齿轮润滑状态及其转化条件

合集下载

齿轮传动及其润滑分析

齿轮传动及其润滑分析

潘存云教授研制 潘存云教授研制
齿面接触疲劳
三、 轮齿的失效形式
一、轮齿的失效形式 轮齿折断 齿面点蚀 失效形式 齿面胶合
高速重载传动中,常因啮 合区温度升高而引起润滑 失效,致使齿面金属直接 接触而相互粘连。当齿面 向对滑动时,较软的齿面 沿滑动方向被撕下而形成 沟纹。
措施: 1.提高齿面硬度 2.减小齿面粗糙度 3.增加润滑油粘度低速 4.加抗胶合添加剂高速
五、齿轮传动的润滑
3、齿轮传动的润滑方案:
1)按装置类型分类: 1、V<12m/s——浸油润滑 2、V>12m/s——喷油润滑
(图6-22)
(图6-22)
齿轮传动的润滑方式,主要取决于齿轮圆周速度的大小。对 于速度较低的齿轮传动或开式齿轮传动,采用定期人工加润滑油 或润滑脂。对于闭式齿轮传动,当齿轮圆周速度v <12m/s 时,采 用大齿轮浸入油池中进行浸油润滑; 当v >12m/s 时,为了避免搅 油损失,常采用喷油润滑
四、齿轮噪音及其控制
2、选择适宜的润滑方案
齿轮传动的基本润滑要求: 适当的粘度或稠度 良好的极压抗磨性 良好的抗氧化安定性 良好的抗剪切安定性 良好的防锈性 良好的抗泡沫性 良好的抗乳化性 塑胶齿轮还要求要与良好的相容性
五、
齿轮传动的润滑
齿轮传动时,相啮合的齿面间有相对滑动,因此就要 发生摩擦和磨损,增加动力消耗,降低传动效率, 特别是高速传动,就更需要考虑齿轮的润滑。 1、润滑的目的: • 改善摩擦表面的粗糙度, • 减小接触面的摩擦系数, • 减小摩损,延长寿命 • 同时由于润滑油脂膜的存在,可以对齿轮转动中 的冲击起到一定的缓冲作用。
五、齿轮传动的润滑
3、齿轮传动的润滑方案: 2)按转速分类:

齿轮传动的润滑方法

齿轮传动的润滑方法

齿轮传动的润滑方法
齿轮传动的润滑方法有三种:干式润滑、半干式润滑和湿式润滑。

1.干式润滑。

干式润滑是指不加润滑剂,齿轮直接在空气中运转。

一般适用于速度
较高、载荷较小、噪声要求较高的场合,如精密仪器、电动机等。

但是,
由于齿轮在高速运转时容易产生静电,所以干式润滑也容易引起火灾和爆
炸等安全隐患。

2.半干式润滑。

在半干式润滑方法中,齿轮的轴承轴承和齿轮轮齿上涂上一定量的润
滑剂,使其在运行时可以保持一定的润滑状态。

这种润滑方式适合于载荷
较大的中速齿轮传动,如输送机、压缩机等。

3.湿式润滑。

湿式润滑是指将润滑剂直接供给到齿轮之间的传动液道中,利用润滑
剂油膜,减少齿面的磨损和热度,通常润滑油或润滑脂都是常用的润滑剂。

湿式润滑具有润滑效果好、使用寿命长、环保等优点,适用于大型重载机
械和工业生产设备。

同时,也需要注意换油和维护等问题,以保证齿轮传
动的正常运行。

齿轮传动的润滑

齿轮传动的润滑

齿轮传动的润滑齿轮传动时,相啮合的齿面间有相对滑动,因此就要发生摩擦和磨损,增加动力消耗,降低传动效率,特别是高速传动,就更需要考虑齿轮的润滑。

轮齿啮合面间加注润滑剂,可以避免金属直接接触,减少摩擦损失,还可以散热及防锈蚀。

因此,对齿轮传动进行适当的润滑,可以大为改善齿轮的工作状况,且保持运转正常及预期的寿命。

(一)齿轮传动的润滑方式开式及半开式齿轮传动,或速度较低的闭式齿轮传动,通常用人工周期性加油润滑,所用润滑剂为润滑油或润滑脂。

通用的闭式齿轮传动,其润滑方法根据齿轮的圆周大小而定。

当齿轮的圆周速度v<12m/s时,常将大齿轮的轮齿进入油池中进行浸油润滑(下左图)。

这样,齿轮在传动时,就把润滑油带到啮合的齿面上,同时也将油甩到箱壁上,借以散热。

齿轮浸入油中的深度可视齿轮的圆周速度大小而定,对圆柱齿轮通常不宜超过一个齿高,但一般亦不应小于10mm;对圆锥齿轮应浸入全齿宽,至少应浸入齿宽的一半。

在多级齿轮传动中,可借带油轮将油带到未进入油池内的齿轮的齿面上(下右图)。

油池中的油量多少,取决于齿轮传递功率大小。

对单级传动,每传递1kW的功率,需油量约为0.35~0.7L 。

对于多级传动,需油量按级数成倍地增加。

当齿轮的圆周速度v>12m/s时,应采用喷油润滑(下图),即由油泵或中心油站以一定的压力供油,借喷嘴将润滑油喷到轮齿的啮合面上。

当v≤25m/s时,喷嘴位于轮齿啮入边或啮出边均可;当v>25m/s时,喷嘴应位于轮齿啮出的一边,以便借润滑油及时冷却刚啮合过的轮齿,同时亦对轮齿进行润滑。

(二)润滑剂的选择齿轮传动常用的润滑剂为润滑油或润滑脂。

所用的润滑油或润滑脂的牌号按表<齿轮传动常用的润滑剂>选取;润滑油的粘度按下表选取。

齿轮传动常用的润滑剂①名称牌号运动粘度υ/(mm/s)(40℃)应用全损耗系统用油(GB443-89)L-AN46L-AN68L-AN10041.4~50.661.2~74.890.0~110.0适用于对润滑油无特殊要求的锭子、轴承、齿轮和其它低负荷机械等部件的润滑工业齿轮油(SY1172-88)6810015022032061.2~74.890~110135~165198~242288~352适用于工业设备齿轮的润滑工业闭式齿轮油(GB/T5903-1995) 6810015022032046061.2~74.890~110135~165198~242288~352414~506适用于煤炭、水泥和冶金等工业部门的大型闭式齿轮传动装置的润滑普通开式齿轮油68 100℃。

机械设备齿轮传动润滑分析

机械设备齿轮传动润滑分析

机械设备齿轮传动润滑分析一、引言齿轮传动是机械设备中常见的一种传动形式,通过齿轮的啮合来传递动力,实现机械设备的运转。

在齿轮传动中,润滑是至关重要的一环,它直接影响着齿轮的运行稳定性和寿命。

对齿轮传动的润滑进行分析和研究,对提高机械设备的运行效率和降低维护成本具有重要意义。

二、齿轮传动润滑原理1. 齿轮传动润滑的重要性齿轮传动在工作时,由于齿面的滚动和滑动,摩擦力和磨损会产生热量,如果润滑不良,会导致齿轮温升过高,增加摩擦和磨损,降低传动效率,甚至引起严重故障。

良好的润滑可以减小摩擦系数,降低磨损,减少齿轮传动的能量损失,提高齿轮传动的效率和使用寿命。

齿轮传动的润滑原理主要包括润滑膜理论和黏附剪切理论。

润滑膜理论是指在两个金属表面之间形成一层润滑膜,使得摩擦系数和磨损减小,从而达到降低摩擦力、提高传动效率的目的。

黏附剪切理论是指在齿轮啮合处受到动载荷作用下,液态润滑剂的黏度对齿轮的润滑起到保护作用。

齿轮传动的润滑方式主要有油润滑和脂润滑两种形式。

油润滑是指通过向齿轮传动装置中注入润滑油来形成润滑膜,以减小摩擦系数和磨损。

脂润滑是将润滑脂涂抹在齿轮啮合处,以形成均匀的润滑膜,提高齿轮传动的工作效率。

1. 润滑油的选择选择合适的润滑油是确保齿轮传动良好润滑的关键。

在选择润滑油时,应综合考虑齿轮传动的工作条件、载荷大小、工作温度和速度等因素。

一般情况下,应选择黏度指数高、稠度稳定、极压抗磨性能好的润滑油,以确保齿轮传动的顺畅运转。

适当的润滑油添加量对于保证齿轮传动的良好运转至关重要。

添加过多的润滑油会造成润滑油泛滥,增加能量损失,甚至引起齿轮传动的泄露和污染等问题。

而添加过少的润滑油又会导致齿轮传动的摩擦和磨损增加,降低传动效率,缩短使用寿命。

应根据齿轮传动的实际工作条件和使用环境,合理确定润滑油的添加量。

在一些特殊工况下,如高温、高速、重载工况下,常常采用润滑脂进行齿轮传动的润滑。

选择合适的润滑脂至关重要,应根据实际工况选择黏度合适、抗压性好的润滑脂,并采取专业的润滑脂涂抹方式,确保润滑脂均匀的涂覆在齿轮啮合处,形成良好的润滑膜。

齿轮的润滑

齿轮的润滑

第十五节齿轮传动的润滑
一、齿轮油浴润滑的油面高度。

油润滑必须经常检查,使油面保持在规定的范围内,油面高度见表一
二、齿轮箱的极限温度
表一
三、齿轮润滑油质的选择
参见表一、表一、表一、表一、表一、表一、表一、表一。

表一润滑油种类选择推荐表
表一直斜齿轮、锥齿轮的推荐粘度雷氏秒(°)
表一根据工作条件推荐粘度
表一开式齿轮传动的润滑油粘度
闭式工业齿轮润滑用油表(供参考)
闭式工业齿轮润滑用油表
表1—33渐开线齿轮减速器(连续运行)润滑选用表
表注:
(1)多极减速机可按各级速度的平均值选用;或者按最重要一级速度选用。

(2)当一对齿轮齿面硬度不同时,可按最低硬度选用。

(3)对于具有冲击负荷的齿轮副,可选用比按表查得牌号高一档的油,圆弧齿轮减速机可选用比按表查得的高一档的油,如果有冲击负荷时,可提高两档选用。

所有齿轮传动用油(蜗轮、双曲线齿轮除外)的推荐粘度,厘施(5°C)

表注:(1)在高—中负荷用极压齿轮油时,粘度是极压齿轮油的粘度。

(2)3600转/分或圆周速度为20米/秒以上,根据条件采用再高一等或低
(3)运转中如果温度超过5°C以上,要用的粘度。

齿轮润滑的常见问题和影响因素

齿轮润滑的常见问题和影响因素

齿轮润滑的常见问题有哪些?答:齿轮润滑常见的问题有:1)润滑油粘度不足以在齿间形成表面油膜。

2)润滑油因糟糕的冷却系统而过热,从而使油迅速变黑并氧化形成沉积。

3)选用了质量较差的润滑油。

怎样识别润滑油是否变质?答:润滑油变质的外观特征:1、润滑油呈深黑(指润滑油中无清净分散添加剂)。

2、泡沫多且已出现乳化现象。

3、用手指捻搓,地粘稠感,发涩或有异味。

4、滴在白色纸张上呈深褐色,无黄色浸润滑区或者黑点很多。

影响齿轮润滑的因素有哪些?答:影响齿轮润滑的因素有:1、温度:温度下降时,润滑油会变稠。

温度上升时,则会变稀。

因此在低温条件下需要低粘度的润滑油,而在高温条件下则需要厚重的油以防止金属与金属之间的干摩擦。

2、速度:滑动和转动的速度越快,齿轮间挤进润滑剂的时间就越少。

同时在高速运作下润滑油更易结块变厚。

因此:低速用高粘度(稠油),高速用低粘度油(稀油)。

3、负荷(压力):高粘度油比稀油更能抵御重负并防止金属与金属之间的碰撞。

因此:轻负荷需要低粘度的润滑油,高负荷需要高粘度的润滑油。

4、击负荷例如由引擎发出的律动力,这就需要比较厚重的油以防油膜的瞬间碎裂而产生的边界润滑,因为只有极少的润滑油可留下。

在这种情况下,需要一种含有极压添加剂(EP)的润滑油。

5、齿轮类型:使用直齿、斜齿、人字齿和伞齿轮副时,滑动和转动会产生有效的油膜形成从而减缓啮合的轮齿间的直接接触。

在涡轮涡杆和双曲面齿轮等非平等轴传动装置上,相对滑动运作的方向不利于维持油膜。

在这此传动装置上,往往大量出现边界润滑。

因此,在涡轮涡杆装置和大偏心量的双曲齿轮传动装置上需要仍为厚重的油。

当这些传动装置受到重负和高压时,就要选择具有的高强油膜特性(高粘度)、光滑性、润滑性或甚至极压添加剂的润滑油。

齿轮的润滑状态

齿轮的润滑状态

齿轮的润滑状态
近百年以来,许多学者研究用油膜比厚来区分润滑状态,得到图1所示的润滑状态图。

在有润滑剂润滑的条件下,根据图1,齿轮传动具有以下三种润滑状态。

(1)边界润滑
当λ<1,齿轮传动处于边界润滑状态,齿轮齿面有表面粗糙峰相接触的情况发生。

在边界润滑状态下,润滑油的黏度不起作用,靠添加剂与齿面形成的物理吸附膜或化学反应膜来保护齿面。

(2)混合润滑
当1<λ<3,齿轮传动处于混合润滑状态。

在混合润滑状态下,摩擦力由粗糙峰和润滑油内部的摩擦力两部分构成,齿面负荷由油膜和齿面粗糙峰共同承担。

润滑油中需要少量的极压添加剂。

(3)全膜润滑
当λ>3,齿轮传动处于全膜润膜状态(弹流润滑、液体动压润滑)。

在全膜润滑状态下,润滑油膜的厚度远远大于表面粗糙度,两运动表面完全被连续的油膜所隔开。

因此润滑剂的黏度起主导作用,不需要添加剂。

当计入齿轮的弹性变形时,全膜齿轮润滑状态即成为弹性流体动力润滑,其理论分析是英国著名学者D.Downson完成的。

该理论考虑了物体的弹性变形和润滑油在高压下黏度的变化,先用计算机获得了数值解,进而导出了如下的经验公式。

齿轮箱润滑系统解析

齿轮箱润滑系统解析

A
2
良好的润滑可以:
1、减少摩擦,节省动力 2、减少磨损,防止齿面擦伤,延长齿轮和轴承的寿命 3、降低噪音 4、吸收冲击和振动 5、防止齿面锈蚀和腐蚀 6、散热,冷却,排除异物 7、良好的润滑有利于延长齿轮箱的使用寿命,但润滑 不好会产生严重的后果,很有可能会造成轴承烧毁, 齿轮损伤,进而导致齿轮箱损坏。
A
4
润滑系统工作原理介绍:
润滑系统必须保证对齿轮箱内的运动部件的强制润 滑,对油液的过滤和散热。
润滑系统由电动泵、过滤装置、机械泵、油风冷却 器、压力传感器、连接管路等组成。
电动泵、机械泵同时向系统供油,润滑油经滤油器 过滤后到温控阀,该温控阀根据润滑油的温度自动控制 润滑油的流向。当油温低于45℃时,润滑油直接进入齿 轮箱;当油温高于45℃时,温控阀开始动作,润滑油经 冷却器冷却后再进入到齿轮箱。在齿轮箱的入口和油泵 的出口均装有压力传感器用于检测润滑油的压力。
润滑系统必须有安全阀,以防止压力过高对系统元件造成 损坏。
润滑系统必须考虑能够随时排除系统中的气泡,气泡对齿 轮箱会造成损坏。
润滑系统的冷却器要有足够的散热能力,同时风扇要有足 够的空气流量将舱室内的热空气排出舱室外。最高允许齿轮油 温度为+80°C。
A
6
A
7
A
8
A
9
A
10
A
11
A
12
A
齿轮箱随机断裂的原因通常是材料缺陷,点蚀、剥落或其他应 力集中造成的局部应力过大,或较大的硬质异物落入啮合区引起。
A
17
(二)齿面疲劳 齿轮箱齿面疲劳是在过大的接触剪应力和应力循环次数作
A
5
过滤器为双精度过滤,当温度低于+10°C 时由于粘度较 低,或当过滤器滤芯压差大于4bar 时,滤芯上单向阀打开, 液压油只经过50μ的粗过滤;当温度高于+10°C,或滤芯压 差低于4bar 时,滤芯上单向阀关闭,润滑油经过10μ和50μ双 重过滤。无论何种情况,未经过滤的油液决不允许进入齿轮箱 内各润滑部位。在过滤器上装有压差发讯器,当滤芯堵塞,压 力差达到3bar 时压差发讯器发讯,提示更换滤芯。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车减速箱齿轮润滑状态及其转化条件
汽车变速箱齿轮工作环境复杂,受力多变.若要研究减速箱齿轮的润滑状态及其转化条件,首先要了解减速箱齿轮的润滑特点.总的来说,齿轮润滑的特点有以下几个方面:1)一对齿轮的传动是通过一对一的齿面啮合运动来完成的,一对啮合齿面的相对运动又包含滚动和滑动.滚动对于形成动压油膜十分有利,滚动的摩损也非常小.滑动容易引起磨损,严重时甚至造成齿面擦伤与胶合,滚动量和滑动量的大小因啮合位置而异,齿轮的润滑状态会随时间的改变而改变.2)齿轮传动润滑是断续性的,每次啮合都需要重新建立油膜,形成油膜的条件较轴承相差很远,与滑动轴承相比较,渐开线齿轮的诱导曲率半径小,因此形成油楔条件差[1].正是因为以上原因,减速箱齿轮的润滑状态目前并不能精确地定量计算.为了分析齿轮在润滑接触中摩擦系数随着工况条件的变化规律,我们引入Stribeck曲线.Stribeck曲线显示了流体动压润滑,弹流润滑,混合润滑和边界润滑状态的转换,可以作为预测润滑状态简便的方法.
Stribeck曲线[1]
图中λ为膜厚比,是最小油膜厚度与摩擦副的一对粗糙表面的综合粗糙度之比.
式中: λ 为油膜比厚,σ1为小齿轮的齿面粗糙度值Ra; σ2为大齿轮的齿面粗糙度值Ra;hmin为最小油膜厚度.
当λ < 1 时,齿轮传动处于边界润滑状态.
当1 < λ < 3 时,齿轮传动处于混合润滑状态或弹性流体动压润滑.
当λ > 3 时,齿轮传动处于全膜流体动压润滑状态.
由Stribeck曲线我们可以看出齿轮的润滑状态主要有边界润滑,弹流润滑和流体动压润滑三种.
1.边界润滑.润滑油膜厚度小于两齿面间的综合粗糙度,轮齿间不存在有流动油膜,齿面只能靠边界油膜隔开,轮齿表面有较多的凸峰接触,易发生擦伤,胶合等磨损[2].边界润滑状态是极其不稳定的,极易因为外界条件的改变出现干摩擦的情况,一旦发生干摩擦,磨损率增大,齿轮就会发生拉伤甚至是咬死.所以齿轮润滑应尽量避免边界润滑状态.
2.弹流润滑.弹流润滑状态或混合润滑状态,是边界润滑和流体动压润滑共同作用的结果.在这种状态下,载荷一部分有油膜承担,另一部分有接触的微凸体承担.在一定条件下,弹流润滑比边界润滑是的摩擦系数要小,但仍然会有轻微的磨损发生.
3.流体动压润滑状态.弹性流体动力润滑状态的是指相互摩擦的表面之间的摩擦,流体润滑膜的厚度往往取决于摩擦表面的材料弹性变形以及润滑剂流变特性的润滑.这种状态下负载全部是由油膜承担的,所以发生胶合,点蚀以及磨损的几率是十分之小的,是比较理想的润滑状态所以如果有条件,我们尽量的把机械设备齿轮减速器的润滑状态调整为弹性流体动力润滑状态[3].
从以上齿轮润滑状态分析可以看出油膜厚度是影响齿轮润滑状态转化的关键因素.研究影响齿轮润滑状态转化的条件首先要了解油膜厚度的影响因素.影响最小油膜厚度的因素有很多也很复杂,总的来说主要有齿轮的负载,齿轮工作时的速度,工作温度和环境温度,润滑油粘度等.不过这些因素并不是孤立单独的起作用,而是互相影响互相作用的.
一是载荷对最小油膜厚度的影响.当速度一定时,随载荷的增加,轮齿间的油膜形成机理及最小油膜厚度不同.在轻载时,齿轮表面润滑油的压粘效应不明显,表面弹性变形也很小,这时的油膜厚度主要受速度的影响,基本为动压润滑形式,油膜厚度较大.在中等载荷时,油膜厚度只受速度影响,润滑形式介于动压润滑和弹性流体动压润滑之间,当载荷稍有变化时油膜厚度并不变化,在载荷平稳的工作条件下,油膜厚度较稳定.在重载时表面接触应力加大,内部油压也加大,齿廓表面产生较大的弹性变形,润滑油出现明显的压粘效应,此时的润滑状态为弹性流体动压润滑,油膜厚度最小,但油膜刚性较好,油膜稳定.
二是速度对最小油膜厚度的影响.当载荷较大时,随着速度的增加,润滑油出现温粘效应.转速增大,润滑油温度升高,降低了润滑油由于压粘效应而增加的粘度,导致润滑油流动性增加,这样,油膜厚度就会随着转速的提高而增大。

如果转速较低,由于油的粘度因载荷较大而增大,使其流动性降低,故不易建立有效油膜厚度[4].
总之,由Stribeck曲线我们知道减速箱齿轮所处的润滑状态主要有边界润滑,弹流润滑和流体动压润滑三种,通过分析总结出了影响润滑状态转化的主要因素.因为齿轮工作条件的复杂性以及设备对于精度和定量化的要求,在计算最小油膜厚度和进一步研究其影响因素上我们仍有大量工作要做.
参考文献
[1] 纵杰.润滑技术在齿轮传动中的应用分析[J].浙江冶金,2010.
[2] 时洪文常开华.关于齿轮减速器的润滑[J].砖瓦,2006.
[3] 李林.浅析机械设备齿轮减速器的润滑[J].科技风,2013.
[4] 孙健.齿轮在不同工作条件下的润滑状态[N].江苏石油化工学院学报,2001.。

相关文档
最新文档