(学案)校级公开课--平面向量的数量积及应用(学案)
(教案)校级公开课--平面向量的数量积及应用(教案)

课题:平面向量的数量积及其应用授课班级:高三(1) 教学目标 1、知识与能力:复习平面向量的数量积及其性质,掌握两向量数量积定义式与坐标式运算,两向量夹角及两向量垂直的充要条件和向量数量积的简单应用. 2、过程与方法:通过对知识归纳整理与回顾,使学生形成知识网络。
通过设置问题,学生参予问题探究,教师引导、点评,师生互动方法实现课堂教学目标的完成。
3、情感态度与价值观通过问题探究,培养学生学习的主动性和合作交流的学习习惯。
树立积极的学习态度,提高学习的自我效能感。
教学重点: 平面向量的数量积及应用。
教学难点:如何灵活运用平面向量的数量积性质解决问题。
教学模式:问题教学法 教学过程:一、知识归纳(1)向量数量积定义式a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积)。
(2)向量数量积坐标运算式已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +。
(3)向量b 在a 方向上的投影:︱b ︱cos θ=||a ba ⋅ (4)数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积。
(5)两向量的夹角范围0︒≤θ≤180︒。
(6)向量数量积的性质①向量的模与平方的关系:22||a a a a ⋅==。
②乘法公式成立()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+;③平面向量数量积的运算律交换律成立:a b b a ⋅=⋅;对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈; 分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±。
④向量的夹角:cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++。
平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的概念及其几何意义。
2. 学会计算平面向量的数量积,并能熟练运用数量积解决实际问题。
3. 掌握平面向量的数量积的性质,并能运用其性质进行向量运算。
二、教学重点:1. 平面向量的数量积的概念及其几何意义。
2. 平面向量的数量积的计算方法。
3. 平面向量的数量积的性质。
三、教学难点:1. 平面向量的数量积的计算方法。
2. 平面向量的数量积的性质的证明。
四、教学准备:1. 教师准备PPT,内容包括平面向量的数量积的概念、计算方法、性质及其应用。
2. 教师准备一些实际问题,用于引导学生运用平面向量的数量积解决实际问题。
五、教学过程:1. 导入(5分钟)教师通过PPT展示一些实际问题,引导学生思考如何运用向量的知识解决这些问题。
2. 讲解平面向量的数量积的概念(10分钟)教师通过PPT讲解平面向量的数量积的概念,并展示其几何意义。
3. 讲解平面向量的数量积的计算方法(15分钟)教师通过PPT讲解平面向量的数量积的计算方法,并给出一些例题进行讲解。
4. 练习平面向量的数量积的计算(10分钟)学生独立完成一些练习题,教师进行解答和讲解。
5. 讲解平面向量的数量积的性质(10分钟)教师通过PPT讲解平面向量的数量积的性质,并给出一些证明。
6. 练习平面向量的数量积的性质(10分钟)学生独立完成一些练习题,教师进行解答和讲解。
7. 应用平面向量的数量积解决实际问题(10分钟)教师给出一些实际问题,引导学生运用平面向量的数量积解决这些问题。
8. 总结(5分钟)教师对本节课的内容进行总结,并强调平面向量的数量积的重要性和应用价值。
9. 布置作业(5分钟)教师布置一些练习题,巩固学生对平面向量的数量积的理解和应用。
10. 课堂反馈(5分钟)教师通过课堂反馈了解学生对平面向量的数量积的掌握情况,为下一步的教学做好准备。
六、教学拓展:1. 教师通过PPT讲解平面向量的数量积与其他向量知识的联系,如向量的模、向量的加减法等。
高中数学《平面向量的数量积》公开课优秀教学设计

《平面向量的数量积》公开课优秀教学设计教学目标1.理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 教学重难点教学重点:1.平面向量数量积的几何意义。
2.如何利用平面向量的数量积解决几何中的垂直、夹角、长度等问题。
教学难点:平面向量数量积的应用 教学策略复习引入--------讲解新课--------练习---------小结--------作业 教具 多媒体 教学过程一、复习平面向量的数量积相关概念 基础自测1.已知a =(λ,2),b =(-4,10),且a ⊥b ,则实数λ的值为( ) A .54 B . 54- C . 5 D .5-2.已知向量 a ,b 满足|a |=4,|b |=1,且 a ·b =-2,则 a 与 b 的夹角大小为( )3.若向量 a ,b ,c 满足 a ∥b ,且 a ⊥c ,则 c ·(a +2b )=( ) A .4 B .3 C .2 D . 0 二、讲解新课类型一 数量积的定义及几何意义例题1 (1)若a ,b ,c 均为非零向量,则下列说法正确的是____________.(填写序号即可)①a·b =±||a ·||b ⇔a ∥b ;②a ⊥b ⇔a·b =0;③a·c =b·c ⇔a =b ;④(a·b)·c =a·(b·c).(2)已知AB →=(2,1),点C (-1,0),D (4,5),则向量AB →在CD →方向上的投影为________. 变式1 如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( )A .1213PP PP ⋅ B .1214PP PP ⋅ C .1215PP PP ⋅ D .1216PP PP ⋅类型二 用数量积表示两个平面向量的垂直关系例题2 (1)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是 ( )A .x =-12B .x =-1C .x =5D .x =0(2)(2017·全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则 ( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a |>|b | 变式2 已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( )A .-17B .17C .-16D .16类型三 数量积的基本运算例题3已知平面向量a ,b 满足|a |=4,|b |=8, a 与b 的夹角是120°. (1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(k a -b ).变式3设向量a ,b 满足|a +b |=10, |a -b |=6,则a ·b = ( )A .1B .2C .3D .5三、小结1.理解平面向量数量积各公式的正向及逆向运用;2.数量积的运算转化为向量的坐标运算;3.掌握平行、垂直、夹角及距离公式,形成转化技能。
《平面向量数量积》教案

《平面向量数量积》教案教案:平面向量数量积一、教学目标:1.理解平面向量的数量积的概念和性质。
2.掌握平面向量的数量积的运算法则。
3.能够利用平面向量的数量积解决实际问题。
二、教学内容:1.平面向量的数量积的概念和性质。
2.平面向量的数量积的运算法则。
3.平面向量数量积的应用。
三、教学步骤:1.引入平面向量的数量积的概念。
首先通过提问和示例,引导学生思考两个平面向量的乘积是否有意义,以及该乘积有什么特殊的性质。
然后给出平面向量的数量积的定义:设有两个非零向量a和b,数量积定义为,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和b的模长,θ表示向量a和b之间的夹角。
2.平面向量的数量积的性质。
通过具体的例子,讲解平面向量数量积的性质:(1)数量积的结果是一个数。
(2)数量积满足交换律、分配律。
(3)数量积的结果为0时,表示两个向量垂直,即cosθ=0。
(4)数量积的结果为正数时,表示两个向量同向,即θ为锐角。
(5)数量积的结果为负数时,表示两个向量反向,即θ为钝角。
3.平面向量的数量积的运算法则。
通过示例演算,教导学生具体的运算法则:(1)计算向量的模长:,a,=√(a1²+a2²)。
(2)计算向量的数量积:a·b = ,a,·,b,·cosθ。
(3)计算两个向量的夹角:cosθ = (a·b) / (,a,·,b,)。
(4)根据数量积的定义,解方程组:a·b=0,求出向量a与向量b 互相垂直的条件。
4.平面向量数量积的应用。
通过实际问题解决的例子,帮助学生将平面向量数量积的概念和运算法则应用到实际问题的解决中。
例如:已知有三个向量a、b和c,其中a·b=30,a·c=40,求b与c的夹角。
五、教学反思:在教学过程中,可以通过举一些具体的实际问题,提高学生的兴趣和参与度。
初中数学教案平面向量的数量积与向量积的几何应用

初中数学教案平面向量的数量积与向量积的几何应用初中数学教案:平面向量的数量积与向量积的几何应用一、引言在初中数学中,平面向量的数量积与向量积是非常重要的概念。
它们不仅在数学中具有重要的应用,而且在日常生活和实际问题中也有广泛的运用。
本教案将从理论与实践的角度,详细探讨平面向量的数量积与向量积在几何中的应用。
二、平面向量的数量积1. 定义平面向量的数量积,也称为点乘或内积,表示为A·B,是两个向量的数量乘积与两个向量夹角的余弦值的乘积。
具体地,若向量A=(x1,y1)和B=(x2,y2),则其数量积为A·B=x1x2+y1y2。
2. 性质与公式平面向量的数量积具有以下性质和公式:- 对于任意向量A、B、C和实数k,有(A+B)·C=A·C+B·C (分配律)- 对于任意向量A和实数k,有(kA)·B=A·(kB)=k(A·B) (数乘结合律)- 若两个向量的数量积为0,则它们垂直(正交)3. 几何解释平面向量的数量积可以用几何方法解释。
若A和B为两个向量,它们的数量积A·B等于A在B方向上的投影长度与B的模长的乘积。
三、平面向量的向量积1. 定义平面向量的向量积,也称为叉乘或外积,表示为A×B,是两个向量的数量乘积与它们夹角的正弦值的乘积。
具体地,若向量A=(x1,y1)和B=(x2,y2),则其向量积为A×B=x1y2-x2y1。
2. 性质与公式平面向量的向量积具有以下性质和公式:- 对于任意向量A、B、C和实数k,有(A+B)×C=A×C+B×C (分配律)- 对于任意向量A和实数k,有(kA)×B=A×(kB)=k(A×B) (数乘结合律)- 向量A×B垂直于向量A和B所在的平面3. 几何解释平面向量的向量积可以用几何方法解释。
《平面向量数量积》教案

《平面向量数量积》教案一、教学目标1. 理解平面向量的概念,掌握向量的表示方法。
2. 掌握向量的数量积运算,了解数量积的性质和运算规律。
3. 能够运用数量积解决实际问题,提高数学应用能力。
二、教学内容1. 向量的概念及表示方法2. 向量的数量积定义及计算公式3. 数量积的性质和运算规律4. 数量积在坐标系中的运算5. 数量积的应用三、教学重点与难点1. 重点:向量的概念,数量积的计算公式,数量积的性质和运算规律。
2. 难点:数量积在坐标系中的运算,数量积的应用。
四、教学方法1. 采用讲授法,讲解向量及数量积的基本概念、性质和运算规律。
2. 利用案例分析法,分析数量积在实际问题中的应用。
3. 利用数形结合法,直观展示数量积在坐标系中的运算。
4. 引导学生通过小组讨论、探究,提高学生的参与度和自主学习能力。
五、教学安排1. 第一课时:向量的概念及表示方法2. 第二课时:向量的数量积定义及计算公式3. 第三课时:数量积的性质和运算规律4. 第四课时:数量积在坐标系中的运算5. 第五课时:数量积的应用六、教学过程1. 导入:通过复习实数乘法的分配律,引导学生思考向量数量积的定义。
2. 讲解向量的概念,向量的表示方法,向量的几何直观。
3. 引入向量数量积的概念,讲解数量积的计算公式。
4. 通过实例,演示数量积的运算过程,让学生感受数量积的意义。
5. 总结数量积的性质和运算规律,引导学生发现数量积与向量坐标的关系。
七、案例分析1. 利用数量积解释物理学中的力的合成与分解。
2. 利用数量积解决几何问题,如求解平行四边形的对角线长度。
3. 利用数量积判断两个向量是否垂直。
八、数量积在坐标系中的运算1. 讲解坐标系中向量的表示方法,向量的坐标运算。
2. 推导数量积在坐标系中的运算公式。
3. 通过实例,演示数量积在坐标系中的运算过程。
4. 引导学生掌握数量积在坐标系中的运算方法,提高运算能力。
九、数量积的应用1. 利用数量积解决线性方程组。
教案标题平面向量的数量积与应用

当给定向量的坐标表示时,可以通过坐标推导计算数量积。若向量a的坐标表示为(a₁,a₂),向量b的坐标表示为(b₁,b₂),则a·b = a₁b₁ + a₂b₂。
3.性质
-数量积满足交换律ቤተ መጻሕፍቲ ባይዱ即a·b = b·a。
-数量积与向量的模长有关,当其中一个向量为零向量时,其数量积为0。
-若两个向量的数量积为0,则它们垂直。
教案标题平面向量的数量积与应用
教案标题:平面向量的数量积与应用
一、引言
平面向量是解决几何问题的重要工具之一,其中数量积是一个常见而重要的概念。本教案将介绍平面向量的数量积以及其应用。
二、平面向量的数量积
1.定义与表示
平面向量的数量积,也称点乘或内积,用符号"·"表示,对于平面上的两个向量a和b,其数量积定义为a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示这两个向量的夹角。
a = (1, 2, -1),b = (2, -1, 3)
2.根据给定条件,判断两个向量的夹角:
a = (1, 2),b = (-3, 4)
a = (2, -1, 3),b = (3, -2, 1)
3.计算向量a在向量b上的投影:
a = (4, -1),b = (-2, 3)
4.利用数量积的性质,判断以下三角形的形状:
三角形ABC,AB = (3, 1),BC = (-2, 4),CA = (5, -5)
五、总结
本教案介绍了平面向量的数量积以及其应用。数量积可以用于判断两个向量的夹角,判断三角形形状,计算向量投影等。学生可以通过练习题来巩固所学的知识,并应用到实际问题中。通过本课的学习,学生将能够更好地理解平面向量的数量积及其应用。
平面向量的数量积学案

平面向量的数量积学案一、学案背景平面向量的数量积是数学中的一个重要概念,通过数量积可以研究向量之间的夹角关系、向量的投影以及向量的模长等问题。
掌握了平面向量的数量积的性质和应用,可以帮助我们更好地理解和解决实际问题。
二、学习目标1. 了解平面向量的数量积的定义。
2. 掌握平面向量的数量积的计算方法和性质。
3. 理解平面向量的数量积与向量的夹角、投影和模长之间的关系。
4. 能够应用平面向量的数量积解决实际问题。
三、学习内容1. 平面向量的数量积的定义:平面向量a = (x1, y1) 和 b = (x2, y2) 的数量积(又称点积、内积)定义为 a · b = x1 * x2 + y1 * y2。
2. 平面向量的数量积的性质:a. a · b = b · a(数量积的交换律)。
b. a · (b + c) = a · b + a · c(数量积的分配律)。
c. k(a · b) = (ka) · b = a · (kb) = k(a · b)(数量积的结合律,其中k为实数)。
3. 平面向量的数量积与向量的夹角的关系:a. 如果 a · b = 0,则向量a和b垂直(夹角为90°)。
b. 如果 a · b > 0,则向量a和b夹角锐角。
c. 如果 a · b < 0,则向量a和b夹角钝角。
4. 平面向量的数量积与向量的投影的关系:a. 向量a在向量b上的投影p的长度为 |p| = |a| * cosθ,其中θ为a和b的夹角。
b. a · b = |a| * |b| * cosθ。
5. 平面向量的数量积与向量的模长的关系:a. a · a = |a|^2,其中|a|表示向量a的模长。
b. |a| = √(a · a)。
四、学习方法1. 技巧讲解与练习:通过教师的讲解,学习平面向量的数量积的定义、计算方法和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:平面向量的数量积及其应用
一、知识归纳:见课本
二、问题探究:
问题1.()1已知ABC △中,||6,||9,45BC CA C ==∠=︒,则BC CA ⋅=
()2已知平面上三点,,A B C 满足3,4,5AB BC CA ===,
则AB BC BC CA CA AB ⋅+⋅+⋅的值等于
()3已知,a b 是两个非零向量,且a b a b ==-,求a 与a b +的夹角
问题2.在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;
(2)设实数t 满足(OC t AB -)·OC =0,求t 的值。
问题3 已知向量a =,23sin ,23cos
⎪⎭
⎫ ⎝⎛x x b =,2sin ,2cos ⎪⎭⎫ ⎝⎛-x x 且x ∈⎥⎦⎤⎢⎣⎡-4,3ππ. (1)求a ·b 及|a +b |;
(2)若f(x)=a ·b -|a +b |,求f(x)的最大值和最小值.
2
问题4 设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3 ,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,
求实数t 的范围.
课堂练习
1、一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成0
60角,且1F ,2F 的大小分别为2和4,则3F 的大小为 A. 6 B. 2 C. 25 D. 27
2. |a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为
( )A .30° B .60°
C .120°
D .150°
3.如图所示,在平行四边形ABCD 中,
AC =(1,2)
,BD =(-3,2),则AD ·AC = .
4、.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.。