新教材人教A版高中数学选择性必修第一册全册精品教学课件(共739页)

合集下载

新教材人教A版高中数学选择性必修第一册2.5.1 直线与圆的位置关系 精品教学课件

新教材人教A版高中数学选择性必修第一册2.5.1 直线与圆的位置关系 精品教学课件

【对点训练】❸ 设某村庄外围成圆形,其所在曲线的方程可 用(x-2)2+(y+3)2=4表示,村外一小路方程可用x-y+2=0表 示,则从村庄外围到小路的最短距离是_7_2__2-__2___.
[解析] 从村庄外围到小路的最短距离为圆心(2,-3)到直线 x-y+ 2=0 的距离减去圆的半径 2,
即 |122++3+-21|2-2=722-2.
易错警示
忽视隐含条件
典例 5 已知圆x2+y2+2x+2y+k=0和定点P(1,-1),若
过点P的圆的切线有两条,则k的取值范围是
C
()
A.(-2,+∞)
B.(-∞,2)
C.(-2,2)
D.(-∞,-2)∪(2,+∞)
[错解] 选A.由题意知点P(1,-1)必须在圆的外部,则12+ (-1)2+2×1+2×(-1)+k>0,解得k>-2.答案:A
题型三
直线与圆相交
典例 3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0 截得的弦长.
[分析] 解法一求出直线与圆的交点坐标,解法二利用弦长公 式,解法三利用几何法作出直角三角形,三种解法都可求得 弦长.
[解析] 解法一:由3x2x++yy2--62=y-0,4=0,得交点 A(1,3),B(2,0),
当 Δ<0,即-43<m<0 时,直线与圆相离,即直线与圆没有公共点.
方法 2:已知圆的方程可化为(x-2)2+(y-1)2=4,即圆心为(2,1), 半径 r=2.圆心(2,1)到直线 mx-y-m-1=0 的距离 d=|2m-11+-mm2-1|= |m1+-m2|2.
当 d<2,即 m>0 或 m<-43时,直线与圆相交,即直线与圆有两个 公共点,
题型探究

高中数学必修第一册全册全套课件-【新教材】人教A版(2019)

高中数学必修第一册全册全套课件-【新教材】人教A版(2019)
围.
• (2)画一条竖线. • (3)在竖线后写出这个集合中元素所具有的共同特征.
• 思考2:什么类型的集合适合描述法表示?
• 提示:描述法可以看清集合的元素特征,一般含较多元素或无数多个元 素(无限集)且排列无明显规律的集合,或者元素不能一一列举的集合, 宜用描述法.
基础自测
• 1.判断下列说法是否正确,正确的打“√”,错误的打“×”.
题型二 元素与集合的关系
例 2 若所有形如 3a+ 2b(a∈Z,b∈Z)的数组成集合 A,请判断 6-2 2是不是集合 A 中的元素.
[分析] 根据元素与集合的关系判断,可令 a=2,b=-2. [解析] 因为在 3a+ 2b(a∈Z,b∈Z)中, 令 a=2,b=-2,即可得到 6-2 2, 所以 6-2 2是集合 A 中的元素.
基础知识
•知识点1 集合与元素的含义 • 一 ___般__地__,_叫我做们集把合研(究se对t)(象简统称称为为集_).____元__素_(element),把一些元素组成的
• 通常总用体大写拉丁字母A,B,C,…表示________,用小写拉丁字母a,b,
c,…表示集合中的________.
集合
特性
含义
示例
互异性
对于一个给定的集合,集合中的元素一定是不同的(或者 说是互异的),这就是说,集合中的任何两个元素都是不 集 合 {x , x2 - x} 中 的 x 应 满 足 同的对象,相同的对象归入同一集合时只能算集合的一个 x≠x2-x,即x≠0且x≠2 元素
无序性 构成集合的元素间无先后顺序之分
2.已知 a∈R,且 a∉Q,则 a 可以为( A )
A. 2
B.12
C.-2
D.-31

人教A版高中数学选择性必修第一册精品课件 第3章 圆锥曲线的方程 3.3.1 抛物线及其标准方程

人教A版高中数学选择性必修第一册精品课件 第3章 圆锥曲线的方程 3.3.1 抛物线及其标准方程
第三章
3.3
3.3.1 抛物线及其标准方程




01
自主预习 新知导学
02
合作探究 释疑解惑
自主预习 新知导学
一、抛物线的定义
1.抛物线的定义
焦点
准线
我们把平面内与一个定点 F 和一条定直线 l(l 不经过点 F)的
距离相等的点的轨迹叫做抛物线
点 F 叫做抛物线的焦点
直线 l 叫做抛物线的准线
当且仅当P为AB与抛物线的交点时,取等号.
故(|PA|+|PF|)min=|AB|=4+1=5.
此时yP=2,代入抛物线方程得xP=1,P(1,2).
将本例(2)点A坐标改为(3,4),点P到抛物线准线的距离为d,其他条件不变,
则|PA|+d的最小值为
.
解析:由题意可知点(3,4)在抛物线的外部,d=|PF|.
2
心M的轨迹方程是y2=12x.
本 课 结 束
2
+ (2-0) =
17
.
2
(2)若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9,它到焦点的距离为
10,求抛物线方程和点M的坐标.
解:由抛物线定义,焦点为 F
准线为

x=2 ,由题意设

- 2 ,0
,
M 到准线的距离为|MN|,

则|MN|=|MF|=10,即2 -(-9)=10,
解得p=2.
A.2
C.2 3
2x的焦点,P为C上一
)
B.2 2
D.4
解析:由题意知抛物线的焦点 F( 2,0),
由抛物线的定义知|PF|=xP+ 2,

人教A版(2019)高中数学选择性必修第一册课件(共50张PPT)

人教A版(2019)高中数学选择性必修第一册课件(共50张PPT)

知 2.掌握空间直角坐标系中点的 的核心素养.


作 坐标的确定.(重点)

究 释
3.掌握空间向量的坐标表示

难 (重点、难点)
2.通过空间向量的坐标表示,培
课 时

养学生直观想象和数学建模的核 层

心素养.业Leabharlann 返 首 页·3
·








·


新 知

情景
导学
探新

素 养















坐标系 向,以它们的长为单位长度建立三条数轴:x


释 疑
轴、y轴、z轴,这样就建立了空间直角坐标系
作 业

返 首 页
·
7
·

坐标轴 _x__轴、_y__轴、_z__轴



导 学
坐标原点 点_O__
小 结
·
探 新
坐标向量 __i __,__j __,_k___
提 素


坐标平面 O__xy_平面、O__yz_平面和_O_x_z平面

探 究
点坐标 _a_=___(_x,__y_,__z_)_
时 分






返 首 页
·
10
·


景 导
1.思考辨析(正确的打“√”,错误的打“×”)

新人教版高中数学选择性必修第一册全套精品课件

新人教版高中数学选择性必修第一册全套精品课件

·







解答空间向量有关概念问题的关键点及注意点

·


新 知
(1)关键点:紧紧抓住向量的两个要素,即大小和方向.
素 养

(2)注意点:注意一些特殊向量的特性.


探 究
①零向量不是没有方向,而是它的方向是任意的,且与任何向
时 分

释 疑
量都共线,这一点说明了共线向量不具备传递性.
作 业

返 首 页
小 结
·



(2)√ 相等向量一定共线,但共线不一定相等.



(3)× 空间两个向量一定是共面向量,但三个空间向量可能是



探 共面的,也可以是不共面的.





(4)× 零向量有方向,它的方向是任意的.




返 首 页
·
19

2.如图所示,在四棱柱 ABCD-A1B1C1D1 所有的棱中,可作为直 课




导 学
B
[根据向量的定义,知长度相等、方向相同的两个向量是相等
小 结
·


新 向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是 素


相反向量,②不正确;当 a=-b 时,也有|a|=|b|,③不正确;只要



探 模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无 时


导 学

新课标高中数学人教A版必修一全册课件新课标高中数学人教A版必修一全册课件两角和与差的正弦、余弦、正切公

新课标高中数学人教A版必修一全册课件新课标高中数学人教A版必修一全册课件两角和与差的正弦、余弦、正切公

探究1:
两角和与差的正弦公式:
sin( ) sin[ ( )] sin cos( ) cos sin( ) sin cos cos sin
探究1: 两角和与差的正弦公式:
S( ) : sin( ) sin cos cos sin S( ) : sin( ) sin cos cos sin
4 4 4 的值.
讲解范例:
思考:
在本题中,sin cos ,
4 4
那么对任意角 ,此等式成立吗?若成
立你能否证明?
练习: 教材P.131第1、2、3、4题.
讲解范例:
例2. 已知tan( ) 2 , tan 1 ,
tan tan 1 tan tan
和角公式、差角公式:

S
(



)
C
(



)
T(


)


和角公式.

S
(



)
C
(



)
T(


)


差角公式.
讲解范例:
例1. 已知sin 3 , 是第四象限角,
5
求sin ,cos , tan
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。

人教A版高中数学选择性必修第一册第1章1-4-1第2课时空间中直线、平面的平行课件

人教A版高中数学选择性必修第一册第1章1-4-1第2课时空间中直线、平面的平行课件

反思领悟 向量法证明直线平行的两种思路
类型2 直线和平面平行 【例2】 如图所示,在空间图形P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,CD∥AB,∠ABC=∠BCD=90°,AB= 4 , CD = 1 , 点 M 在 PB 上 , 且 PB = 4PM , ∠PBC = 30° , 求 证 : CM∥平面PAD.
B.l⊥α
√C.l⊂α或l∥α
D.l与α斜交
C [因为a=(1,0,2),n=(-2,1,1),所以a·n=1×(-2)+0×1
+2×1=0,所以l⊂α或l∥α.故选C.]
1234
3.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,
k),若α∥β,则k=( )
A.2
B.-4
√C.4
D.-2
1234
4.若平面α外的一条直线l的一个方向向量是n=(-1,2,-3),平 面 α 的 一 个 法 向 量 为 m = (4 , - 1 , - 2) , 则 l 与 α 的 位 置 关 系 是 ___平__行___. 平行 [n·m=(-1,2,-3)·(4,-1,-2)=0, 所以n⊥m.又l⊄α,所以直线l与平面α平行,即l∥α.]
面面平行 设n1,n2分别是平面α,β的法向量,则α∥β⇔ n1∥n2⇔∃λ∈R,使得n1=λn2
思考 若已知平面外一直线的方向向量和平面的法向量,则这两向量 满足哪些条件可说明直线与平面平行? 提示:可探究直线的方向向量与平面的法向量是否垂直,进而确定 线面是否平行.
提醒 用向量方法证明线线平行时,必须说明两直线不重合;证明线 面平行时,必须说明直线不在平面内;证明面面平行时,必须说明 两个平面不重合.
因为DD1⊂平面AA1D1D,CC1⊄平面AA1D1D, 所以CC1∥平面AA1D1D. 因为DA⊂平面AA1D1D,CF⊄平面AA1D1D, 所以CF∥平面AA1D1D. 又CF∩CC1=C,CF⊂平面FCC1, CC1⊂平面FCC1, 所以平面AA1D1D∥平面FCC1.

高中数学新课标人教A版必修1全套PPT课件

高中数学新课标人教A版必修1全套PPT课件

栏目导引
1 3.已知① 5∈R;② ∈Q;③0={0};④0∉N; 3 ⑤ π∈ Q;⑥- 3∈ Z.其中正确的个数为 ________ 个. 1 解析: 根据数集的特征易判断: 5∈R, ∈ 3 Q,-3∈Z 正确;0∈{0},0∈N,π 是无理数, 故 π∉Q.
答案: 3
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
1.自然数的集合包含:零和______ 正整数; 分数 . 有理数的集合包含:整数和_____ 圆. 2.到一个定点的距离等于定长的点的集合是___
必修1 第一章 集合与函数的概念
栏目导引
1.集合 研究对象 统称为元素,把一些元素 (1)一般地,我们把__________ 总体 叫做集合. 组成的_____ (2)集合相等 一样 的,我们就称这两个 只要构成两个集合的元素是_____ 集合是相等的. (3)集合与元素的表示 大写拉丁字母 ,B,C,…表示集合. 通常用_____________A 通常用______________a 小写拉丁字母 ,b,c,…表示集合中的元素.
必修1 第一章 集合与函数的概念
栏目导引
解析: (1)根据集合元素的互异性可知
x≠ 3 x≠x2-2x 2 x -2x≠3

即 x≠0 且 x≠3 且 x≠-1, (2)∵x2-2x=(x-1)2-1≥-1, 又-2∈A,∴x=-2.
必修1 第一章 集合与函数的概念
栏目导引
对集合中元素三个特性的认识 (1)确定性:指的是作为一个集合中元素,必须是确 定的.即一个集合一旦确定,某一个元素属于不属于 这个集合是确定的.要么是该集合中的元素要么不是 ,二者必居其一,这个特性通常被用来判断涉及的总 体是否构成集合.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档