里:
12 , 6 , 3 . 14 , 0 . 222 , 521 120 , 0 , ,1 . 696696669
正数集合: 有理2011江苏无锡中考
请写出一个大于1且小于2的 无理数 .
2.2有理数与无理数
教学目标
1.理解有理数和无理数的意义 2.会判断一个数是有理数还是无理数
思考
1.什么叫做有理数?
我们把能够写出分数形式 的数叫做有理数.
m n
m , n 是整数,
n 0
思考
2.(1)你能把0.81、1.56化为分数形式吗?
(2)你能把0.666…、0.818181…化为分数形式吗?
聚焦导学案
既不是正数也不是整数的有理数是( ) A.0和负分数 B.负分数 C.负整数和负分数 D.正整数和正分数 不小于-2.5而小于2.8的非负整数有( )
A.2个
B.3个
C.4个
D.5个
聚焦导学案
写出所有适合下列条件的数: (1)不大于3的正整数: (2)大于-3且不大于4的整数:
; .
反思感悟
1.我最大的收获是? 2.我对自己的表现感想是?
3.我与昨天相比有哪些进步? 4.你对本节课的学习还有哪些 困惑和建议?
(3)你能把0.1333…、0.3456456456…化为分数形式吗?
注意:1.实际上,有理数包括整数和分数两大类, 即整数和分数都是有理数 2.有限小数和循环小数都可以化为分数,所以它们都是有理数
将下列八个数填人它所在的数集里:
-18,3.1416,0,2004,π, 22 -0.1235,-96%,
七年级数学上册 第2章 有理数 2.2 有理数与无理数教学课件 苏科苏科级上册数学课件

第十页,共十一页。
内容(nèiróng)总结
教学课件。数学 七年级上册 江苏科技版。2.2 有理数与无理数。我们把能够写成分数形式(xíngshì) 且(m,n是整数,n≠0)的数叫做有理数.。, , ,。反过来,这些有限小数、无限循环小数都可
No 以化成分数,因此它们都是。有理数 0。1.2010010001000(相邻两个1之间0的个数逐次增加1。常见的
无理数的三种类型:。例 下列各数中,哪些是有理数。小结
Image
12/9/2021
第十一页,
数学(shùxué) 七年级上册 江苏科技 版
12/9/2021
第一页,共十一页。
第2章 有理数 2.2 有理数与无理数
12/9/2021
第二页,共十一页。
有理数的概念
正整数 整数 0
负整数
正分数 分数
负分数
整数可以表示成分数(fēnshù)的形式吗?
5 =0.5555……, 9
2 =0.181818……, 11
12/9/2021
第四页,共十一页。
0.8
有限小数
0.555…… -0.1777…… 0.181818……
无限(wúxiàn)循环 小数
无限(wúxiàn)循 环小数
无限循环小数
反过来,这些有限小数、无限循环小数都可以化成分数,因此
它们都是
解:有理数:3.14 , , 0.5 73; 无理数: 0.101000100 0004 1…(相邻(xiānɡ lín)两个1之间 0的个数逐次加2个).
12/9/2021
第八页,共十一页。
小结
(xiǎojié)
谈谈你这一节课有哪些(nǎxiē)收获.
北师大版初中八年级数学上册第2章1认识无理数课件

是有理数吗?(2)哪个数是无限不循环小数?哪个是含有π的数?这些数都是
无理数吗?
11
解 有理数:0,-4,0.12,- ,3.141 592 7;无理数: ,1.112 111 211…(相邻两个 2 之
7
2
··
间 1 的个数逐次加 1).
【误区警示】
1.注意3.141 592 7与π的区别.3.141 592 7属于有限小数,不是π,前者是有理
(2)x不是有理数.因为没有一个整数的平方等于7,也没有一个分数的平方等
于7.由上面的计算知,x是无限不循环小数;
(3)x≈2.6;验证略;
(4)x≈2.65.
【方法归纳】
要估算无理数的近似值,第一步应确定被估算的无理数的整数取值范围;第
二步以较小整数逐步开始加0.1(或以较大整数逐步开始减0.1),并求其平方,
实数
1
认识无理数
核心·重难探究
知识点一
无理数的识别
【例1】 下列各数,哪些是有理数?哪些是无理数?
·· 11
π
0, ,-4,0.12,- ,1.112
2
7
111 211…(相邻两个 2 之间 1 的个数逐次加 1),
3.141 592 7.
思路分析 (1)哪个数是整数?哪个是分数?哪个是无限循环小数?这些数都
确定被估算数的十分位;…;如此继续下去,可以求出无理数的近似值.
数,后者是无理数.
2.
π
2
不是分数,分数的分子与分母都是正整数.
知识点二
无理数的近似值的估算
【例2】 设面积为x的整数部分是多少?
(2)x是有理数吗?请简要说明理由.
(3)估计x的值(结果精确到0.1),并用计算器验证你的估计.
认识无理数(2)ppt

小明根据他的探索过程整理出 如下的表格,你的结果呢?
边长a 1<a< 2 1.4< a< 1.5 1.41<a<1.42 1.414<a<1.415 1.4142<a<1.4143 面积s=a2 1<s<4 1.96<s<2.25 1.9881<s<2.0164 1.999369<s<2.002225 1.99996164<s<2.00024449
1、把下列各数表示成小数,你பைடு நூலகம் 现什么?
4 5 8 2 3, , , , . 5 9 45 11
有理数总可以用有限小数或无限循环小数表示。 反过来,任何有限小数或无限循环小数也都是有理数。
强
调
像0.585885888588885…,1.41421356…, 2.2360679…等这些数的小数位数都是无限的,但是又不
a可能是有限小数吗?
你有什么新的发现?
事实上, a=1.41421356……
(1)估计面积为5的正方形的边长 的值(结果精确到十分位) (2)计算结果精确到百分位呢?
事实上b=2.236067978……
事实b=2.236067978…,也是一个无限不循环小数.
自学指导2:
自学课本P23议一议,想一想,完成: 1.理解无理数的概念,有理数与无理数的 区别,会识别一个数是有理数还是无理数.
6.(1)设面积为20的正方形的 边长为x,x是有理数吗?说说你 的理由.
(2)估计x的值(结果精确到十分 位),并用计算器验证你的估计。
(3)如果结果精确到百分位呢?
回顾与小结: 1、_________________叫无理 数。_______________叫有理数。试 举例说明。 2、借助计算器进行探索,用两边 夹逼法可以求一个无理数的近似值。
初中数学--《无理数(2)》PPT

1.82=1.8×1.8=3.24
1.92=1.9×1.9=3.61
边长a
1<a<2
面积S
1<S<4
1.4<a<1.5 1.96<S<2.25
数据整理
边长a
1<a<2 1.4<a<1.5 1.41<a<1.42
1.414<a<1.415
面积S
1<S<4 1.96<S<2.25 1.9881<S<2.0164
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
还可以继续下去吗?
边长a会不会算到某一位时,它的平方恰好等于 2呢?
用自己的语言描述一下这个数的特点
a
它一个无限不循环小数
做一做
请同学们估算面积为5的正方形的边 长b的值(精确到百分位)
教育部审定2013
义务教育教科书
山东教育出版社
第四章 实数
第一节 无理数
第2课时
数学史上的第一次数学危机,导致了一起谋杀……
线索一: a2=2,b2=5中的a、b不是有理数.
学习目标
1.借助计算器探索**数是无限不循环 小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是**数.
线索二:面积为2的正方形的边长a究竟是多少呢如何分类?
要求: 首先,独立思考1分钟; 然后,小组内合作交流; 最后,展示交流成果.
有理数:有限小数或无限循环小数
数 无理数:无限不循环小数
整数 分数
1.92=1.9×1.9=3.61
边长a
1<a<2
面积S
1<S<4
1.4<a<1.5 1.96<S<2.25
数据整理
边长a
1<a<2 1.4<a<1.5 1.41<a<1.42
1.414<a<1.415
面积S
1<S<4 1.96<S<2.25 1.9881<S<2.0164
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
还可以继续下去吗?
边长a会不会算到某一位时,它的平方恰好等于 2呢?
用自己的语言描述一下这个数的特点
a
它一个无限不循环小数
做一做
请同学们估算面积为5的正方形的边 长b的值(精确到百分位)
教育部审定2013
义务教育教科书
山东教育出版社
第四章 实数
第一节 无理数
第2课时
数学史上的第一次数学危机,导致了一起谋杀……
线索一: a2=2,b2=5中的a、b不是有理数.
学习目标
1.借助计算器探索**数是无限不循环 小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是**数.
线索二:面积为2的正方形的边长a究竟是多少呢如何分类?
要求: 首先,独立思考1分钟; 然后,小组内合作交流; 最后,展示交流成果.
有理数:有限小数或无限循环小数
数 无理数:无限不循环小数
整数 分数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
• 这一悖论直接触犯了毕氏学派的根本 信条,导致了当时认识上的"危机", 从而产生了第一次数学危机。 到 了公元前370年,这个矛盾被毕氏学 派的欧多克斯通过给比例下新定义的 方法解决了。他的处理不可通约量的 方法,出现在欧几里得《原本》第5 卷中。
• 欧多克斯和狄德金于1872年给出的 无理数的解释与现代解释基本一致。 今天中学几何课本中对相似三角形的 处理,仍然反映出由不可通约量而带 来的某些困难和微妙之处。
• 由于并没有经历过西方的数学危机革 命的基础上 ,我国从11 世纪开始,逐渐摸索到 数值解高次方程的一般规律。
毕达哥拉斯兴师问罪,然而希伯斯事先 已经得知了消息,他抢先一步逃走了。毕 达哥拉斯学派是不公放过他的,他们在一 条海船上发现了他,把希伯斯装进了口袋 ,扔进了大海,希伯斯就这样被害死了! ”。希伯斯虽然被害死了,但是他发现的 “新数”却还存在着,后来,人们从他的 发现中知道了除去整数和分数之外,世界 上还存还着一种“新数”。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
• 第一次数学危机对古希腊的数学观点有 极大冲击。这表明,几何学的某些真理与 算术无关,几何量不能完全由整数及其比 来表示,反之却可以由几何量来表示出来 ,整数的权威地位开始动摇,而几何学的 身份升高了。危机也表明,直觉和经验不 一定靠得住,推理证明才是可靠的,从此 希腊人开始重视演译推理,并由此建立了 几何公理体系,这不能不说是数学思想上 的一次巨大革命。
• 其数不可得而定。……故惟以面命之,为 不失耳”,这说明刘徽认识到“加不加借 算命分”都得到的不是精确值,只有用被 开方数的方根表示才是精确的,接着他在 “开方术注”中提出一种更为精确的表示 方根近似值的方法,即求微数法:“不以 面命之,加定法如前,求其微数。
• 微数无名者以为分子,其一退以十为母, 其二退以百为母。退之弥下,其分弥细, 则朱幂虽有所弃之数,不足言之”,就是 用 10 进制小数来无限逼近无理数。中算 学家没有像希腊人那样在发现无理数时出 现逻辑上的困难,又能顺利地将有理数运 算规则推广到无理数,因此把数学向前推 进的同时,并没有深究无理数与有理数实 质上的不同。
无理数的出现
背景故事
在古希腊,有一个很了不起的数学家,叫做毕 达哥拉斯,他开了一间学校,教了很多学生, 他的学校的名字叫“毕达哥拉斯学园”。别的 人也给它起了个名字,叫“毕达哥拉斯学派” ,他们认为,数是世界的法则,是主宰生死的 力量,他们就像崇拜天神一样崇拜数。毕达哥 拉斯和他的学生们在学园里研究数学,做出了 好多的数学发现,比如“毕达哥拉斯定理”就 是这么发现的。这个定理,在我们中国叫“勾 股定理”。
无理数的由来
正方形的对角线和边长的比是这种新数、给这种新数 起个什么名字呢?当时人们觉得,整数和分数是人们 已经习惯的,容易理解,就把整数和分数合称“有理 数”,而把希伯斯发现的新数起名叫“无理数”。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
无理数在西方的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥 拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中 不变因素的研究,把几何、算术、天文、音乐称为"四 艺",在其中追求宇宙的和谐规律性。他们认为:宇宙 间一切事物都可归结为整数或整数之比,毕达哥拉斯 学派的一项重大贡献是证明了勾股定理,但由此也发 现了一些直角三角形的斜边不能表示成整数或整数之 比(不可通约)的情形,如直角边长均为1的直角三 角形就是如此。
无理数在中国的发现
• 中国古代在处理开方问题时,不可避免地 碰到了无理根数。中国早期的开方术见于 刘徽的《九章算术》少广、勾股两章,起 源于长度的测度。已知面积求正方形边长 ;已知体积求立方体棱长;已知圆面积求 圆的直径;已知球体积求球的直径或直角 三角形勾、股、弦互求。《九章算术》“ 少广”章的开(平)方术有“若开之不尽者 ,为不可开,当以面命之”,“令不加借 算而命分,则常微少;其加借算而命分, 则又微多。
• 毕达哥拉斯认为,世界上只存着整数和分数, 除此之外,就再也没有什么别的数了,可是, 他有一个学生,叫希伯斯,就发现了这样的一 种数,比如,一个边长是1的正方形,从一个角 到对着它的一个角之间的线段长度是多少呢? 毕达哥拉斯知道了学生的这个发现,大惊失 色,因为如果承认了这个发现,那他们学派的 基础就没有了,毕达哥拉斯这位伟大的数学家 ,在这上面的表现却很不光彩;他禁止希伯斯 把这个发现传出去,否则就要用学园的戒律来 处置他——活埋。