热导分析仪测量原理
RQD%20热导式气体分析仪

RQD 热导式气体分析仪研发中心骆寅超目录1、RQD热导分析仪概述2、热导测量原理及适用范围3、热导传感器介绍4、主机电路板讲解5、常见问题分析概述热导式气体分析器是一种重要的物理式分析仪器之一,用来分析气体混合物中个组份的体积百分含量。
它结构简单,性能稳定可靠,价格便宜,易于工程上的在线检测,是最早应用于工业现场的分析仪器,现在它广泛用于电站、化肥、空分、冶金等工程领域。
是气体分析仪中最常用的一种分析仪器。
RQD的测量原理热导气体分析器主要依据热量在传递过程中具有的热传导能力来对气体组分进行测量。
但由于气体的热导率很小,其变化量更小,所以很难用直接的方法测量出来。
工业上多采用简洁的方法,把气体热导率的变化转化为热敏元件电阻值的变化,来进行测量。
RQD 的测量对象基于热导的测量原理,RQD 对测量对象有如下要求:1、被测气体的热导率应与背景气的热导率相差较大。
2、背景气体应为单一组分气体,或者为多组分混合气体但各个组分的热导率相差不大。
λ=λ1·c 1+λ2·c 2+λ3·c 3....常见气体的热导率(0℃时):H 2:41.6空气:5.83N 2:5.81O 2:5.89CO 2:3.50Ar :3.98He :34.8CH4:7.21目前我厂RQD 所能测量的组分为:N 2中H 2、空气中H 2、Ar 中H 2、O 2中Ar 、N 2中Ar 、空气中CO 2可以看出,都是两种热导率相差较大的组分间的测量。
例1:已知在合成氨生产中,进入合成塔的原料气的组成及大致浓度范围如下:H2---70~74%N2---23~24%O2---0.5%CH4---0.8%CO,CO2---微量欲分析其中的H2浓度,判断可否使用热导式分析仪?1、计算背景气体的等效热导率:λ=λ1·c1+λ2·c2+λ3·c3....λ=5.81*0.958+5.89*0.021+7.21*0.033+...2、判断背景各种组分的热导率是否近似相等或十分接近例2:分析空气中的CO2含量。
tcd的工作原理

tcd的工作原理
TCD(Thermal Conductivity Detector,热导率检测器)是一种常用的气相色谱检测器,它通过测量样品中的热传导性能来检测分析物。
TCD主要由焦亥桥电路、检测电阻、两个热电偶和加热元件组成。
TCD的工作原理基于气体的热导率与其组分的浓度成正比。
当气体进入TCD的检测室时,首先通过加热元件进行加热,并通过加热元件引起的温度差在气体中建立一个热传导梯度。
然后,气体中的分析物(主要是可燃和可氧化性气体)与检测电阻表面发生化学反应,改变检测电阻的电阻值,从而影响热传导梯度。
这些变化会导致热电偶间的电势差发生变化,进而被接收和放大。
TCD的检测电阻通常由两块金属片组成,金属片之间涂有一层含有催化剂的绝缘层。
当检测电阻表面发生化学反应时,会产生温度的变化,从而造成电阻值的改变。
这种变化会影响热传导梯度,因此可以通过测量热电偶电势差的变化来检测样品中的分析物。
TCD通常与气相色谱仪结合使用,通过分离混合物中的化合物,并将它们送入TCD进行检测。
TCD对可燃和可氧化性气体具有较好的选择性和灵敏度,因此广泛用于环境监测、工业过程控制和石油化工等领域。
热导式分析仪原理及典型故障处理分析

气体 分析仪 , 用 于 分 析气 体 混合 物 中的某 个 组 分
的含量 。由于其结 构简 单 、 工 作稳定 、 体积 小 等优 点, 在 生产 中得 以广泛应 用 , 主要用 于分析 混合 气 体 中的 H: 、 C O : 、 S O : 、 A r 、 N H , 等气 体 的含量 , 应用
气 导热性 能产 生 不 同程 度 的影 响 , 造 成 分 析结 果
导热 系数相 差甚 大 的二 元混合 物 中某一组 分 。如 果 测量 多种气 体 混 合 物 中某 一 组 分 时 , 则 希 望 其
的误差 增大 。热 导式分 析仪 的测量误 差 由基本 误
差 和附加误 差两 部分组 成 。基 本误 差是 由其测 量 原理、 结 构特点 、 各环 节的信 号转换 精度及 显 示仪 表精 度等 条件 决定 的 , 即分 析 仪在 规 定条 件 下 工 作 时产生 的误差 ; 附加误 差是 由于 对仪器 的调 整 、 使用 不 当或外界 条件变 化带来 的误 差 。能够 引起
仪器 , 即使 在设 计 制造 中采 取 了种 种 措施 又规 定
了使 用条 件 , 在 一 定 程度 上 抑 制 或削 弱 了某 些 干
扰 因素 的影 响 , 但 其基 本误差 都在 ± 2 %左 右 。究
般情 况下 , 热 导式 气 体 分 析仪 最 适 宜 分 析
其原 因 , 主要是 由于 背景 气 复 杂 多元 的组 分 对 样
而 R 2 、 1 t 4作 为测量 臂流 过样 品气 , 通 常 情况 下 为
保证 测量 灵敏 及 精 度 , 热导 池 较 多 采用 对 流 扩 散
收 稿 日期 : 2 0 1 2 . 1 0 4 ) 4
热导率测量技术原理与实验操作

热导率测量技术原理与实验操作引言热导率是表征材料导热性能的重要参数之一。
准确测量材料的热导率可以为材料科学研究和工程应用提供有价值的数据。
本文将介绍热导率测量的原理和常见的实验操作技术。
一、热导率测量原理热导率是材料本身导热的能力,即单位时间内单位面积的热量通过材料的能力。
常见的热导率测量原理包括热传导、热辐射和热对流。
1. 热传导法:热传导法是最常见的测量热导率的方法。
该方法通过测量材料上下表面的温度差和热量流量,计算出热传导系数。
实验时需要将待测样品置于两个温度不同的热源之间,测量两个温度传感器之间的温度差和热量流量,进而计算出热导率。
传感器的选取和位置布置对结果的准确性起着重要的影响。
2. 热辐射法:热辐射法主要适用于高温情况下的热导率测量。
该方法基于物体发射的热辐射与其温度和表面发射率之间的关系。
实验时,需要将待测样品置于一个热源旁边,通过测量样品表面的热辐射量和温度,计算出热导率。
热辐射法需要注意选择合适的红外辐射仪和对样品进行表面处理。
3. 热对流法:热对流法适用于液体和气体等流体材料的热导率测量。
该方法基于流体的对流传热机制,通过测量流体的温度差和热流量,计算出热导率。
实验时需要控制流体的流动速度和温度差,同时避免湍流的产生,以确保测量结果的准确性。
二、热导率测量实验操作1. 实验前准备:在进行热导率测量实验前,需要准备好实验所需的仪器设备,如温度传感器、热流计等。
同时,选择合适的待测样品,并对其进行表面处理,以提高测量的准确性。
另外,需要控制实验室的环境条件,确保实验过程的稳定性。
2. 实验设置:选择适当的热源和监测设备,将待测样品置于热源的两侧。
根据不同的测量原理,放置温度传感器或热辐射仪,并正确连接实验仪器。
保证传感器与待测样品的接触紧密,避免温度波动干扰实验结果。
3. 实验操作:根据实验设备的要求,按照预定的实验步骤进行操作。
注意记录各项实验参数的变化,如温度、热量、时间等。
热导式氢气分析仪的原理如何?

热导式氢气分析仪的原理如何?
热导式氢气分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。
可用在气体浓度的在线测量上,被广泛地用于石油化工生产中;
但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大;
如何合理设计采样预处理系统是用好热导式分析仪器的关键。
测量元法的选择
热导式分析仪器的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。
当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化;
运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。
氢气浓度的测量一般采用热导式气体分析仪器、气相色谱分析仪器等;
由于氢气的热导系数较高,一般测量氢气浓度的分析仪器都采用热导原理。
混合氢中各组成分浓度及热导系数λ0×10-5cal/(cm.s.℃)。
采样预处理系统一般要考虑如下环节:
a.对样气降压、稳压措施。
b.对样气的除尘、分液、除湿。
c.系统的流量调节。
d.减少测量纯滞后的样气旁路措施。
e.校验回路的设置。
热导仪的使用方法

热导仪的使用方法热导仪是一种常见的仪器设备,用于测量材料的热导率。
它利用导热的原理,通过对材料中热量传递的观测,推断出材料的热导率。
在工程领域和材料研究中,热导仪的使用非常重要。
下面将简单介绍热导仪的基本原理以及使用方法。
一、热导仪的基本原理热导仪的基本原理是根据导热传递的规律进行测量。
当热量从一个物体传递到另一个物体时,会发生热量的传导。
而传导过程中,会存在温度梯度。
热导仪就是利用这个温度梯度来推断材料的热导率。
热导仪通常由一对平行的导热材料组成。
其中的一个导热材料称为加热器,另一个称为测温器。
加热器通常由一个细长的材料制成,其接近一个定温器,并通过外部电流进行加热。
测温器则是用来测量加热器附近的温度情况。
通过测量加热器和测温器之间的温度差异,可以推断出材料的热导率。
二、使用热导仪进行热导率测量需要一定的步骤和注意事项。
1. 准备工作:首先,需要准备好热导仪和待测材料。
热导仪通常配有相关的软件,可以用于数据记录和分析。
在开始实验前,确保热导仪和待测材料的表面都要干净,无杂物和污垢。
2. 校准仪器:在使用热导仪之前,需要对仪器进行校准。
在校准过程中,可以使用已知热导率的标准样品,根据其测量值和实际值的差异来调整仪器的误差。
3. 安装样品:将待测样品安装到热导仪中,确保与加热器和测温器良好接触。
在安装时,注意避免空气流动对实验产生影响,可以使用密封装置来保持样品与环境的隔离。
4. 测量操作:启动热导仪,并根据仪器的指示进行操作。
通常的操作是在一定时间内记录样品温度的变化情况。
可以通过软件来实时记录和显示数据,以便后续分析。
5. 数据分析:实验结束后,可以通过热导仪的软件来分析测量得到的数据。
常见的分析方法包括绘制温度-时间曲线、计算温度梯度和热流密度等。
根据这些数据,可以得到材料的热导率。
三、注意事项在使用热导仪时,需要注意以下几点,以确保测量结果的准确性和可靠性。
1. 样品的制备:待测样品需要充分封装,避免空气流动和热辐射对实验产生干扰。
热导式分析仪原理及应用

热导式分析仪原理及应用
热导式分析仪是一种用于测量热导率和热阻的仪器,它利用热导原理进行分析。
热导率是一个物质导热能力的度量,通常用w/m.k(瓦特/米.开)表示,热阻则是材料的障碍热量传输的性质,通常以k/w(开/瓦特)表示。
这些性质对于材料的选择、设计和应用非常重要,在许多领域中都具有广泛的应用,例如热传导剂,隔热材料和热交换器组件等。
热导式分析仪的原理基于著名的傅里叶定律,即热量传输的速率与温度变化的梯度成正比。
这种变化可以通过在试样上放置两个温度传感器(热接触表和热流计)来测量。
热接触表的作用是测量试样的表面温度,热流计则测量试样的体积内部温度变化和热量传输率。
由于热量流动是通过材料的厚度进行的,因此可以根据这两个测量值推导出材料的热导率和热阻。
热导式分析仪广泛应用于材料工程,例如路面材料的设计,隔热材料的评估,热电材料的开发和热传导工程的优化,以及环保和节能方面的研究,如节能建筑材料的评估。
此外,热导式分析仪还可以用于学术研究,例如研究材料结构和组成对其热传导特性的影响以及基于能量传输机制的自组装薄膜的设计。
在实际应用中,热导式分析仪需要注意一些细节,例如保持试样的均匀性以及避免因温度波动而引起误差。
另外,还需考虑材料的湿度和压力等因素,以保证测量结果的准确性和可重复性。
总之,热导式分析仪作为一个非常重要的测量工具,在材料的选择和设计及热传导相关应用领域中发挥着重要的作用。
明确了热传导特性可以帮助我们更好地理解材料的性能,从而实现更高效、更持久的性能设计。
热导检测器的原理和应用

热导检测器的原理和应用1. 简介热导检测器(Thermal Conductivity Detector,简称TCD)是一种常用的气体检测仪器,广泛应用于化学、环境、制药等领域。
本文将介绍热导检测器的工作原理和应用。
2. 工作原理热导检测器基于气体的导热性质进行测量。
其工作原理如下:1.传感器模块:热导检测器通常由传感器模块和控制电路组成。
传感器模块包括热导元件和传热元件。
热导元件通常由一对恒温线圈组成,将恒定的热量输入到传热元件中。
2.空气流通:待测气体通常通过一个进样口进入热导检测器,并被空气流通系统带走。
空气流通的速度和压力经过调节,以确保精确的测量。
3.热导差异:当待测气体流经传热元件时,其导热性质会与纯净载气(通常为氮气)导热性质有所差异。
差异的大小与待测气体的浓度成正比。
4.检测信号:热导元件测量待测气体与纯净载气之间的热导差异,并将其转化为电信号。
这个信号经过放大和处理,最终通过控制电路输出。
3. 应用领域热导检测器在以下领域中得到了广泛的应用:3.1 环境监测热导检测器可以用于监测空气中的有害气体浓度,如二氧化碳、一氧化碳、甲醛等。
通过检测这些气体的浓度变化,可以评估环境的空气质量,并采取相应的措施进行改善。
3.2 工业过程控制在工业生产过程中,热导检测器可以用于监测和控制气体的浓度。
例如,在化学反应中,通过监测反应器中气体的浓度变化,可以调节进料量和温度,以确保反应的效果和安全性。
3.3 制药工业热导检测器可以用于制药工业中药品的质量控制。
通过检测药物中微量气体的浓度变化,可以判断药品的纯度和稳定性,以保证药品的质量。
3.4 气体分析热导检测器也可以用于气体分析。
通过检测不同气体的热导差异,可以对气体进行鉴别和分析。
这在研究领域和实验室中特别有用。
4. 优势和局限性热导检测器具有以下优势:•灵敏度高:热导检测器对待测气体浓度的变化非常敏感,可以检测到极低浓度的气体。
•快速响应:热导检测器的响应速度非常快,可以实时监测气体的浓度变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/3/12
热导池构造
2019/3/12
为了进一步克服电源电压波动和环境温度变化等因素对测量带来的误差,还可以采用 双电桥检测电路,如图所示。
双电桥检测电路中除了测量电桥Ⅰ外还增加了一个参考电桥Ⅱ,测量电桥Ⅰ上面已经阐 述过,是个不平衡电桥。参考电桥Ⅱ中的电阻丝R5和R7的热导池内密封上限气体,且 R5=R7,因气体浓度大,导热换热能力强,平衡温度最低,电阻值最小。电阻丝R6和R8的 热导池内密封下限气体,且R6=R8,因气体浓度最小,导热换热能力最弱,平衡温度最高, 电阻值最大。两电桥的工作电压由电源变压器的副边绕组输出电压提供,彼此相等U1=U2。 参考电桥的输出电压Ugh是一个固定的常数,加在滑线电阻RAB的两端。在测量电桥中, 当被测组分的浓度发生变化时,电阻R1 和R3 的阻值发生变化,电桥的输出电压Ucd发生 变化。Ugh和Ucd的极性相反,二者的差值送入放大器中放大,驱动可逆电极,从而使
2019/3/12
测量方法
样气入
样气出 电池 电阻丝 绝缘子
热导池结构
热导池原理图
2019/3/12
热导池是用导热性好的金属制成的圆柱形腔体,腔体中垂直悬挂 一根热敏电阻元件,一般为铂丝。电阻元件与腔体保持良好的绝 缘。电阻元件通过两端的引线通以恒定电流I,使之维持一定的温 度tn。tn高于室壁温度tc,被测气体由热导池下面入口进入,从上 面出口流出,热导池的热敏电阻既是加热元件也是测量元件,电 阻丝上产生的热量通过混合气体向室壁传递。假设是利用热导池 测量混合气体中H2的浓度,当浓度增加时,混合气体的平均热导 率增加,电阻丝产生的热量通过气体传导给室壁的热量也会增加, 电阻丝的温度tn就会下降,从而使电阻丝的阻值下降。即可通过 测量电阻丝的阻值的大小就可以间接得知混合气体中H2的浓度。
C1=(λ-λ1)/(λ1-λ2)
2019/3/12
可以看出,当待测组分的导热系数与混合气体中其他组分的导热系 数相差较大,其他各组分的导热系数相等或十分接近时,可以通过 待测组分的导热系数与混合气体中其他组分的导热系数测量出被测 组分的浓度的大小。如果不满足上述两个条件,可以采取预处理的 方法除去不满足条件的气体,使剩下的背景气体满足要求。如分析 烟道中的CO2的含量,已知烟道气体的组分为CO2、N2、CO、SO2、 H2、O2以及水蒸汽等,由表中可知,SO2和H2的热导率相差太大, 应在预处理时除去,其他气体的热导率相近,并与被测气体CO2的 热导率差别较大。
热导式分析仪检测原理学习
概念阐述 测量原理 适用范围及工业应用 维护注意要点 2019/3/12
什么是热导分析仪 热导式气体分析仪是一种物理式分析器。它结 构简单,性能稳定,价格便宜,易于工程上 的在线检测,是气体分析仪中最常用的一种。 热导分析仪检测原理 热导式气体分析仪用来分析混合气体中某一组 分(待测组分)的含量。它是根据混合气体 中待测组分含量的变化,引起混合气体总的 导热系数变化这一物理特性来进行测量的。 由于气体的导热系数很小,直接测量困难, 因此工业上常常把导热系数的变化转化成热 敏原件阻值得变化,从而可由测得的电阻值 的变化,得知待测组分含量的多少。
2019/3/12
RAB上的滑点C 左右滑动,直到平衡为止,RAB上面的标尺可以 直接指示被测组分的浓度值。 当被测组分的浓度为下限值时,测量电桥的输出电压Ucd=0,参 考电桥的输出电压全部Ugh加在滑线电阻RAB上,滑线电阻的滑 点C停在标尺的左端点A 处,指针正对标尺的下限值。当被测组分 的浓度为上限值时,测量电桥的输出电压Ucd与参考电桥的输出 电压全部Ugh相等,即Ucd=Ugh,滑线电阻的滑点C停在标尺的 右端点B处,指针正对标尺的上限值。当被测组分的浓度为测量范 围的某一值时,滑线电阻的滑点C会停在标尺的中间的某一位置 上。双电桥检测电路还可以利用微处理器采集放大器的输出信号, 并进行相应的数据处理,最后显示测量结果。
2019/3/12
待测混合气体必须满足哪些条件,才能用热导式气体分析仪进行分 析? 设各组分的体积分数分别是C1、C2、C3、...、Cn,热导率分别为 λ1、λ2、λ3、...、λn,待测组分的含量和热导率为C1,λ1.则必须 满足以下条件,才能用热导式分析仪进行测量。 (1)背景气体各组分的热导率必须近视相等或十分接近。即 λ1≈λ2≈λ3≈...≈λn (2)待测组分的热导率与背景气体各组分的热导率相差很大 满足上面两个条件时:根据: 可推导出被测组分浓度 跟混合气体各组分热导率的关系。 即: =λ1C1+λ2C2+...+λnCn≈λ1C1+λ2(1-C1)
2019/3/12
热导式气体分析仪通常采用四个热导池,他们的四根电阻丝组成一 个典型的惠斯登电桥,如下图所示: 测量气室桥臂电阻为R1=R3,室内通以测量气体,参考气室桥臂 电阻为R2=R4,室内通以被测气体的下限含量气体,当下限值为 零时,参考气室中一般为空气。四个气室是连体结构,所处的环境 条件如温度、压力、流量等完全一样。当流过测量气室的被测组分 的浓度和参考气室中标准气样的浓度相等时,电桥输出为零。当流 过测量气室的被测组分的浓度发生变化,电阻R1、R3发生变化电 桥失去平衡,输出电压的大小就代表了被测组分的浓度。
2019/3/12
1 cal=4.18J
2019/3/12
混合气体的导热系数 实验结果表明,互不发生化学反应的气体混合物的导热系数可由下 式计算:
式中λ--混合气体的导热系数 λi--对应于百分含量为Ci的组分的热导率 Ci--混合气体中第i组分的百分含量。
与其他各组分的导热系 数有显著差别,并且其他组份的平均导热系数在测量中保持 恒定时,则上是可简化为: 式中λ--混合气体的导热系数; λ1,C1--待测组分的导热系数及百分含量; λ2---其他组份的平均导热系数。 因此,热导气体分析仪就是利用各种气体导热系数的差异和 导热系数与含量的关系来进行测量分析的。 由此可以推出被测组分的浓度与混合气体的热导率之间的关 系为:
2019/3/12
气体热导热系数(又称导热率)
在热力学中用导热率(亦导热系数)来描述物质的热传导,传热 快的物质导热率大。气体的导热率随温度的变化而变化,即:
下图是各气体在0℃与100℃时的导热系数λ 相对导热系数 λ /λ 0(相对于空气为0℃时的导热系数之比)和导热率温度系 数β 值。因此利用上式可以求得各种温度下的气体导热系数。 (相关参数由下图表查阅可得)