双馈式感应发电机(DFIG)说明

合集下载

双馈式感应发电机(DFIG)说明

双馈式感应发电机(DFIG)说明

双馈式感应发电机(DFIG)简介大明双馈电机(或称为交流励磁电机),它早在四十年代就已经出现。

随着电力电子技术和数字控制技术的发展,双馈电机在电气性能方面所具有的一系列优点和巨大的潜力,已经引起国外的高度重视。

双馈式感应发电机(Doubly-Fed Induction Generator, DFIG) 使用绕线式转子,由于电力可经由转子侧之电力转换器双向流动,因此发电机馈入电力系统的界面同时包括定子侧(Line side)及转子侧(Rotor side),其电力转换器功率仅为发电机额定功率之20~30%,故成本较低,而且发电机可变速围可达同步转速之±30%,因此性能/价格比值最高,为目前大型风力发电机中最普遍采用之组态。

全球前10大风力发电机制造商的产品中有六成以上的变速风力发电机采用双馈式感应发电机,本文将介绍双馈式感应发电机的基本原理与特性。

一、双馈式感应发电机(DFIG)基本原理双馈式感应发电机(DFIG)是在同步发电机和异步发电机的基础上发展起来的一种新型发电机,其转子具有三相励磁绕组结构。

当通以某一频率(转差频率)的交流电时,就会产生一个相对转子旋转的磁场,转子的实际转速加上交流励磁产生的旋转磁场所对应的转速等于同步转速,则在电机气隙中形成一个同步旋转磁场,在定子侧感应出同步频率的感应电势。

从定子侧看,这与同步发电机直流励磁的转子以同步转速旋转时,在电机气隙中形成一个同步旋转的磁场是等效的。

双馈式感应发电机与一般感应发电机不同之处在于联接其转子侧之PWM脉宽调变电力转换器具有四象限之运转能力,电力转换器提供低频(转差频率)的交流电流(或电压)进行励磁,调节励磁电流(或电压)的幅值、频率、相位,来实现定子恒频恒压输出,其定子输出特性与同步发电机十分类似,所以有一些文献指出,双馈式感应发电机可以视为同步发电机与感应发电机之综合体。

从能量流动的特性来看,与采用直流励磁的同步发电机相比,同步发电机励磁的可调量只有直流励磁电流的幅值一个,所以同步发电机励磁一般只能对无效功率进行调节,而双馈式感应发电机,其励磁的可调量除了励磁电流的幅值外,还有励磁电流的频率和相位。

双馈变流器工作原理

双馈变流器工作原理

双馈变流器工作原理双馈变流器(Double-Fed Induction Generator,DFIG)是一种常用于风力发电系统中的变流器,它的工作原理是利用电力电子技术将风能转化为电能,并将其送入电网中供应给用户使用。

双馈变流器相比其他变流器具有更高的效率和更好的控制性能,因此在风力发电领域得到了广泛应用。

双馈变流器由两部分组成:一部分是风力发电机组,另一部分是变流器。

风力发电机组通常由风轮、发电机和装有电磁铁的转子组成。

当风轮受到风力作用时,会转动,带动发电机产生电能。

而转子上的电磁铁则可以通过改变其磁场强度来调节发电机的输出电压和频率。

在传统的风力发电系统中,发电机的输出直接通过变频器转换为交流电并输入电网。

然而,这种方式存在一些问题,比如变频器的容量较大,成本较高,同时对系统的稳定性和可靠性要求较高。

为了解决这些问题,双馈变流器应运而生。

双馈变流器的工作原理是将发电机的转子绕组分成两部分:一部分连接到固定的电网,另一部分通过变流器连接到电网。

这样,发电机的输出电流可以分成两部分:一部分通过固定的电网回馈给发电机,另一部分通过变流器送入电网。

这种方式可以减小变流器的容量,降低成本,同时提高系统的稳定性和可靠性。

具体来说,双馈变流器通过改变发电机转子上电磁铁的磁场强度来调节发电机的输出电压和频率。

当风轮转动时,发电机产生的电能通过变流器送入电网。

同时,电网也会向发电机输送电能。

双馈变流器通过控制变流器的电压和频率,可以实现对发电机的有源功率和无功功率的控制。

双馈变流器的优势主要体现在以下几个方面:1. 较低的成本:相比传统的风力发电系统,双馈变流器的容量较小,可以降低系统的成本。

2. 更好的控制性能:双馈变流器可以实现对发电机有源功率和无功功率的精确控制,可以根据电网需求灵活调节输出功率。

3. 提高系统的稳定性和可靠性:双馈变流器通过将一部分发电机的输出电流回馈给发电机,可以增强系统的稳定性和可靠性。

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析1 双馈式风力发电机的结构双馈发电机(Doubly—Fed Induction Generator,简称DFIG)最初的设想来自于一位英国学者,是在自级联异步电机的基础上发展出来的。

其在结构上与绕线异步电机较为类似,由于其转子和定子两部分都能馈入或馈出能量,因此得名“双馈”,同时,由于双馈式发电机是通过转子来产生交流磁场,所以,双馈式发电机也被形象的称为交流励磁发电机。

双馈式发电机的结构一般是由转子、定子和气隙三个组成的。

在双馈式电机定子的铁心上,均匀的分布着同形状的凹槽,它的主要作用就是用来嵌入定子绕组,使得通过定子的三相电流能够产生旋转磁场,同样,在转子中也有嵌入用绝缘导线组成的三相绕组,如图1,从示意图中可以清楚的看到,转子上引出的三相线先连接到位于转轴上的集电环上,然后再由电刷引出。

一般情况下,定子是直接接到工频电网上,而转子则通过变换器连接到电网上,以用于转子进行交流励磁用。

2 双馈式风力发电机的原理双馈式电机交流励磁变速恒频发电系统图2所示即为双馈式发电机交流励磁变速恒频发电系统的基本组成示意图。

图的最左端为风机的桨叶,当桨叶通过风力的推动转动时,连杆经过齿轮箱的变速后带动发电机转动。

当风速发生变化时,势必带动发电机的转速发生变化,此时,可以通过变频器有针对的控制输入到转子侧的励磁电流的频率,来改变转子磁场的旋转速度,这样,就能使定子侧感应出同步转速,将变速恒频发电变为现实。

n+(-)60f1/p=60f2/p要保持电网的频率不发生变化,我们可以通过控制转子的电流频率,即f1来确保f2恒定不变,达到变速恒频的目的。

当发电机的转速小于同步转速,即ωr<ω1时,整个发电机处于亚同步状态,在此状态下,通过励磁变频器,电网向发电机的转子提供交流励磁,补偿其转差功率,由定子向电网馈出电能;当发电机的转速大于同步转速,即ωr>ω1时,该发电机处于超同步状态之下,在此状态下,同样通过励磁变换器,转子回路向电网馈出电能,励磁变换器的能量方向与亚同步状态下相反,同时,定子回路也向电网馈出电能;当发电机的转速与同步转速相等,即ωr=ω1时,此时可以看作普通的同步电机,式2—1中fr=0,变流器向转子提供直流励磁。

双馈异步风力发电机 原理

双馈异步风力发电机 原理

双馈异步风力发电机(DFIG)是一种常用于大型风力发电系统中的发电机。

它采用了双馈结构,即转子上的差动输出。

下面是双馈异步风力发电机的工作原理:
1. 变速风轮:风力通过变速风轮传递给风力发电机。

2. 风力发电机转子:发电机的转子由固定的定子和可旋转的转子组成。

转子上有三个绕组:主绕组、辅助绕组和外部绕组。

3. 风力传动:风力使得转子转动,转子上的主绕组感应出交变电磁力,产生主磁场。

4. 变频器控制:通过变频器,将固定频率的电网电压和频率转换为可调节的电压和频率。

5. 辅助转子绕组:辅助绕组连接到变频器,通过变频器提供的电压和频率来控制转子的电流。

6. 双馈结构:辅助转子绕组的电流经过转子上的差动输出到外部绕组,形成双馈结构。

外部绕组与电网相连。

7. 发电转换:转子上的双馈结构使得发电机能够将风能转化为电能,
并输出到电网中。

通过双馈异步风力发电机的工作原理,可以实现对风能的高效转换和可调节的发电功率输出。

同时,利用双馈结构,可以提高发电机对风速变化的适应性和控制性能,从而提高整个风力发电系统的效率和稳定性。

双馈风力发电机工作原理

双馈风力发电机工作原理
电动机惯例,电磁转矩与转向相反为正,转差率 s 按转子转速小于同步转速为正 , 参照异步电机的分析方法,可得双馈发电机的等效电路,如图(3-1) 所示 根据等效电路图,可得双馈发电机的基本方程式:
-2-
U E I ⎧

.
.
.
=−
1

1
(1 R1 + jX1 )
⎪.
U ′ ⎪ E I ′ ′ ⎪

2 =− s
则 P2 < 0 ,转子向电网馈送电磁功率。
下面考虑发电机超同步和亚同步两种运行状态下的功率流向 (1)超同步运行状态,顾名思义,超同步就是转子转速超过电机的同步转速时 的一种运行状态,我们称之为正常发电状态。(因为对于普通的异步电机,当转 子转速超过同步转速时,就会处于发电机状态。)
电网
P1
Pmech
B
u B
iB
b
ua
a
ia
θm
ib
A
ub
iA
ic uc
uA
c
iC uC
C
图(3-9)双馈电机的物理结构图
电压方程 选取下标 s 表示定子侧参数,下标 r 表示转子侧参数。定子各相绕组的电
阻均取值为 rs ,转子各相绕组的电阻均取值为 rr 。 于是,交流励磁发电机定子绕组电压方程为:
u A = −rsiA + Dψ A ; uB = −rsiB + Dψ B ; uC = −rsiC + Dψ C 转子绕组电压方程为:
双馈风力发电机工作原理讲义
本 章 的 主 要 内 容 是 讲 述 双 馈 感 应 发 电 机 ( Doubly-Fed Induction Generator,简称 DFIG)的工作原理及其励磁控制,我们通常所讲的双馈异步发 电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双 馈电机。双馈电机虽然属于异步机的范畴,但是由于其有独立的励磁绕组,可以 像同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机(Alternating Current Excitation Generator ACEG)也有称为异步化同步电机(Asynchronized Synchronous Generator)同步电机由于是直流励磁,其可调量只有一个电流的 幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量 有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位 。 这说明交流励磁电机比同步电机多了两个可调量,通过改变励磁频率,可改 变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励 磁频率来改变电机转速,充分利用转子的动能,释放或者吸收负荷,对电网 扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场 在气 隙 空 间 的 位 置 上 有 一 个 位 移 ,这就 改 变 了 发 电 机 电 势 与 电 网 电 压 相 量 的 相对位置,也就改变了电机的功率角。这说明电机的功率角也可以进行调节 。 所以交流励磁不仅可以调节无功功率,也可以调节有功功率。交流励磁电机 之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现 可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子 磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可 以实 现 有 功 无 功 的 独 立 解 耦 控 制 ,当前 的 主 流 双 馈 风 力 发 电 机 组 均 是 采 用 此 种控制策略。

浅析双馈感应电机DFIG单机机端电压调节方式

浅析双馈感应电机DFIG单机机端电压调节方式

浅析双馈感应电机DFIG单机机端电压调节方式【摘要】文章运用公式对双馈感应电机(DFIG)无功功率调节原理进行了阐述,通过折线图论述了DFIG单机机端电压的调节方式,举证电压测试与调节试验分析了PI控制方法对机端电压调节的影响与效果。

【关键词】双馈感应电机DFIG;单机;机端电压;控制;调节;试验引言一般而言,双馈感应电机(DFIG)采用转子侧变流器影响和控制极端电压与功率因数的工作方案。

虽然网侧变流器也可以实现无功功率注入,但是,转子侧变流器更容易实现对双馈发电机的电压控制。

本文从理论到试验,对DFIG机端电压的控制方式展开了具体的探讨。

1、DFIG无功功率调节的原理Qr=Im[VrIr*] ⑴公式⑴为通过转子的无功功率。

Qr=Im[VrIr*/s] ⑵公式⑵为Qr归算到定子侧时的无功功率。

可以假设定子磁链的方向既定,不考虑定子侧的损耗,将dq坐标系下的双馈机组数学模型进行同步旋转,便能得出发电机定子侧的无功表达式。

⑶公式⑶中,rd_m表示发电机励磁电流;rd_g表示控制与电网交换的无功功率;gen表示发电机吸收的无功功率;gen表示与电网交换的无功功率。

⑷公式⑷中,当mag值为零时,可以补偿发电机吸收的空载无功功率,rd_m 值的控制范围用公式⑸来表示。

rd_m=⑸注入电网的无功功率增高或降低都会引起极端电压的变化,控制电压的方式主要有:用rd_m补偿双馈风电机组机消耗的无功功率;如果机端电压低于或高于极端电压参考值,必须要对rd_g值进行调整。

控制转子电流的无功分量,能够使发电机输出无功功率。

不考虑功率因数的情况下,能够测试出DFIG的无功功率极限。

2、DFIG单机机端电压的调节方式基于对历史实验的总结可知,DFIG容性无功功率与网测电压的变化成正比,如图1所示,DFIG容性无功功率增加,网侧电压增高。

DFIG感性无功功率与网测电压的变化成正反比,如图2所示,DFIG感性无功功率增高,网侧电压降低。

风力发电系统用双馈感应发电机矢量控制技术研究

风力发电系统用双馈感应发电机矢量控制技术研究

风力发电系统用双馈感应发电机矢量控制技术研究一、概述随着全球对可再生能源需求的日益增长,风力发电作为一种清洁、可再生的能源形式,已经在全球范围内得到了广泛的关注和应用。

风力发电系统的核心技术之一便是双馈感应发电机(DFIG)的矢量控制技术。

这种技术对于提高风能利用率和系统稳定性具有重要意义,对双馈感应发电机矢量控制技术的研究具有重要的理论和实践价值。

双馈感应发电机是一种变速恒频风力发电技术中的关键设备,其工作原理是利用风能驱动发电机转子转动,从而产生交流电。

由于风速的波动和不确定性,给风力发电系统的稳定运行带来了一定的挑战。

为了解决这个问题,双馈感应发电机矢量控制技术应运而生。

这种技术通过精确控制发电机的电流和电压的相位和幅值,实现对发电机输出功率的精确控制,从而优化风力发电系统的运行效率。

目前,双馈感应发电机矢量控制技术在风力发电系统中得到了广泛应用。

仍然存在一些问题需要解决,如控制策略的优化、不同风速下的控制效果、以及控制过程中可能出现的振荡等问题。

对双馈感应发电机矢量控制技术进行深入研究,具有重要的现实意义和理论价值。

本文旨在对风力发电系统用双馈感应发电机矢量控制技术进行深入研究。

通过对双馈感应发电机的数学模型、控制策略、以及仿真实验等方面的分析,探讨双馈感应发电机矢量控制技术在风力发电系统中的应用及其优化。

本文的研究结果将为提高风力发电系统的效率和稳定性,推动风力发电产业的可持续发展提供有益的参考和借鉴。

本文还将关注双馈感应发电机在电网电压不对称条件下的运行问题。

电网电压的不对称性可能会对双馈感应发电机的运行产生不良影响,研究电网电压不对称条件下的双馈感应发电机矢量控制技术具有重要的实践意义。

通过对正序和负序定子磁链进行定向,推导出适应于电网电压不对称条件下的励磁矢量控制策略,实现对转子负序电流的有效控制,从而提高风力发电系统在电网电压不对称条件下的运行稳定性。

本文将全面分析双馈感应发电机矢量控制技术在风力发电系统中的应用,探讨其优化方法,以及解决电网电压不对称条件下的运行问题。

双馈异步发电机原理

双馈异步发电机原理

双馈异步发电机原理双馈异步发电机(Double Fed Induction Generator,DFIG)是一种常用于风力发电系统的电机。

它具有一定的功率调节能力和较高的发电效率,在现代能源领域得到广泛应用。

本文将就双馈异步发电机的原理进行介绍。

一、简介双馈异步发电机由固定部分(定子)和旋转部分(转子)组成。

定子绕组中通以三相对称电流,形成旋转磁场,而转子通过刚性转子轴与风力发电机的转动相连。

定子与转子的耦合通过定子绕组和转子绕组之间传递电流来实现。

这就是为什么它被称为“双馈”发电机的原因。

二、工作原理当双馈异步发电机以风力发电机的转动速度运转时,风轮带动发电机旋转,同时将机械能转化为电能。

定子的电压通过电网和电池汇流条供电。

为了实现双馈异步发电机的控制,定子绕组由逆变器供电,逆变器通过电网进行功率调节,并使双馈异步发电机保持在最佳工作状态。

三、主要特点1. 调节能力:双馈异步发电机的电压和频率可以通过逆变器调节,从而实现对功率输出的精确控制。

这使得它在风能系统中成为一种理想的发电机。

2. 高效性能:相比传统发电机,双馈异步发电机在输送能量时能够减小电流的损耗,提高发电效率。

3. 提高动态响应:双馈异步发电机可以通过逆变器的调节来提高其动态响应能力,使其能够更快速地适应变化的风速和负载。

4. 减少对电网的影响:双馈异步发电机可以通过逆变器来控制发电功率,减少对电网的负荷影响,提高电网的稳定性和可靠性。

四、应用领域双馈异步发电机在风力发电系统中得到广泛应用。

其调节能力和高效性能使其成为风能转换系统的核心组件。

同时,双馈异步发电机也可以应用于其他领域,如水力发电、轨道交通以及工业领域等。

总结双馈异步发电机具有调节能力强、高效、动态响应快以及对电网影响小等特点,为风力发电系统带来了巨大的发展潜力。

随着能源需求的不断增长,双馈异步发电机将继续在可再生能源领域发挥重要作用,为我们提供更清洁、可持续的发电解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双馈式感应发电机(DFIG)简介刘大明双馈电机(或称为交流励磁电机),它早在四十年代就已经出现。

随着电力电子技术和数字控制技术的发展,双馈电机在电气性能方面所具有的一系列优点和巨大的潜力,已经引起国内外的高度重视。

双馈式感应发电机(Doubly-Fed Induction Generator, DFIG) 使用绕线式转子,由于电力可经由转子侧之电力转换器双向流动,因此发电机馈入电力系统的界面同时包括定子侧(Line side)及转子侧(Rotor side),其电力转换器功率仅为发电机额定功率之20~30%,故成本较低,而且发电机可变速范围可达同步转速之±30%,因此性能/价格比值最高,为目前大型风力发电机中最普遍采用之组态。

全球前10大风力发电机制造商的产品中有六成以上的变速风力发电机采用双馈式感应发电机,本文将介绍双馈式感应发电机的基本原理与特性。

一、双馈式感应发电机(DFIG)基本原理双馈式感应发电机(DFIG)是在同步发电机和异步发电机的基础上发展起来的一种新型发电机,其转子具有三相励磁绕组结构。

当通以某一频率(转差频率)的交流电时,就会产生一个相对转子旋转的磁场,转子的实际转速加上交流励磁产生的旋转磁场所对应的转速等于同步转速,则在电机气隙中形成一个同步旋转磁场,在定子侧感应出同步频率的感应电势。

从定子侧看,这与同步发电机直流励磁的转子以同步转速旋转时,在电机气隙中形成一个同步旋转的磁场是等效的。

双馈式感应发电机与一般感应发电机不同之处在于联接其转子侧之PWM脉宽调变电力转换器具有四象限之运转能力,电力转换器提供低频(转差频率)的交流电流(或电压)进行励磁,调节励磁电流(或电压)的幅值、频率、相位,来实现定子恒频恒压输出,其定子输出特性与同步发电机十分类似,所以有一些文献指出,双馈式感应发电机可以视为同步发电机与感应发电机之综合体。

从能量流动的特性来看,与采用直流励磁的同步发电机相比,同步发电机励磁的可调量只有直流励磁电流的幅值一个,所以同步发电机励磁一般只能对无效功率进行调节,而双馈式感应发电机,其励磁的可调量除了励磁电流的幅值外,还有励磁电流的频率和相位。

通过改变励磁电流的频率可以改变发电机的转速,达到调速的目的;通过改变励磁电流的相位,来改变发电机的空载电势与电力系统电压向量之间的相对位置,从而改变发电机的功率角,可以调节发电机的有效功率。

一般感应电机(异步电机) : (1)在转子转速低于同步转速时,处于电动工作状态, (2)当转子转速高于同步转速时,处于发电工作状态,而对于双馈式电机来说,除了上述两种工作状态之外,还具有另外两种工作状态 : (3)欠同步发电工作状态, (4)过同步电动工作状态。

双馈式感应发电机之欠同步与过同步转速发电时之功率流向分别如图一(a)及图一(b)所示。

其中,s为转差率,Ps为DFIG定子输出功率,Pg为DFIG输出至电力系统之功率。

图一(a) 欠同步转速发电(0<s<1)之功率流向图一(b) 过同步转速发电(s<0) 之功率流向二、双馈式感应电机之运转特性GE 1.5se 型风力发电机之基本结构如图二,风力发电机由一具有绕线转子(wound rotor) 之感应发电机、滑环(slip rings) 如图三、转子回路上之AC-DC-AC PWM电力转换器以及先进的电子控制器所组成。

GE1.5se 型双馈式感应发电机之同步转速为每分钟1200 转(rpm),且有一变频电力转换器与发电机转子连接可使发电机之转速固定于800 至1600 rpm 之范围内,产生稳定60Hz 之高质量输出。

于风速超过14m/s时转速固定于1440 rpm,发电机输出可达额定值1500KW。

由于仅转子回路中约 20%~30%之输出电力须经AC-DC -AC 转换器之调变,不似Gearless Type 风力发电机中所有之输出电力均须调变,因此调变所产生之损失明显减少,电力转换器所占之空间与重量亦显著降低,在其额定容量之运转效率可达97%以上。

GE 1.5se双馈式感应发电机其运转特性为:(1)过同步运转模式(Over-synchronous mode):以高于同步速度之转速运转,为高风速时之运转模式,发电机定子输出75%电力,转子则经由电力转换器输出约25%之电力。

(2)同步运转模式(Synchronous mode):以同步速度转速运转,在部分负载工作范围下,发电机定子负责输出100%之电力。

(3)欠同步运转模式 (Sub-synchronous mode):以低于同步速度之转速运转,为低风速时之运转模式,在部分或轻负载工作范围下,发电机定子负责100%之电力输出。

图二 GE 1.5se 型风力发电机基本结构图图三绕线转子感应发电机转子之滑环(Slip rings)及碳刷(Carbon brush)三、DFIG交流励磁变速恒频之运行原理双馈式感应发电机变速恒频运行的原理可以用图四来进一步说明。

图四中n1为定子旋转磁场的转速,即同步转速;n2为转子旋转磁场相对于转子的转速;nr为转子的转速;f1、f2分别为发电机之定、转子电流的频率;P为绕线式转子之极数(Pole)。

由电机学的知识可知,双馈式感应发电机在稳态运转的时候,定子旋转磁场和转子旋转磁场在空间上保持相对静止,即n1 = n2 + nr因 n1=(120 f1) / P及 n2=(120 f2) / P,故有(120 f1) / P = (120 f2) / P + nr所以f1 = f2 + (P nr)/120从上式可知,当风力发电机转子之转速nr随着风速的变化而变动时,可通过调节转子励磁电流的频率f2使定子输出电力之频率f1保持恒定,也就是与电力系统频率一致,即可实现风力发电机的变速恒频运行。

当定子旋转磁场以同步转速旋转时,转子旋转磁场相对于转子以转差角频率旋转,感应电机于不计损耗的理想条件下有:Pr = s PsPg = Ps - Prs = (ns – nr) / ns其中,s为转差率;ns为同步转速;Ps为定子输出电功率;Pr为输入至转子之电功率;Pg为双馈式感应发电机之输出电功率。

PWM电力转换器随着风速的变化会自动进行下列三种工作模式之切换:(1)当转子转速低于同步转速时:发电机处于欠同步运转模式,转子旋转磁场旋转方向和转子转向相同,即f2 > 0,此时转差率s > 0故Pr > 0,PWM电力转换器向发电机转子输入有效功率并提供发电机转子正相序励磁。

(2)当转子转速高于同步转速时:发电机处于过同步运转模式,转子旋转磁场旋转方向和转子转向相反,即f2 < 0,此时转差率s < 0故Pr < 0,PWM电力转换器输出有效功率至电力系统并提供发电机转子负相序励磁。

(3)当转子转速等于同步转速时:发电机处于同步运转模式,转子不需提供旋转磁场,即f2 = 0,此时转差率s = 0故Pr = 0, PWM电力转换器向发电机转子提供直流励磁。

图五为GE 1.5se DFIG之输出与转速关系曲线,图中可看出当转子转速低于同步转速时,PWM电力转换器向发电机转子输入有效功率;当转子转速高于同步转速时,发电机转子向PWM电力转换器输出有效功率。

图六为GE 1.5se DFIG之输出与转子频率关系曲线。

图四双馈感应发电机之交流励磁变速恒频运行原理PgPsPr 图五 GE 1.5se DFIG之输出与转速关系曲线图六 GE 1.5se DFIG 之输出与转子频率关系曲线图七 GE 1.5se 电力转换器之硬件架构图-0.2 -0.330.33 -20 -12 20四、PWM电力转换器GE 1.5se风力发电机IGBT电力转换器之硬件架构如图七所示,电力转换器之控制模块透过CAN Bus与Bachmann PLC联机,其控制核心为tms320vc33 150 MHz之数字信号处理器(DSP),DSP 与外围设备之逻辑信号连接是由现场可程序化逻辑门阵列FPGA(Field Programmable Gate Array)所规划。

电力转换器之控制运算及程序需透过专用之规划软件编辑控制程序,再分别加载DSP及FPGA中。

图八为GE 1.5se风力发电机之PLC控制架构图,图中可看出塔架底部之Main Controller透过光纤网络(Ethernet)连接至机舱中之Nacelle Controller,再经由CAN_bus透过转轴滑环(Rotor Slip Ring) 连接至轮毂(HUB)中之Pitch Controller,来控制三支叶片之旋角。

五、结语采用双馈式感应发电机,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,使机电系统之间的刚性连接变为柔性连接。

基于上述诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究重点和必然的发展趋势。

未来风力发电机将朝大型化(单机装置容量5~10MW)及离岸式(Offshore)发展,风力发电机技术之主流为无刷交流励磁双馈感应式发电机及永磁同步发电机两大类变速恒频风力发电技术。

国内学术界及产业界应对变速恒频交流励磁双馈发电机之相关技术投入更多资源,方能建立自主研发及维护之能力。

图八 GE 1.5se风力发电机之PLC控制架构图六、参考数据1.GE Manual,「GE POWER CONVERSION 1.5MW WIND CONVERTER PRODUCT OVERVIEW」,2004。

/uk/images/stories/pdf/bae_wind_e.pdf:”Bachmann M1 WTGController System”.3.桂人杰,「变速风机之控制系统」,精密机械制造与新兴能源机械技术专辑,2006年5月,P.52 ~ P.66。

4.刘德顺,「各厂家风力发电仪控系统及特性比较」,台电林口训练中心风力发电维护班讲义,九十六年八月七日。

5.陈祯南、刘德顺,「GE 1.5MW风力发电机介绍(上)/ (下)」,发电通讯437/438期,台电发电处出版,九十六年七月/八月刊。

相关文档
最新文档